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Brain functional connectivity network (BFCN) analysis has been widely used in the

diagnosis of mental disorders, such as schizophrenia. In BFCN methods, brain

network construction is one of the core tasks due to its great influence on the

diagnosis result. Most of the existing BFCN construction methods only consider the

first-order relationship existing in each pair of brain regions and ignore the useful

high-order information, including multi-region correlation in the whole brain. Some early

schizophrenia patients have subtle changes in brain function networks, which cannot

be detected in conventional BFCN construction methods. It is well-known that the

high-order method is usually more sensitive to the subtle changes in signal than the

low-order method. To exploit high-order information among brain regions, we define the

triplet correlation among three brain regions, and derive the second-order brain network

based on the connectivity difference and ordinal information in each triplet. For making full

use of the complementary information in different brain networks, we proposed a hybrid

approach to fuse the first- and second-order brain networks. The proposed method

is applied to identify the biomarkers of schizophrenia. The experimental results on six

schizophrenia datasets (totally including 439 patients and 426 controls) show that the

proposed method outperforms the existing brain network methods in the diagnosis

of schizophrenia.

Keywords: brain network, second-order information, rs-fMRI, computer-aided diagnosis, schizophrenia

classification

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) studies indicate that there exists a
disorder-related alteration in BFCN (Bluhm et al., 2007; Jafri et al., 2008; Fornito and Bullmore,
2010; Shafiei et al., 2018; Wang et al., 2018). As a severely debilitating mental illness, schizophrenia
is usually thought of as connectivity disorders between brain regions (Liang et al., 2006; Salvador
et al., 2010). In recent years, many BFCN analysis methods (Zhou et al., 2006; Liang et al.,
2007; Honey et al., 2009; Tsuang et al., 2009) have been proposed to explore the biomarkers
for schizophrenia. Most of the existing methods first construct the brain functional network by
measuring the correlation of brain regions or voxels, and then perform feature extraction on the
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produced large-scale brain networks for selecting the significant
features. These connectivities or sub-networks having significant
alterations in some indicators, e.g., topological metrics (Fei et al.,
2014) and the alteration degree (Guo et al., 2014; Zhu et al., 2018),
are chosen as the biomarker for the disease.

The construction of the brain network plays as an important
role in the diagnosis system. The previous BFCN construction
methods mainly focus on revealing the low-order information
among brain regions or voxels. In other words, the functional
connectivities in these methods are usually denoted as the
association between each pair of brain regions or voxels; e.g.,
the Pearson correlation (PC) based method uses the pair-wise
linear correlation of brain regions as the connectivity strength
(Richiardi et al., 2013). In addition, the Kendall correlation
(KC) (Dong et al., 2014) and the Spearman correlation (SC)
(Zhang et al., 2015) are also introduced into the brain network
construction process. Considering the correlation between the
two brain regions may be affected by other regions, Guo
et al. (2014) proposed to eliminate this kind influence from
other connectivities through the partial correlation (ParC) test,
and applied it to the classification of schizophrenia patients
and healthy controls. Li et al. (2019) and Qiao et al. (2016)
constructed the low rank and self-weighted brain network
by introducing prior knowledge to the model. Zhou et al.
(2018) embedded the second-order information among brain
regions into brain network and applied it into identifying mild
cognitive impairment.

The low-order method has the following natural defects in
characterizing the relationship among brain regions. On one
hand, there exists the subtle alteration of brain network structure
between controls and patients, especially the mild or early
patients, which is hard to reveal through the first-order method
because, compared to the high-order method, the low-order
method is not sensitive to small signal change. On the other hand,
the first-order or pair-wise model is not capable of describing
the complex multivariable correlation and ignores the ordinal
pattern among connectivities (Wu et al., 2018). The topological
structure of the brain network is intricate (Bullmore and Sporns,
2009); e.g., one brain region usually interacts with multiple
brain regions physiologically, whereas the low-order methods
often ignore the relationship among multi-regions. Therefore,
it is necessary to investigate effective high-order brain network
construction methods to reveal the correlation of multiple brain
regions and ordinal patterns from rs-fMRI data.

In this paper, we derived the second-order brain networks
by introducing the triplet of brain regions. We calculated the
connectivity difference to describe the ordinal information in
each triplet. The derived second-order relationship in BFCN
construction methods is more capable of capturing the changes
in the brain network, making it easier to identify mild or early
schizophrenia patients. Considering that the brain network has
the property of high regional agglomeration (Alexander-Bloch
et al., 2013), we extract the second-order relationship among
one brain region and its k nearest neighbors to improve the
robustness of the proposed method. Then, we fuse our second-
order BFCN with the most widely used first-order BFCN, i.e.,
PC based brain network, to construct the hybrid functional

brain network. The mixed model not only reveals the subtle
differences in brain networks between patients and healthy
controls, but also makes full use of complementary brain
networks defined in different orders. Our proposed method has
the following advantages:

1) We embed high-order information of connectivity groups in
the brain network, which may have a beneficial effect on the
analysis and diagnosis of mild or early mental illness due to
the revelation of a more subtle alteration.

2) Considering the regional aggregation of brain networks, we
utilize the local strategy to improve the robustness of the
proposed second-order brain network.

3) A hybrid strategy fusing the proposed second-order brain
network and the conventional first-order brain network is
proposed, which can make full use of the complementary
information in these two types of networks.

4) The experiment is performed on six rs-fMRI datasets with
schizophrenia patients and controls, including a total of 865
subjects. To the best of our knowledge, it is with the largest
population reported in the literature of rs-fMRI analysis for
identifying schizophrenia. The results show that the proposed
hybrid network is superior to the state-of-the-art methods.

The remainder of the paper is organized as follows: first, we
introduce our materials and methods, i.e., the six schizophrenia
datasets and the proposed brain network construction
method. Then, the experimental results and discussion on
six schizophrenia datasets are presented. Finally, we summarize
our work and provide the conclusion.

MATERIALS AND METHODS

Subjects
Six schizophrenia rs-fMRI datasets we used are Nanjing Brain
Hospital (NBH) dataset, The Center for Biomedical Research
Excellence (COBRE) dataset, Huaxi dataset, Nottingham dataset,
Taiwan dataset, and Xiangya dataset. The subjects have the
following requirements: (1) no other Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) disease exists; (2) no
history of drug abuse; (3) no clinically significant head trauma.
Table 1 summarizes the demographic and clinical characteristics
of participants of these datasets (Cheng et al., 2015). The Positive
and Negative Symptom Scale (PANSS) (Kay et al., 1987) is
used by experts to score participants to obtain the severity
of schizophrenia.

Image Acquisitions, Data Preprocessing
and Anatomical Parcellation
For NBH, COBRE, Taiwan, and Xiangya datasets (Guo et al.,
2014), the rs-fMRI images of each participant were acquired by
using a 3-Tesla Siemens Tim-Trio scanner with an eight or 12
channel head coil. For Huaxi dataset, the rs-fMRI images were
acquired by using a 3-T General Electric MRI scanner. For the
Nottingham dataset, the images were acquired using a 3-T Philips
Achieva MRI scanner.

During the scanning of images in the NBH, COBRE, and
Nottingham datasets, all participants must keep their eyes open
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TABLE 1 | Demographic and clinical characteristics of participants in six schizophrenia datasets.

Group Age P-value of

age

Gender

(M/F)

P-value of

gender

PANSS-positive

scale

PANSS-negative

scale

PANSS-general

scale

PANSS-total

NBH Healthy 35.29 ± 7.94 0.0813 10/14 0.3600 – – – –

Patient 30.78 ± 9.01 6/15 – – – 97.83 ± 11.09

COBRE Healthy 34.82 ± 11.28 0.3987 46/21 0.1927 – – – –

Patient 36.75 ± 13.68 42/11 14.84 ± 4.53 14.42 ± 4.97 29.88 ± 8.27 –

Huaxi Healthy 27.80 ± 12.50 1.0000 95/85 0.6748 – – – –

Patient 27.80 ± 12.50 90/88 24.48 ± 6.05 19.68 ± 7.67 46.70 ± 8.87 –

Nottingh-am Healthy 33.38 ± 8.98 0.9855 26/10 0.2277 – – – –

Patient 33.34 ± 9.05 27/5 3.84 ± 3.18 3.13 ± 3.63 5.94 ± 3.89 –

Taiwan Healthy 29.87 ± 8.62 0.2847 25/37 0.2329 – – – –

Patient 31.59 ± 9.60 35/34 11.92 ± 4.71 13.61 ± 6.33 27.28 ± 9.64 52.81 ± 16.68

Xiangya Healthy 27.17 ± 6.64 0.1025 35/25 0.9333 – – – –

Patient 23.37 ± 7.83 49/34 19.84 ± 6.31 21.56 ± 7.66 39.24 ± 11.75 –

and stare intently at the fixed cross in the middle of the screen
for 5min. During scanning of images in the Huaxi, Taiwan, and
Xiangya datasets, the participants were instructed to keep their
eyes closed but not fall asleep.

For all datasets to be preprocessed, we discarded the
first 10 volumes to make sure scanner stabilization and
the subjects’ adaptability to the environment. Rs-fMRI data
preprocessing was then performed by statistical parametric
mapping (SPM8) software (http://www.fil.ion.ucl.ac.uk/spm)
and a Data Processing Assistant for RS-fMRI (DPARSF). The
remaining functional scans were first corrected to the difference
in acquisition time between on-chip scans, and then readjusted to
the intermediate volume to correct for head movement between
scans. The functional scan was then spatially normalized to
the Montreal Neurological Institute template and resampled
to 3 × 3 × 3 mm3 voxels. After linear detrending, data was
filtered using typical temporal bandpass (0.01–0.08Hz) to reduce
low-frequency drift and high-frequency physiological noise.
Next, four covariates of no interest (i.e., six rigid-body motion
parameters, the global mean signal, white matter, cerebrospinal
fluid) were regressed from the data. No subject was excluded
under a head motion criterion of 3mm and 3◦.

After data preprocessing, according to Lynall et al. (2010), the
rs-fMRI images were divided into 90 brain regions (excluding the
cerebellum) or region-of-interests (ROIs) using the Anatomical
Automatic Labeling (AAL) template (Tzourio-Mazoyer et al.,
2002). Finally, for each ROI, the average rs-fMRI time series over
all voxels was taken as the time series for that ROI. After data
preprocessing and anatomical parcellation, for each of the brain
regions of each subject, its feature information is represented
in the form of the time series. The processed information of all
datasets is shown in Table 2.

Triplet-Based Second-Order Functional
Brain Network
The traditional functional brain network methods often only
consider the pairwise relationship of different brain regions,
namely the first-order relationship. However, the alteration of

TABLE 2 | The processed information of all six schizophrenia datasets.

Dataset # of patient

samples

# of normal

samples

# of features (brain

regions * time series)

NBH 24 21 90*230

COBRE 53 67 90*145

Huaxi 178 180 90*180

Nottingham 32 36 90*235

Taiwan 69 62 90*170

Xiangya 83 60 90*170

connectivity networks between patients and healthy controls
may be subtle, and the first-order brain network is not capable
of finding the subtle difference. In addition, the topology of
the brain is extremely complex and one brain region usually
interacts with multiple brain regions. For revealing the high-
order information among brain regions, we construct the second-
order brain network by introducing triplet correlation among
three brain regions.

Suppose that X = {x1, x2, . . . , xn} ∈ Rn×m denotes the rs-
fMRI data from a subject, where n is the number of brain regions
and m is the number of time series. xi is the time series for
the i-th brain region where i ∈ {1, 2, · · · , n}. Our triplet-based
second-order functional brain network is constructed as follows:

Let triplet (xi, xu, xv) consists of xi and its neighbors xu and xv.
Siuv defines the distance between xi and xv relative to xu:

Siuv = dist (xi, xv) − dist (xi, xu) (1)

where dist (·, ·) denotes the squared Euclidean distance. It should
be pointed out that dist (·, ·) has nothing to do with the
anatomical distance, because xi denotes the rs-fMRI time series
data of the i-th brain region. Obviously, Si is an antisymmetric
matrix. Since one brain region usually interacts with its neighbors
rather than distant brain regions, we only consider the k
nearest neighbors of xi. Let Ni be a set of sequence numbers
indicating the k nearest neighbors of xi, and then, relative to all
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k nearest neighbors of xi, the distance between xi and xv can be
expressed as:

dist′ (xi, xv) =
∑

u∈Ni

Siuv (2)

Based on the above distance, the triplet correlation coefficient
(Guo et al., 2017) between xi and xv can be expressed as:

Civ = norm
(

dist′ (xi, xv)
)

(3)

where norm (·) denotes normalizing the data to the interval [0, 1].
Thus, the second-order correlation coefficient matrix can be

denoted as:

Cij =















norm
(

−dist′
(

xi, xj
))

,
(

j ∈ Ni

)

0,
(

j /∈ Ni

)

(4)

Then, we symmetrically handle C as follows:

C′ =
C + CT

2
(5)

The schematic diagram of triplet-based local brain network is
shown in Figure 1.

After all correlation coefficients are calculated, a second-order
functional brain network is constructed. It preserves second-
order information among brain regions, which makes it more
sensitive to the changes in the brain network and can capture

the ordinal information among connectivities. It can also be seen
from the above formula that our second-order functional brain
network will eventually be converted into a two-dimensional
form, which also helps to reduce the space complexity of high-
order method.

Hybrid Functional Brain Network With
First-Order and Second-Order Information
Studies have shown that brain network methods based on
correlation coefficients can characterize the interactions between
brain regions or neurons (Smith et al., 2011). The conventional
first-order method and the proposed second-order method can
construct connectivities from different levels. There is some
complementary information in these two kinds of brain networks
for the diagnosis task. In addition, the low-order method is
more robust to noise transmission. Inspired by the above issue,
we fuse the proposed brain network with a first-order brain
network to construct a hybrid brain network. The PC method
is a classical first-order method for constructing brain networks
based on correlation coefficients. PC can be calculated using the
following formula:

C1
ij =

Cov
(

xi, xj
)

√

Var (xi)Var
(

xj
)

(6)

where Var (·) means a function of the variance calculated and
Cov (·, ·) is a function that calculates the covariance.

For convenience, we denote the proposed second-order
functional brain network C′C′ mentioned in the previous section

FIGURE 1 | The schematic diagram of triplet-based local brain network. The black point xi is the center point we selected. We calculated the distance between xi and

its neighbors in connectivity strength. There are three triples based on xi and its neighbors in calculation. The last sub-graph is our triplet-based second-order

functional network in the whole brain.
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FIGURE 2 | Overall framework of the hybrid brain network. The first-order brain network based on the Pearson correlation coefficient and the second-order brain

network based on the triplet are, respectively, constructed, and then the two are fused with a certain weight to obtain the hybrid functional brain network with first-

and second-order information.
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TABLE 3 | Classification results (ACC/SEN/SPE/PPV/NPV/F1/BAC/AUC±STD%, and p-value) by k-fold cross-validation of several Functional fMRI networks algorithms

on schizophrenia datasets.

ACC ± STD SEN ± STD SPE ± STD PPV ± STD NPV ± STD F1 ± STD BAC ± STD AUC ± STD p-value

NBH PC 90.67 ± 1.66 93.59 ± 3.24 89.67 ± 2.80 91.12 ± 1.09 91.40 ± 5.34 91.33 ± 1.85 91.63 ± 1.16 88.41 ± 1.07 0.0330*

KC 88.89 ± 1.41 91.18 ± 1.84 88.92 ± 3.68 90.21 ± 3.55 87.27 ± 2.49 89.59 ± 1.32 90.05 ± 1.31 84.84 ± 2.72 0.0208*

SC 88.44 ± 1.66 91.18 ± 1.84 88.26 ± 2.58 89.88 ± 2.02 87.27 ± 2.49 89.28 ± 2.26 89.72 ± 1.38 84.21 ± 3.28 0.0068*

ParC 81.78 ± 1.66 72.25 ± 4.48 94.93 ± 1.60 94.40 ± 2.04 76.06 ± 3.11 79.26 ± 3.29 83.59 ± 1.65 72.78 ± 3.29 0.0246*

GGM 72.89 ± 1.66 68.75 ± 4.50 80.20 ± 4.75 82.29 ± 5.95 68.82 ± 3.15 72.16 ± 1.87 74.48 ± 0.92 71.19 ± 2.91 4.1573e-4*

LOPC 72.89 ± 2.95 69.72 ± 4.63 78.73 ± 4.36 81.31 ± 4.97 74.08 ± 4.08 70.75 ± 3.70 74.23 ± 1.76 71.79 ± 2.99 3.7009e-4*

MTNC 90.67 ± 1.66 91.99 ± 3.30 90.73 ± 2.98 92.69 ± 2.31 89.80 ± 5.22 91.38 ± 1.87 91.36 ± 1.12 87.70 ± 1.17 0.0462*

Ours 94.22 ± 2.67 94.69 ± 3.64 94.93 ± 3.08 95.27 ± 3.16 93.00 ± 5.42 94.36 ± 2.52 94.81 ± 2.10 91.79 ± 2.36 –

COBRE PC 74.50 ± 1.55 66.10 ± 2.22 82.66 ± 3.55 74.99 ± 2.84 75.43 ± 1.47 68.57 ± 0.92 74.38 ± 1.49 69.50 ± 1.47 0.0011*

KC 73.17 ± 1.93 64.49 ± 1.20 81.11 ± 4.27 73.18 ± 3.23 74.24 ± 1.15 66.93 ± 1.06 72.80 ± 1.67 68.22 ± 1.02 6.4777e-4*

SC 73.00 ± 1.63 64.49 ± 1.20 80.86 ± 3.52 72.98 ± 2.66 74.15 ± 1.16 66.83 ± 0.97 72.67 ± 1.37 68.13 ± 0.73 4.1727e-4*

ParC 69.00 ± 1.93 59.16 ± 3.70 78.45 ± 1.93 69.31 ± 1.67 70.07 ± 1.67 62.22 ± 2.89 68.80 ± 1.92 62.87 ± 1.99 2.0603e-5*

GGM 63.83 ± 2.56 60.82 ± 1.13 67.74 ± 4.16 60.94 ± 3.39 68.69 ± 1.23 58.85 ± 1.97 64.28 ± 1.99 59.02 ± 3.52 1.2521e-4*

LOPC 64.33 ± 1.53 62.98 ± 4.59 65.85 ± 3.87 59.93 ± 2.40 68.96 ± 1.80 60.15 ± 2.62 64.41 ± 2.05 59.85 ± 3.01 2.0818e-4*

MTNC 77.83 ± 1.45 70.80 ± 1.54 84.64 ± 2.75 78.16 ± 1.70 78.64 ± 1.29 72.70 ± 1.40 77.72 ± 1.28 72.71 ± 0.54 0.0098*

Ours 81.00 ± 0.62 74.51 ± 4.73 87.53 ± 3.70 81.30 ± 3.45 81.33 ± 2.17 76.36 ± 1.52 81.02 ± 0.89 76.39 ± 2.01 –

Huaxi PC 77.49 ± 0.88 77.44 ± 1.74 77.72 ± 2.37 79.03 ± 1.33 76.10 ± 1.02 77.88 ± 0.76 77.58 ± 0.96 77.10 ± 0.85 1.4912e-4*

KC 76.28 ± 1.41 76.73 ± 1.46 75.98 ± 2.56 77.73 ± 1.62 74.97 ± 1.55 76.88 ± 1.09 76.36 ± 1.52 75.48 ± 1.35 7.7997e-4*

SC 75.70 ± 1.73 76.14 ± 1.07 75.45 ± 3.01 77.18 ± 2.06 74.45 ± 1.76 76.29 ± 1.29 75.80 ± 1.85 74.89 ± 1.56 0.0011*

ParC 67.20 ± 1.68 68.54 ± 2.39 66.84 ± 1.77 68.90 ± 1.70 66.47 ± 2.06 68.07 ± 1.78 67.69 ± 1.87 67.14 ± 1.58 1.8221e-5*

GGM 63.10 ± 2.51 64.53 ± 3.02 61.33 ± 2.16 64.12 ± 1.98 61.81 ± 2.90 64.05 ± 2.52 62.93 ± 2.37 62.46 ± 3.21 6.8929e-5*

LOPC 60.66 ± 1.36 60.52 ± 2.69 60.75 ± 1.08 62.28 ± 0.88 58.96 ± 1.48 61.05 ± 1.95 60.63 ± 1.03 59.90 ± 2.03 4.3858e-6*

MTNC 78.52 ± 1.66 78.98 ± 2.26 78.23 ± 2.17 79.79 ± 1.43 77.43 ± 1.99 79.03 ± 1.65 78.61 ± 1.81 78.24 ± 1.20 0.0175*

Ours 81.94 ± 0.74 81.56 ± 1.44 82.71 ± 1.98 83.50 ± 1.53 80.42 ± 1.31 82.24 ± 0.65 82.14 ± 1.66 81.25 ± 0.98 –

Nottingham PC 66.31 ± 3.49 60.59 ± 7.84 72.84 ± 3.32 65.75 ± 5.86 68.21 ± 4.51 60.75 ± 6.30 66.74 ± 4.46 63.87 ± 3.18 9.5656e-5*

KC 64.58 ± 2.89 59.36 ± 6.67 70.34 ± 3.43 63.43 ± 3.58 66.42 ± 3.54 59.26 ± 4.83 64.85 ± 3.78 61.89 ± 2.95 7.7695e-4*

SC 64.58 ± 2.89 59.36 ± 6.67 70.34 ± 3.43 63.43 ± 3.58 66.42 ± 3.54 59.26 ± 4.83 64.85 ± 3.78 61.89 ± 2.95 7.7695e-4*

ParC 64.63 ± 1.73 56.31 ± 2.90 73.79 ± 2.63 66.52 ± 4.59 65.32 ± 1.52 58.25 ± 3.11 65.05 ± 1.53 62.05 ± 3.58 3.6260e-4*

GGM 60.19 ± 1.80 49.29 ± 3.64 69.19 ± 1.54 59.80 ± 3.00 60.40 ± 1.89 52.13 ± 2.43 59.27 ± 1.46 57.85 ± 4.08 0.0027*

LOPC 60.56 ± 1.63 53.18 ± 5.26 67.09 ± 3.62 60.16 ± 3.52 61.25 ± 2.49 53.89 ± 1.67 60.13 ± 1.21 58.68 ± 3.45 0.0025*

MTNC 68.77 ± 2.84 62.52 ± 7.58 75.83 ± 2.71 68.44 ± 5.27 70.41 ± 3.61 63.14 ± 6.04 69.17 ± 3.63 65.73 ± 2.61 5.1598e-4*

Ours 75.88 ± 1.54 67.05 ± 5.53 84.63 ± 3.79 77.92 ± 4.27 75.41 ± 2.09 69.92 ± 4.05 75.84 ± 2.13 73.25 ± 3.47 –

Taiwan PC 77.42 ± 2.30 77.83 ± 3.12 77.60 ± 3.49 79.32 ± 2.34 76.14 ± 3.41 77.83 ± 2.37 77.72 ± 2.53 77.07 ± 2.54 0.0027*

KC 76.80 ± 1.48 78.43 ± 4.28 75.81 ± 3.03 77.92 ± 1.52 76.66 ± 3.34 77.39 ± 1.96 77.12 ± 1.81 76.11 ± 3.75 6.7739e-4*

SC 76.80 ± 1.95 79.80 ± 4.03 74.36 ± 2.76 77.30 ± 1.74 77.32 ± 3.62 77.77 ± 2.13 77.08 ± 2.09 76.03 ± 3.21 0.0014*

ParC 76.01 ± 1.50 79.80 ± 2.71 74.12 ± 2.56 76.94 ± 2.17 77.11 ± 1.69 77.14 ± 1.63 76.96 ± 1.23 75.18 ± 5.97 9.0876e-4*

GGM 70.08 ± 1.76 71.84 ± 4.11 68.65 ± 3.72 70.76 ± 2.33 69.04 ± 2.00 70.65 ± 2.87 70.25 ± 2.33 69.78 ± 4.15 8.6965e-4*

LOPC 71.15 ± 1.31 72.56 ± 3.37 69.89 ± 2.68 72.60 ± 1.90 69.79 ± 1.67 71.77 ± 1.82 71.22 ± 1.48 70.83 ± 2.82 0.0010*

MTNC 78.50 ± 1.69 79.68 ± 2.73 78.02 ± 3.30 80.01 ± 1.93 77.74 ± 2.97 79.13 ± 1.62 78.85 ± 1.85 78.17 ± 3.02 0.0022*

Ours 85.17 ± 0.78 88.06 ± 1.74 82.73 ± 0.17 84.91 ± 0.94 85.58 ± 2.36 85.99 ± 0.69 85.39 ± 0.83 83.71 ± 4.12 –

Xiangya PC 75.93 ± 1.78 84.18 ± 1.43 65.40 ± 4.20 76.60 ± 3.06 75.36 ± 1.88 79.62 ± 1.90 74.79 ± 2.63 74.29 ± 2.52 8.7979e-5*

KC 74.88 ± 1.93 84.30 ± 2.10 63.15 ± 2.79 75.67 ± 1.82 74.74 ± 2.69 79.07 ± 1.76 73.73 ± 2.15 72.33 ± 1.08 0.0021*

SC 74.85 ± 1.55 83.89 ± 2.29 63.40 ± 2.07 75.64 ± 1.78 74.25 ± 2.61 78.94 ± 1.70 73.65 ± 1.87 72.22 ± 2.17 2.5002e-4*

ParC 72.29 ± 1.78 83.28 ± 0.81 57.42 ± 4.19 72.83 ± 1.81 70.97 ± 1.37 77.21 ± 0.96 70.35 ± 1.88 70.11 ± 3.02 0.0057*

GGM 63.09 ± 2.12 67.37 ± 2.54 56.91 ± 6.63 68.77 ± 2.76 54.93 ± 3.28 67.46 ± 1.88 62.14 ± 3.13 61.73 ± 4.71 2.6668e-4*

LOPC 65.66 ± 1.87 66.54 ± 1.75 63.82 ± 4.30 72.03 ± 2.46 57.80 ± 2.75 68.59 ± 1.45 65.18 ± 2.38 65.56 ± 3.60 4.6110e-5*

MTNC 78.06 ± 1.72 86.43 ± 2.72 67.62 ± 2.87 78.14 ± 2.26 78.29 ± 3.20 81.49 ± 2.05 77.03 ± 2.48 76.04 ± 3.14 0.0153*

Ours 80.83 ± 1.02 85.98 ± 3.17 74.47 ± 3.35 81.41 ± 2.08 79.70 ± 2.73 83.19 ± 1.63 80.23 ± 1.28 79.20 ± 2.89 –

The best results are in boldface.

The asterisk (*) denotes the statistically significant differences (p < 0.05).
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as C2. In this case, hybrid functional brain network with first-
order and second-order information can be expressed as:

C = µC1 + (1− µ)C2 (7)

where µ is the weighted coefficient for mixing C1 and C2, and
its ranges from 0 to 1. The overall framework of the hybrid brain
network is shown in Figure 2.

In the hybrid brain network, C1 preserves the original
connectivity strength information between the two brain regions,
and C2 captures the connectivity strength information of one
brain region and its neighbors. The hybrid brain network C
synthesizes C1 and C2, and fuses the complementary information
in these two kinds of networks.

By introducing the triplet correlation, the ordinal relationship
among brain regions is preserved. Through second-order brain
network, i.e., the triplet-based brain network, not only high-
order information is introduced to extract neighbor ranking
information in each brain region, but also connectivity noise
is transmitted. From the point of view of signal analysis, the
first-order brain network is robust to noise, and the second-
order brain network is sensitive to the subtle differences
between the brain network of patients and healthy controls.
Thus, the proposed hybrid model can balance robustness and
classification performance.

Feature Selection Strategy
There are mainly three stages of mental illness classification
based on BFCN: brain network construction, brain network
feature selection, and classification. Besides the construction

of functional brain networks, feature selection is also a key
step in the brain network analysis process. Since this work
focuses on brain network construction, the discussion of feature
selection algorithm is beyond the research content of this
paper. By comparing the classification performance of multiple
feature selection algorithms, we use the non-negative elastic-
net (Zhu et al., 2018) in our previous work to choose the
significant connectivities.

The functional brain network data are high dimensional,
and many subjects are linearly inseparable. To achieve good
classification performance, we utilize kernel discriminant
analysis (KDA) algorithm to project each sample to the feature
space, in which the classification performance of subjects can be
improved. Finally, the nearest neighbor classifier is exploited for
making the diagnosis decision.

In addition, the topological properties of the brain network
can also be used as important features. Similarly, since this
work focuses on the construction of the brain network, we use
the methods proposed by Narula et al. (2017) and the public
code they provided to calculate the topological properties of the
brain network.

EXPERIMENTS AND RESULTS

Classification Performance of Different
fMRI Functional Brain Networks
In this experiment, the brain networks were constructed
using the proposed method and a series of comparison
methods mentioned below. Since this experiment is designed

FIGURE 3 | ROC curves for all methods on all datasets.
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for comparing the performance of different functional brain
networks, the same feature selection and classification algorithm
in our method are all performed on these networks to ensure the
comparability of the functional brain networks.

Comparison Methods
We have chosen the following functional brain network
constructionmethods as comparisonmethods: PC-basedmethod
(Richiardi et al., 2013), KC-based method (Dong et al., 2014),
SC-based method (Zhang et al., 2015), ParC-based method (Tao
et al., 2011), Gaussian GraphicalModels (GGM) (Belilovsky et al.,

2015), low order partial correlation (LOPC) (Zuo et al., 2014),
and multi-threshold brain network based classification (MTNC)
(Fei et al., 2014).

Experimental Setup
We adopt the 10-fold cross-validation strategy in this experiment.
Specifically, each dataset is equally divided into 10 subsets. One
subset is selected as the test set successively, and all remaining
subsets are used for training. To avoid possible deviations
during sample segmentation, we repeat this process 20 times.
Accuracy (ACC), sensitivity (SEN), specificity (SPE), positive

TABLE 4 | Classification results (ACC/SEN/SPE/PPV/NPV/F1/BAC/AUC±STD%, and p-value) by k-fold cross-validation of several feature selection algorithms on

schizophrenia datasets.

ACC ± STD SEN ± STD SPE ± STD PPV ± STD NPV ± STD F1 ± STD BAC ± STD AUC ± STD p-value

NBH NN 83.11 ± 3.01 73.61 ± 7.87 96.53 ± 2.96 96.27 ± 3.90 75.29 ± 4.01 81.66 ± 3.90 85.07 ± 2.56 83.02 ± 2.14 0.0174*

LDA 91.56 ± 1.66 93.23 ± 2.73 90.67 ± 3.87 93.35 ± 2.79 91.13 ± 4.14 92.63 ± 1.30 91.95 ± 1.81 88.41 ± 2.76 0.0264*

ISOMAP 86.67 ± 3.14 84.20 ± 8.21 89.73 ± 6.23 90.63 ± 4.08 82.95 ± 6.37 86.14 ± 3.83 86.96 ± 3.77 83.29 ± 2.61 0.0029*

NPE 91.11 ± 1.41 85.20 ± 3.75 96.40 ± 3.67 96.86 ± 2.58 88.80 ± 2.04 89.28 ± 2.28 90.80 ± 1.02 87.38 ± 1.34 0.0269*

SVM 92.00 ± 2.27 94.35 ± 3.54 91.16 ± 3.54 92.26 ± 2.07 92.40 ± 4.87 92.46 ± 2.46 92.76 ± 2.07 88.97 ± 2.69 0.0152*

Ours 94.22 ± 2.67 94.69 ± 3.64 94.93 ± 3.08 95.27 ± 3.16 93.00 ± 5.42 94.36 ± 2.52 94.81 ± 2.10 91.79 ± 2.36 –

COBRE NN 66.67 ± 2.17 38.64 ± 1.89 88.55 ± 2.52 70.25 ± 6.41 64.88 ± 1.36 48.82 ± 3.10 63.59 ± 2.04 59.84 ± 5.33 0.0013*

LDA 77.00 ± 1.94 70.72 ± 1.20 83.30 ± 3.22 77.05 ± 1.75 78.41 ± 1.37 72.01 ± 1.25 77.01 ± 1.45 71.99 ± 0.64 0.0109*

ISOMAP 72.50 ± 2.17 57.20 ± 5.09 86.47 ± 2.23 77.27 ± 3.15 72.10 ± 3.02 63.24 ± 3.07 71.84 ± 2.66 66.26 ± 3.68 4.3278e-4*

NPE 73.83 ± 2.33 79.86 ± 6.41 68.20 ± 6.70 67.99 ± 3.09 82.98 ± 5.92 71.78 ± 2.87 74.03 ± 2.32 71.57 ± 2.64 0.0404*

SVM 77.17 ± 1.25 68.67 ± 2.41 84.62 ± 2.07 77.66 ± 1.35 77.77 ± 1.10 71.41 ± 1.41 76.65 ± 1.01 72.66 ± 1.11 0.0035*

Ours 81.00 ± 0.62 74.51 ± 4.73 87.53 ± 3.70 81.30 ± 3.45 81.33 ± 2.17 76.36 ± 1.52 81.02 ± 0.89 76.39 ± 2.01 –

Huaxi NN 63.28 ± 1.06 58.91 ± 3.63 68.59 ± 3.42 66.43 ± 1.36 61.06 ± 1.03 61.90 ± 2.13 63.75 ± 0.94 62.77 ± 1.47 1.5948e-6*

LDA 77.75 ± 1.33 78.10 ± 1.70 77.64 ± 2.27 79.12 ± 1.39 76.58 ± 1.36 78.25 ± 1.24 77.87 ± 1.46 77.36 ± 1.22 7.0516e-4*

ISOMAP 70.11 ± 1.92 62.20 ± 7.10 78.75 ± 5.60 76.20 ± 3.05 66.66 ± 3.18 67.59 ± 3.44 70.48 ± 1.67 69.76 ± 1.31 3.7721e-4*

NPE 73.98 ± 0.40 67.52 ± 3.24 79.02 ± 4.32 79.15 ± 2.18 70.66 ± 1.88 72.00 ± 1.17 73.27 ± 0.89 74.20 ± 1.69 0.0010*

SVM 80.58 ± 0.74 81.33 ± 0.70 80.08 ± 1.49 81.36 ± 0.86 79.93 ± 0.83 81.05 ± 0.64 80.71 ± 0.91 79.93 ± 1.52 0.0339*

Ours 81.94 ± 0.74 81.56 ± 1.44 82.71 ± 1.98 83.50 ± 1.53 80.42 ± 1.31 82.24 ± 0.65 82.14 ± 1.66 81.25 ± 0.98 –

Nottingham NN 68.58 ± 2.53 56.62 ± 12.24 80.06 ± 7.84 71.97 ± 3.40 67.60 ± 4.37 60.77 ± 7.15 68.34 ± 2.60 66.79 ± 4.48 0.0094*

LDA 68.71 ± 2.87 62.92 ± 7.48 74.83 ± 4.50 68.57 ± 5.14 70.21 ± 3.72 63.33 ± 5.97 68.87 ± 3.96 65.52 ± 2.31 9.7785e-4*

ISOMAP 69.75 ± 2.75 57.31 ± 9.18 81.81 ± 9.65 76.94 ± 4.91 67.69 ± 2.59 62.75 ± 5.78 69.56 ± 3.11 67.53 ± 5.70 0.0369*

NPE 72.83 ± 1.37 75.20 ± 4.52 66.84 ± 3.22 71.09 ± 2.58 77.51 ± 2.40 71.12 ± 2.62 71.02 ± 3.06 69.74 ± 1.34 0.0340*

SVM 75.73 ± 2.85 70.28 ± 3.18 82.11 ± 5.55 78.89 ± 5.37 75.76 ± 1.95 72.37 ± 2.82 76.20 ± 2.44 71.16 ± 3.89 0.0256*

Ours 75.88 ± 1.54 67.05 ± 5.53 84.63 ± 3.79 77.92 ± 4.27 75.41 ± 2.09 69.92 ± 4.05 75.84 ± 2.13 73.25 ± 3.47 –

Taiwan NN 73.75 ± 0.57 77.25 ± 3.99 71.26 ± 3.26 74.51 ± 1.27 73.94 ± 2.85 74.98 ± 1.39 74.25 ± 1.17 72.47 ± 3.97 1.8216e-4*

LDA 79.85 ± 2.38 83.47 ± 4.87 77.09 ± 2.96 80.28 ± 1.72 81.29 ± 3.48 80.90 ± 2.46 80.28 ± 3.00 78.97 ± 3.42 0.0129*

ISOMAP 75.28 ± 1.05 72.68 ± 1.71 79.86 ± 2.96 79.46 ± 2.09 72.37 ± 1.47 74.89 ± 0.89 76.27 ± 1.99 75.29 ± 3.74 6.6160e-4*

NPE 79.57 ± 0.86 73.90 ± 5.45 83.19 ± 5.32 86.47 ± 4.03 74.78 ± 0.91 78.26 ± 2.00 78.55 ± 0.79 77.27 ± 1.10 0.0396*

SVM 79.84 ± 1.63 82.99 ± 3.25 77.78 ± 3.16 80.57 ± 1.77 80.57 ± 2.64 80.89 ± 1.51 80.38 ± 2.24 78.91 ± 3.45 0.0012*

Ours 85.17 ± 0.78 88.06 ± 1.74 82.73 ± 0.17 84.91 ± 0.94 85.58 ± 2.36 85.99 ± 0.69 85.39 ± 0.83 83.71 ± 4.12 –

Xiangya NN 65.79 ± 1.37 76.99 ± 8.68 51.05 ± 7.96 68.65 ± 1.50 63.23 ± 5.85 71.47 ± 3.45 64.02 ± 1.38 62.80 ± 3.34 4.4581e-6*

LDA 77.64 ± 1.27 84.90 ± 2.51 68.07 ± 2.96 78.33 ± 2.09 76.72 ± 1.21 80.92 ± 1.74 76.49 ± 1.44 75.71 ± 2.46 0.0035*

ISOMAP 66.52 ± 1.23 74.39 ± 2.55 56.65 ± 1.59 70.04 ± 1.74 61.31 ± 2.12 71.46 ± 1.79 65.52 ± 1.72 65.33 ± 2.37 6.5089e-5*

NPE 72.05 ± 1.76 63.22 ± 4.17 80.25 ± 5.04 83.16 ± 3.62 62.32 ± 2.19 70.77 ± 2.05 71.74 ± 1.28 73.02 ± 1.99 0.0367*

SVM 78.23 ± 1.63 86.16 ± 1.95 67.63 ± 2.48 77.97 ± 2.18 77.92 ± 2.07 81.48 ± 1.99 76.89 ± 2.13 75.78 ± 3.05 0.0031*

Ours 80.83 ± 1.02 85.98 ± 3.17 74.47 ± 3.35 81.41 ± 2.08 79.70 ± 2.73 83.19 ± 1.63 80.23 ± 1.28 79.20 ± 2.89 –

The best results are in boldface.

The asterisk (*) denotes the statistically significant differences (p < 0.05).
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predictive value (PPV), negative predictive value (NPV), F1-
score (F1), class balanced accuracy (BAC), the area under
the receiver operating characteristic curve (AUC) and their
respective standard deviations (STD) are employed to measure
the performance in classification. They can be calculated
as follows:

ACC =
TP + TN

TP + FN + TN + FP
(8)

SEN =
TP

TP + FN
(9)

SPE =
TN

TN + FP
(10)

PPV =
TP

TP + FP
(11)

NPV =
TN

FN + TN
(12)

F1 = 2×
SEN × PPV

SEN + PPV
(13)

BAC =
SEN + SPE

2
(14)

AUC =

∑

i∈PatientClass ranki −
Npat(1+Npat)

2

Npat × Nnor
(15)

where TP, TN, FP, and FN are the number of correctly predicted
patients, correctly predicted healthy controls, healthy controls
predicted as patients, and patients predicted as healthy controls,
respectively. Npat and Nnor are the number of patient samples
and the number of healthy control samples, respectively. ranki
represents the serial number of the i-th sample. In addition,
we calculated the p-values (DeLong et al., 1988) of the AUC
to measure statistically significant differences between proposed
method and comparison methods. If the p-value is <0.05,
it indicates that the increase in performance of our method
compared to the comparative method is statistically significant
(Wang et al., 2019).

For fair comparison, for our method, we adopt grid search
to select the parameter of the number of neighbors from

TABLE 5 | The topological properties of our proposed method and PC based method.

Topology metrics Healthy controls (mean ± std) Schizophrenia patients (mean ±, std) p-value

Proposed method Connectivity strength 32.3520 ± 1.6443 31.5238 ± 1.5095 0.0430*

Average degree 87.0486 ± 0.9023 86.5014 ± 1.2570 0.0323*

Density 0.9781 ± 0.0101 0.9719 ± 0.0141 0.0323*

Clustering coefficient 0.9802 ± 0.0083 0.9755 ± 0.0102 0.0295*

Characteristic path length 1.0219 ± 0.0101 1.0281 ± 0.0141 0.0323*

global efficiency 0.9890 ± 0.0051 0.9860 ± 0.0071 0.0323*

Local efficiency 0.9901 ± 0.0042 0.9877 ± 0.0051 0.0295*

Closeness centrality 88.0243 ± 0.4511 87.7507 ± 0.6285 0.0323*

Edge betweenness centrality 1.0451 ± 0.0213 1.0582 ± 0.0309 0.0338*

Node betweenness centrality 1.9514 ± 0.9023 2.4986 ± 1.2570 0.0323*

Radiality 1.9781 ± 0.0101 1.9719 ± 0.0141 0.0323*

Assortativity −0.1272 ± 0.0447 −0.1515 ± 0.0385 0.0124*

Structural consistency 0.9580 ± 0.0053 0.9613 ± 0.0050 0.0058*

Fitted exponent of power-law degree

distribution

8.4238 ± 0.0879 8.4868 ± 0.1182 0.0203*

Pearson based method Connectivity strength 32.4749 ± 1.8836 31.5293 ± 1.5712 0.0893

Average degree 88.7153 ± 0.0663 88.6889 ± 0.0570 0.5642

Density 0.9968 ± 7.4499e− 4 0.9969 ± 6.4031e− 4 0.5642

Clustering coefficient 0.9968 ± 7.5481e− 4 0.9969 ± 6.4794e− 4 0.5630

Characteristic path length 1.0032 ± 7.4499e− 4 1.0031 ± 6.4031e− 4 0.5642

Global efficiency 0.9984 ± 3.7249e− 4 0.9984 ± 3.2016e− 4 0.5642

Local efficiency 0.9984 ± 3.7740e− 4 0.9984 ± 3.2397e− 4 0.5630

Closeness centrality 88.8576 ± 0.0332 88.8620 ± 0.0285 0.5642

Edge betweenness centrality 1.0064 ± 0.0015 1.0062 ± 0.0013 0.5636

Node betweenness centrality 0.2847 ± 0.0663 0.2759 ± 0.0570 0.5642

Radiality 1.9968 ± 7.4499e− 4 1.9969 ± 6.4031e− 4 0.5642

Assortativity −0.0195 ± 7.6192e− 4 −0.0196 ± 6.5486e− 4 0.5642

Structural consistency 0.9700 ± 0.0068 0.9709 ± 0.0058 0.5621

Fitted exponent of power-law degree

distribution

8.3573 ± 3.5527e−15 8.3573 ± 1.7764e−15 NaN

The asterisk (*) denotes the statistically significant differences (p < 0.05).
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{5, 10, 15, · · · , 45} to specify the size of the neighborhood. The
proportion weighted coefficients of the first-order functional
brain network and the second-order functional brain network
are selected from {0, 0.1, 0.2, · · · , 1} using greedy strategy.
For ParC, GGM, and LOPC, ‘thres’ [a parameter for picking
out statistically significant pairwise association for 0-th-order
partial correlation and first-order partial correlation after
correcting multiple testing problem using false discovery rate
(FDR)] is selected from {0.0001, 0.001, 0.01, 0.05, 0.1, 0.2}

using greedy strategy. In addition, we set the threshold from
{0, 0.05, 0.1, · · · , 0.4} {0, 0.05, 0.1, · · · , 0.4} for all functional
brain network methods.

Results and Analysis
We report the comparison results of classification based on
different functional brain networks on different datasets in
Table 3. In particular, we also report the p-values and mark
statistically significant differences (p< 0.05) with the asterisk (∗).
The receiver operating characteristic (ROC) curves are shown in
Figure 3. It can be seen that our BFCN construction method has
the best diagnostic results on six schizophrenia datasets among all
brain network constructionmethods. Discussion of experimental
results is given in section Discussion.

Classification Performance of Different
Dimension Reduction and
Classification Methods
This experiment is designed to test the performance of our
brain network under different dimensionality reduction and
classification methods. In this experiment, the brain network
is constructed using the proposed method. Some widely used
feature extraction and classification methods in functional brain
network analysis are compared.

Comparison Methods
We chose the following classifiers to conduct the experiment:
nearest neighbor classifier (NN) without feature selection (All
original features are adopted as the baseline in the experiments),
linear discriminant analysis (LDA) (Zhang and Jia, 2007),
Isometric feature mapping (ISOMAP) (Tenenbaum, 1998),
neighborhood preserving embedding (NPE) (He et al., 2005),
support machine vector (SVM) (Chang and Lin, 2011), and KDA
(Cai et al., 2011).

Experimental Setup
Similar to the previous experiment, we adopt 10-fold cross-
validation strategy and repeated this process 20 times. ACC, SEN,
SPE, PPV, NPV, BAC, AUC, and their STD are employed to
measure the performance in classification. P-value of the AUC is
used to measure statistically significant differences between KDA
and other feature extraction methods.

For fair comparison, for the generation of functional brain
networks we adopt a grid search to select the parameter of
the number of neighbors from {5, 10, 15, · · · , 45}, and the
weighted coefficient of the hybrid brain network is selected from
{0, 0.1, 0.2, · · · , 1}. We set threshold from {0, 0.05, 0.1, · · · , 0.4}

for hybrid brain network on all datasets. For the feature

selection algorithm, we use Gaussian kernel function in KDA.
For the similarity-based graph methods, including ISOMAP
and NPE, we build an edge between two subjects if and
only if they belong to the same class. For SVM, we adopt
linear kernel.

TABLE 6 | SAC between schizophrenia and healthy controls (Top 30).

No. Brain region A Brain region B Weight

score

SAC 1 R. Precuneus R. Rectus gyrus 1.0000

SAC 2 R. Precuneus R. Hippocampus 0.9752

SAC 3 R. Lingual gyrus L. Inferior frontal gyrus

(opercular)

0.8986

SAC 4 L. Paracentral lobule R. Orbitofrontal cortex

(middle)

0.8532

SAC 5 R. Middle temporal

gyrus

L. Cuneus 0.8304

SAC 6 L. Superior occipical

gyrus

R. Rolandic operculum 0.8214

SAC 7 R. Hippocampus R. Rolandic operculum 0.8121

SAC 8 L. Thalamus R. Inferior frontal gyrus

(opercular)

0.7993

SAC 9 L. Fusiform gyrus L. Middle cingulate

gyrus

0.7869

SAC 10 L. Lingual gyrus L. Anterior cingulate

gyrus

0.7768

SAC 11 R. Temporal pole

(middle)

R. Middle temporal

gyrus

0.7732

SAC 12 L. Paracentral lobule L. Middle cingulate

gyrus

0.7710

SAC 13 R. Middle cingulate

gyrus

R. Olfactory 0.7645

SAC 14 R. Middle cingulate

gyrus

L. Suplementary motor

area

0.7436

SAC 15 R. Superior occipical

gyrus

L. Suplementary motor

area

0.7422

SAC 16 L. Heschl gyrus R. Orbitofrontal cortex

(superior)

0.7419

SAC 17 L. Angular gyrus L. Superior frontal

gyrus (dorsal)

0.7415

SAC 18 L. Rectus gyrus L. Superior frontal

gyrus (dorsal)

0.7344

SAC 19 L. Precuneus L. Superior parietal

gyrus

0.7245

SAC 20 L. Thalamus R. Amygdala 0.7227

SAC 21 R. Inferior temporal L. Rolandic operculum 0.7054

SAC 22 L. Superior frontal

gyrus (media)

R. Orbitofrontal cortex

(superior)

0.6965

SAC 23 L. Inferior temporal L. Rectus gyrus 0.6941

SAC 24 L. Heschl gyrus R. Insula 0.6937

SAC 25 L. Precuneus L. Precentral gyrus 0.6892

SAC 26 R. Pallidum R. Amygdala 0.6884

SAC 27 R. Thalamus R. Calcarine cortex 0.6855

SAC 28 R. Angular gyrus L. Fusiform gyrus 0.6788

SAC 29 L. Postcentral gyrus R. Anterior cingulate

gyrus

0.6704

SAC 30 R. Inferior temporal R. Cuneus 0.6695
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FIGURE 4 | SAC between schizophrenia and healthy controls (Top 10). Brain network connectivities with the top 10 discrimination ability. In (A), the position in the i-th

row and j-th column indicates connectivity between the i-th brain region and the j-th brain region, and the weight can be judged by the corresponding color.

(B–D) show the top 10 alteration connectivities for identifying schizophrenia.

Results and Analysis
We report the comparison results of classification based on
different feature selection and classification methods on different
datasets in Table 4. In particular, we mark statistically significant
differences (p< 0.05) with the asterisk (∗). It can be seen that our
method has the best ACC and AUC performance on six datasets
compared to other feature selection and classification algorithms.
Discussion of experimental results is given in section Discussion.

DISCUSSION

In the first experiment, we compared the performance of our
functional networks and other functional networks in ACC, SEN,
SPE, PPV, NPV, BAC, and AUC on six schizophrenia datasets and
reported the p-value of the AUC between proposed method and
comparison methods. Experimental results have proved that our
functional network is effective and superior to other functional
networks in all the measures and the results are significantly
different. In addition, we draw ROC curves of our method and
all comparison methods on each dataset. It can be seen that the
ROC curves of the comparison methods are almost at the bottom
right of the ROC curve of our method, and the results of the area
under the curve of the comparison methods are also smaller than
our method. The reason why our method can show the above
performance may be that our network not only considers the
relationship between the two brain regions, but also preserves
the second-order information among brain regions. First-
order information has a certain robustness, and second-order

TABLE 7 | Significant alteration of brain regions between schizophrenia and

healthy controls.

No. Brain region Weight score

ROI 1 R. Precuneus 1.0000

ROI 2 R. Hippocampus 0.6869

ROI 3 R. Rolandic operculum 0.4307

ROI 4 L. Paracentral lobule 0.4152

ROI 5 R. Middle temporal gyrus 0.3809

ROI 6 L. Middle cingulate gyrus 0.3048

ROI 7 L. Thalamus 0.2450

ROI 8 R. Middle cingulate gyrus 0.2218

ROI 9 L. Suplementary motor area 0.1847

ROI 10 L. Superior frontal gyrus (dorsal) 0.1682

ROI 11 L. Fusiform gyrus 0.1512

ROI 12 R. Orbitofrontal cortex (superior) 0.1057

ROI 13 L. Heschl gyrus 0.1011

ROI 14 L. Rectus gyrus 0.0892

ROI 15 L. Precuneus 0.0646

information is more sensitive to signals. In the comparison
method, PC, KC, SC, and MTNC only consider the first-order
information, and ParC, GGM, and LOPC only consider the
second-order information. Our hybrid networks combining the
two types of information may achieve better results.

In the second experiment, we compared the performance
of our network with several classification algorithms. The
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evaluation indicators are ACC, SEN, SPE, PPV, NPV, BAC,
and AUC. In addition, p-values of the AUC between proposed
method and comparison methods are also reported. The
experiment proves that our hybrid brain network is robust
and performs well under each classifier. In addition, the
experimental results show that our framework performs well,
and the ACC and AUC indicators have achieved the best results
on the six schizophrenia datasets. This may be due to the
complexity of the brain network, which is not simply linearly
separable, and our framework chose the KDA classifier, which
can select the most significant connectivities and improve the
classification performance.

In addition to classification performance, there are many
other indicators that evaluate the functional brain networks.
The topology metric of the network is a widely used one.
We compared the performance of our network and PC based
method with some topological properties, and calculated the
corresponding p-value, including connectivity strength, average

FIGURE 5 | Significant alteration of brain regions between schizophrenia and

healthy controls.

degree, density, clustering coefficient, characteristic path length,
global efficiency, local efficiency, closeness centrality, edge
betweenness centrality, node betweenness centrality, radiality,
assortativity, structural consistency, and fitted exponent of
power-law degree distribution. The brain network that calculates
the topological properties consists of the brain networks that
obtained the best classification performance in Experiment 3.1.
The experimental results are shown in Table 5. The asterisk (∗)
denotes the statistically significant differences (p < 0.05).

The experimental results show that, compared to the PC
based method, the brain network based on our functional brain
network has better separability in these topological properties
between the patient group and the healthy group. Specifically,
we found that based on our proposed network, the connectivity
strength of the health group is 32.3520 and that of the patient
group is 31.5238. The functional network connectivity strength
of the patient group is reduced by 0.8282, and there are similar
findings in the literature (Shen et al., 2010). We also found that
the clustering coefficient of the patient group was lower than that
of the healthy group, which was also supported by the work of
(Bachiller et al., 2014). Also, the global efficiency of patients with
schizophrenia has decreased, indicating that the topology of the
brain structure network in schizophrenia is less efficient. Griffa
et al. (2014) has also mentioned this point.

The topological properties of the network show the differences
in the overall brain network between the patient group and
the health group. We also show the local difference with 30
connectivities that have the greatest differences in the patient
group and the health group by calculating the significant
alteration of connectivity (SAC). The results are shown in
Table 6. To visualize these connectivities, we show the top 10 SAC
drawn in Figure 4.

As shown in Table 6 and Figure 4, the connectivity between
Precuneus and other brain regions altered visibly, and (Faget-
Agius et al., 2012) supports our finding. The connectivity between
Hippocampus and other brain regions and the connectivity
between Inferior frontal gyrus also have visible alteration, and
there exist similar findings in some literature (Altshuler, 1990;
Zhou et al., 2008; Kubicki et al., 2011). From Figure 4 and
Table 6, it also can be seen that some brain regions are recurring,

FIGURE 6 | The average patient group subnet (A), average health group subnet (B), the difference between average patient group subnets and average health group

subnets (C).
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indicating that these brain regions play a key role in the analysis
of differences between the patient group and the healthy group.
Therefore, for each recurring brain region, we accumulate the
weights of the SACs, where the brain region is located, as the
weight of the brain region. All weights are normalized and sorted,
and we list the top 15 important brain regions in Table 7 and
visualize them in Figure 5.

As shown in Table 7 and Figure 5, some brain regions
such as Precuneus, Hippocampus and Rolandic operculum are
selected. This suggests that these brain regions play an important
role in the task of identifying patients with schizophrenia and
normal controls, and that these brain regions may be important
biomarkers for schizophrenia. Some literatures (Bettus et al.,
2009; Salvador et al., 2010; Faget-Agius et al., 2012; Qiu et al.,
2018) also prove our findings.

Furthermore, we constructed the connectivity subnets with
these 15 brain regions in Table 7. The average patient group
subnet, average health group subnet, the difference between
average patient group subnet and average health group subnet are
shown in Figure 6. It can be seen that although the strength of the
patient group connectivity on the overall network is lower than
that of the healthy group, the average connectivity strength of
the patient group in the subnet is slightly higher than that of the
healthy group. This change further demonstrates the importance
of the brain regions we have discovered in identifying tasks in
patients with schizophrenia, that is, these brain regions may play
an important role in schizophrenia classification.

CONCLUSION AND FUTURE WORK

In summary, we propose a hybrid functional brain network
with first-order and second-order information for identifying
schizophrenia. Specifically, we construct a second-order brain
network through triplet correlation, and fuse it with conventional
first-order brain network. The second-order brain network is

more sensitive to the difference in brain networks between
patients and healthy controls, and the first-order brain network
is more robust to noise. The proposed method not only captures
higher-order information among brain regions, but also reveals
the ordinal information of connectivity strength between specific
brain regions. Experiments on six schizophrenia datasets show
that our method is superior to the existing BFCN construction
method. In addition, we analyzed the differences in topological
properties between schizophrenia patients and normal controls
with the proposed brain network.

This study uses the grid search method in the process of
constructing the hybrid functional brain network with first- and
second-order information. We will investigate more efficient
parameter selection methods in future work. In addition, this
study is conducted separately on a dataset from a single site. In
our future work, we will focus on how to construct and analyze
the high-order brain network on the cross-site dataset, which is
helpful to improve the robustness of the model.
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