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Diffuse white matter abnormality (DWMA), or diffuse excessive high signal intensity is
observed in 50–80% of very preterm infants at term-equivalent age. It is subjectively
defined as higher than normal signal intensity in periventricular and subcortical white
matter in comparison to normal unmyelinated white matter on T2-weighted MRI
images. Despite the well-documented presence of DWMA, it remains debatable whether
DWMA represents pathological tissue injury or a transient developmental phenomenon.
Manual tracing of DWMA exhibits poor reliability and reproducibility and unduly
increases image processing time. Thus, objective and ideally automatic assessment
is critical to accurately elucidate the biologic nature of DWMA. We propose a deep
learning approach to automatically identify DWMA regions on T2-weighted MRI images.
Specifically, we formulated DWMA detection as an image voxel classification task; that
is, the voxels on T2-weighted images are treated as samples and exclusively assigned
as DWMA or normal white matter voxel classes. To utilize the spatial information of
individual voxels, small image patches centered on the given voxels are retrieved.
A deep convolutional neural networks (CNN) model was developed to differentiate
DWMA and normal voxels. We tested our deep CNN in multiple validation experiments.
First, we examined DWMA detection accuracy of our CNN model using computer
simulations. This was followed by in vivo assessments in a cohort of very preterm infants
(N = 95) using cross-validation and holdout validation. Finally, we tested our approach
on an independent preterm cohort (N = 28) to externally validate our model. Our deep
CNN model achieved Dice similarity index values ranging from 0.85 to 0.99 for DWMA
detection in the aforementioned validation experiments. Our proposed deep CNN model
exhibited significantly better performance than other popular machine learning models.
We present an objective and automated approach for accurately identifying DWMA that
may facilitate the clinical diagnosis of DWMA in very preterm infants.

Keywords: diffuse white matter abnormality, very preterm infants, MRI, deep learning, convolutional
neural networks
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INTRODUCTION

Diffuse white matter abnormality (DWMA) is observed in
50–80% of very preterm infants at term-equivalent age (Maalouf
et al., 1999; Skiöld et al., 2010; Parikh et al., 2013). It is
characterized by either (1) diffusely higher signal intensity in
periventricular and subcortical white matter than in normal
unmyelinated white matter on T2-weighted MRI images [also
known as diffuse excessive high signal intensity (Skiöld et al.,
2012; He and Parikh, 2013b)]; or (2) lower signal intensity
than unmyelinated white matter on T1-weighted and fluid-
attenuated inversion recovery (FLAIR) sequences. A number of
prior studies (Maalouf et al., 1999; Counsell et al., 2003; Inder
et al., 2003; Dyet et al., 2006; Krishnan et al., 2007; Cheong
et al., 2009; Hagmann et al., 2009; Hart et al., 2010b; Skiöld
et al., 2010; de Bruïne et al., 2011; Iwata et al., 2012; Jeon
et al., 2012; He and Parikh, 2013a,b; Parikh et al., 2013) in
the past two decades have reported the presence of DWMA
in very preterm infants. Despite the well-documented presence
of DWMA and emerging evidence of its pathological nature,
the significance of DWMA for long-term neurodevelopment
remains debatable (Dyet et al., 2006; Krishnan et al., 2007;
Hart et al., 2010b; de Bruïne et al., 2011; Iwata et al., 2012;
Jeon et al., 2012; He and Parikh, 2013a; Parikh et al., 2016;
Volpe, 2017). Much of this debate has been fueled by the
nearly universal use of qualitative reporting of DWMA that is
subjective and unreliable, likely resulting in measurement error
and lack of association with neurodevelopmental impairments
in some studies (Hagmann et al., 2009; Hart et al., 2010a;
de Bruïne et al., 2011). Volpe has speculated this finding
to be a milder form of white matter injury that represents
either periventricular leukomalacia with microscopic necrosis
or isolated diffuse white matter gliosis (Volpe, 2017). The only
DWMA imaging-pathologic correlation study reported some
histopathologic overlap with periventricular leukomalacia, but
also reported distinctive features, suggesting DWMA may be a
form of diffuse white matter gliosis without microscopic necrosis
(Parikh et al., 2016).

Only a few studies have attempted to develop reproducible
quantitative methods for evaluating DWMA in preterm infants.
Manually tracing DWMA regions on T2-weighted images,
slice by slice, produces poor reliability and reproducibility
(Hagmann et al., 2009; Hart et al., 2010a; de Bruïne et al.,
2011). For example, the inter- and intra-observer agreement
for visual diagnosis has ranged from a Kappa statistic of
0.14 to 0.44 (Hart et al., 2010a; Calloni et al., 2015),
which is generally considered poor (Landis and Koch, 1977).
The use of manual DWMA segmentation also significantly
prolongs image processing time, limiting the utility of this
approach for large studies (Yoshita et al., 2005). Accurate
and automatic detection of DWMA is of crucial importance
for resolving the debate about DWMA’s biologic nature and
potentially risk stratifying high-risk preterm infants that may
benefit from early intervention therapies (Hagmann et al.,
2009; Mathur et al., 2010; Parikh, 2016). Limited studies
have been published for automated detection of DWMA
in infants (He and Parikh, 2013a,b; Parikh et al., 2013).

These approaches were developed by utilizing only individual
voxels for DWMA detection without considering the neighboring
spatial information, which contributed to a higher false positive
DWMA detection rate.

In adults, DWMA detection has been well investigated
by using traditional machine learning techniques, including
k-nearest neighbors (Griffanti et al., 2016), Bayesian models
(Maillard et al., 2008), random forests (Geremia et al., 2011),
logistic regression (Schmidt, 2017), and support vector machine
(Lao et al., 2008). These machine learning approaches have been
demonstrated to perform consistently well on T1-weighted or
FLAIR MR images by taking advantage of spatial information of
a given set of voxels (i.e., small image patches that are comprised
of the given voxel and its neighboring voxels). These have
enabled automated and objective detection of DWMA to facilitate
epidemiological studies investigating the associations between
DWMA and clinical outcomes (Guerrero et al., 2018). In recent
years, studies using deep convolutional neural networks (CNN)
and associated U-net architectures have outperformed traditional
machine learning models in identifying DWMA in adults, due
to CNN’s superior capacity in decoding complex image patterns
(Brosch et al., 2013, 2016; Ghafoorian et al., 2016; Kamnitsas et al.,
2017; Guerrero et al., 2018; Moeskops et al., 2018).

Deep CNN, inspired by the neuronal organization pattern
of the visual cortex, is a class of deep learning models that
have been widely applied in a range of machine learning tasks,
such as image classification, natural language processing, and
pattern recognition (LeCun and Bengio, 1995; LeCun et al., 1998,
2015). Compared to traditional approaches, CNN automatically
extracts a hierarchy of increasingly complex image features from
raw images without hand-engineered (i.e., unsupervised) feature
extraction. This advantage is achieved by assembling a series
of alternative operations as network layers into a consecutive
multi-layer architecture. Although the individual layers only
perform relatively simple operations such as convolution and
pooling operations, the assembled CNN models are capable
of mapping highly complex non-linearity between inputs and
outputs. Various CNN architectures can be designed and
modified for diverse machine learning tasks (Bengio and LeCun,
2007; Hinton et al., 2012; Krizhevsky et al., 2012; LeCun et al.,
2015; Szegedy et al., 2015; Xu et al., 2015). Segmentation of
DWMA on brain images could be implemented in two ways.
A popular way is U-net based approaches, which take relatively
large patches of original images. These have been applied on
the adult applications with T1-weighted or FLAIR MR images.
But, the performance of U-net approaches are still not desirable.
Guerrero et al. (2018) reported a 69.5 of Dice score in their recent
work. Another way is to apply CNN approaches on small images
patches so as to classify individual voxels (Zhang et al., 2015).
Considering the small number of sample size and low contrast
on T2-weighted MR images in neonatal studies, we set to purse
the second way in this work.

To fill the gap in accurate neonatal DWMA detection, we
developed a deep learning approach to automatically identify
DWMA regions on T2-weighted MRI images. Specifically,
the detection of DWMA was formulated as an image voxel
classification task. Small image patches that are centered on
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the given voxels were utilized to represent regional spatial
information of individual voxels. A CNN model with the
batch normalization technique was developed to differentiate
normal white matter from DWMA voxels. The deep CNN
architecture consists of feature extraction layers that aim to
capture discriminative image patterns and high-level reasoning
layers that are designed for decision making. We evaluated the
proposed model using computer simulation, as well as internal
and external validation using data from two independent very
preterm infant cohorts.

MATERIALS AND METHODS

Subjects
The data for this study was derived from two independent
cohorts of very preterm infants. The Institutional Review
Board of Nationwide Children’s Hospital (NCH) approved both
studies and written parental informed consent was obtained for
every subject. Infants with known structural congenital central
nervous system anomalies, congenital chromosomal anomalies,
congenital cyanotic cardiac defects, or overt brain injury were
excluded. In addition, parents were not approached for consent if
their infant remained on persistently high mechanical ventilator
support (e.g., peak inspiratory pressure >30 and/or fraction
of inspired oxygen >50%). All subjects were scanned with a
brain MRI at term-equivalent age during natural sleep without
the use of any sedation, after being fed and swaddled. MRI
noise was minimized using Insta-Puffy Silicone Earplugs (E.A.R.
Inc., Boulder, CO.) and Natus Mini Muffs (Natus Medical Inc.,
San Carlos, CA, United States).

Cohort 1
This cohort included 95 very preterm infants, ≤32 weeks
gestational age that were recruited from four Columbus,
Ohio area neonatal intensive care units, including NCH,
Ohio State University Medical Center, Riverside Methodist
Hospital, and St. Ann’s Hospital. We collected anatomical
axial T2-weighted MRI images from each subject using the
following sequence parameters: Repetition time (TR)/ echo
time (TE) = 9,500/147 ms, flip angle (FA) = 90◦, imaging
matrix = 156 × 192, resolution 0.9 mm3

× 0.9 mm3
× 1.1 mm3 –

on a 3T Siemens MAGNETOM Skyra scanner at NCH. Subjects
from non-NCH sites had to be discharged from the NICU by
term-equivalent age so they could be imaged at NCH. We used
data from this cohort for deep CNN model development, internal
cross-validation and holdout validation.

Cohort 2
This cohort included 28 very preterm infants, ≤32 weeks
gestational age, all cared for in the neonatal intensive care unit
at NCH (He et al., 2018). Anatomical scans were obtained
with a proton density/T2-weighted sequence (TR/TE1/TE2 =
11,000/14/185 ms, FA = 90◦, resolution 0.35 mm3

× 0.35 mm3
×

2 mm3) on a 3T GE HDX scanner. We used data from this cohort
for external validation.

TABLE 1 | Baseline demographic information for both very preterm cohorts.

Cohort 1 Cohort 2

Number of subjects 95 28

Sex 51M (53.7%) 14M (50%)

Birth weight (g) 1136.9 ± 397.5 979 ± 302.1

GA at birth (weeks) 28.5 ± 2.5 26.8 ± 2.1

PMA at scan (weeks) 40.4 ± 0.6 39.4 ± 1.3

Scanner Siemens GE

GA, gestational age; PMA, post menstrual age; M, male; F, female. All ± data
is mean ± SD.

Our inclusion criteria of very preterm infants born at 32 weeks
gestational age or younger was selected based on the highest
risk group for DWMA. The age range for our two cohorts was
23–32 weeks. Infants more mature than 32 weeks gestational
age have a much lower incidence of DWMA and were therefore
not included in the study/analyses. We selected a window of
39–44 weeks postmenstrual age for MRI scanning because this
is the peak postmenstrual age when DWMA is observed on
T2-weighted MRI (observed in 89% of very preterm infants
between 40 and 44 weeks postmenstrual age in the cohort
by de Bruïne et al. (2011). In this cohort, it was also found
to be absent in infants imaged after 50 weeks postmenstrual
age, thus confirming our choice of MRI timing. Demographics
information for both cohorts is listed in Table 1.

Overview of DWMA Detection
Using Deep CNN
We formulated the detection of DWMA into an image voxel
classification task. Each T2-weighted white matter voxel is
exclusively assigned into either DWMA or normal group. To
utilize the image spatial information around voxels (Zhang et al.,
2015), a small neighborhood/image patch centered on a given
voxel is sampled. This typically results in a set of ∼105 image
patches for each subject. The deep CNN model takes each image
patch as input and assigns a label to its center voxel (Figure 1).

Deep CNN Architectures
We designed a 12-layer deep CNN architecture, based on a
prior study (Zhang et al., 2015), for image patches of 13 × 13
(Figure 2). The first hidden layer is a convolutional layer that
contains 8 convolutional neurons. Each convolutional neuron
consists of a trainable 2D filter of size 3 × 3 and a rectified linear
unit activation function. Given an input X (i.e. a 2D n× n image
patch), the activation output aconv of the convolutional neuron
can be represented by:

aconv = max(0,X ∗Wconv)

where ∗ denotes the convolution operator and Wconv is the
trainable weight map of the 2D filter. By using a stride size of
one, the first hidden layer outputs eight 11 × 11 feature maps.
The second hidden layer is a batch normalization layer, which
performs a batch normalizing transform BNγ,β. Since a mini-
batch stochastic gradient descent algorithm is applied to optimize
the proposed CNN, this normalization step transforming on
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FIGURE 1 | Overview of DWMA detection using deep CNN model.

FIGURE 2 | A deep CNN with 12 layers designed for image patches with size 13 × 13 voxels.

a mini-batch B = [x1,...,m] with m activation values can be
described as:

BNγ,β (xi) = γ
xi − µB√
σ2

B + ε
+ β

where µB and σB are mini-batch mean and variance of mini-
batch B. xi is a particular activation of 2D feature maps.
Parameters γ and β control the scale and shift of the normalized
values, which are to be optimized during model training. ε is a
small fuzz f number to avoid dividing by zero. Those 8 feature
maps from the first hidden layer are normalized individually. The
output of the second hidden layer are the normalized feature
maps, which have the same size (e.g., 11 × 11) as the output
of the previous layer. The third hidden layer is a max pooling
layer, which combines the activation values of neuron clusters
at prior layer into a single neuron by using the maximum value
of the given cluster. We also applied a stride size of one for
max pooling operation. This layer generates 8 feature maps with
a size of 10 × 10. In the following, we applied convolutional,
batch normalization and max pooling layers consecutively in this
CNN architecture from the fourth to ninth hidden layers for
feature extraction.

After obtaining sixteen 4 × 4 high-level feature maps, we
flattened the feature maps into a single feature vector with 256
dimensions. Then, this feature vector is linked to the tenth hidden
layer, a fully connected layer with 10 neurons. We also utilized a

rectified linear unit activation function in the neurons of the fully
connected layer. Assume that each neuron of the fully connected
layer has a weight vector Wfull. Because the batch normalization
layer is connected in the next layer, the bias b of neurons are
removed. Given a flattened feature vector v, the activation of each
neuron can be presented by:

afull = max(0, v ·Wfull)

where · indicates the dot product between vectors. The 10th
hidden layer transforms the flattened feature vector with 256
dimensions into a new feature vector with 10 dimensions,
functioning as a dimension reduction for the features. Again,
a batch normalization layer, as the eleventh hidden layer,
is applied to normalize the low-dimension feature vector. At the
end, the normalized 10-dimension feature vector is input into a
2-way softmax layer (Bengio and LeCun, 2007) (i.e., the output
layer) that produces the probability for the normal and DWMA
groups. The proposed deep CNN for input patch 13 × 13 has 12
network layers, including a total of 6,264 trainable parameters.

Similarly, we designed different deep CNN architectures for
other n × n image patches [n= 7,9,13,17] based on prior work
(Zhang et al., 2015). Intuitively, larger input patches contain more
neighboring spatial information, requiring a deeper network and
more kernels for feature extraction. In contrast, smaller input
patches need a shallower CNN and fewer convolutional kernels.
The details of different architectures are listed in Table 2.
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TABLE 2 | Details of four deep CNNs for varying sizes of image patches.

Patch Hyperparameters Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

7 × 7 Layer type Conv. Norm. Pooling Conv. Norm. Pooling Full conn. Norm. Softmax – – –

Filter size 3 – 2 × 2 3 – 2 × 2 10 – 2 – – –

Num of filter 8 – – 8 – – 1 × 1 – – – – –

9 × 9 Layer type Conv. Norm. Pooling Conv. Norm. Pooling Full conn. Norm. Softmax – – –

Filter size 3 – 2 × 2 3 – 2 × 2 10 – 2 – – –

Num of filter 8 – – 16 – – 1 × 1 – – – –

13 × 13 Layer type Conv. Norm. Pooling Conv. Norm. Pooling Conv. Norm. Pooling Full conn. Norm. Softmax

Filter size 3 – 2 × 2 3 – 2 × 2 3 – 2 × 2 10 – 2

Num of filter 8 – – 8 – – 16 – – 1 × 1 – –

17 × 17 Layer type Conv. Norm. Pooling Conv. Norm. Pooling Conv. Norm. Pooling Full conn. Norm. Softmax

Filter size 3 – 2 × 2 3 – 2 × 2 3 – 2 × 2 10 – 2

Num of filter 8 – – 16 – – 16 – – 1 × 1 – –

Conv, convolutional layer; Norm, batch normalization layer; Full conn, fully connected layer.

Deep CNN Training
We adopted cross-entropy as a loss function to train our deep
CNN model. Assuming that p

(
yi|Xi;W

)
and yi are the predicted

and true probability values for ith image patch Xi, the loss
function for N training samples is calculated by:

H(W) = −
1
N

N∑
i=1

yi log(p(yi|Xi;W))

+ (1− yi) log(1− p(yi|Xi;W))

A mini-batch stochastic gradient descent algorithm (Johnson and
Zhang, 2013) was chosen to minimize the above loss function
so as to optimize the weights W of deep CNN. This algorithm
divides the training data into small batches and updates the
network weights using only data from every batch. It enables
a faster, but more stable convergence for model training. We
configured batch size as 256. To further accelerate the training,
we applied a Nesterov momentum technique (Nesterov, 2007)
for parameter searching. The weights of convolutional and fully
connected layers were randomly initialized using Glorot uniform
distribution (Glorot and Bengio, 2010). The learning rate was set
as 0.1 based on classification performance after testing several
empirical values [0.001, 0.01, 0.1, 0.5]. The number of epochs
was set as 20 with an early stop mechanism, which would cease
the optimization process if three consecutive epochs return the
same loss errors.

Model Evaluation
DWMA gold standard information was annotated by two experts
guided by an atlas-based method (He and Parikh, 2013a). All
T2-weighted MRI data were obtained in Digital Imaging and
Communications in Medicine (DICOM) format from two IRB-
approved prospective studies (Table 1). We transferred MRI
data into the Neuroimaging informatics technology Initiative
(NIfTI) format. Typical procedure of Anterior Commissure
(AC)-Posterior Commissure (PC) correction for each subject was
performed using Statistical Parametric Mapping (SPM) package
(Friston, 1994). We further conducted skull-stripping and tissue

segmentation by using a neonatal structural MRI processing
pipeline (He et al., 2018). Tissue probability maps for white
matter, gray matter and cerebrospinal fluid voxels of T2-weighted
images were obtained. We normalized T2-weighted images by
using the z-score transformation. After preprocessing, DWMA
regions of T2-weighted images were outlined by identifying
the white matter voxels with greater than or equal to α = 1.4
standard deviation (SD) above the mean for cerebral tissues. All
DWMA false positive voxels in the detected regions and isolated
false positive voxels were manually corrected. Two DWMA
expert raters evaluated the images individually, then collaborated
to conclude a gold-standard DWMA dataset. Compared to
normal voxels, the number of DWMA voxels are relatively small,
therefore this results in an imbalanced classification problem
(a disproportionate ratio of observations in each class). We
therefore applied Dice index (Dice, 1945) and balanced accuracy
(Brodersen et al., 2010) for the model evaluation on individual
testing subjects. Given two sets, A and B, the Dice index
is defined as:

Dice(A, B) =
2|A ∩ B|
|A| + |B|

where | ∗ | denotes the number of elements in a set. The Dice
index is a real number in [0, 1], where a larger value indicates
a higher similarity between automatically detected DWMA
regions and gold standard regions. We denote true positive
as TP, representing the number of correctly classified samples
among positive samples P; and true negative as TN, representing
the number of correctly classified samples among N negative
samples. Then, balanced accuracy is defined by:

Balanced Accuracy =
1
2

(
TP
P
+

TN
N

)
Balanced accuracy measures the average accuracy obtained from
both the minority and majority classes. It is equivalent to the
traditional accuracy if a model performs equally well on either
classes. Conversely, it avoids “falsely” high value due to the model
taking advantage of the distribution of the majority class.

To compare the proposed deep CNN model with other
popular machine learning models, we developed deep
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neural network (DNN) and support vector machine (SVM)
models. The DNN architecture design is displayed in the
Supplementary Table. An SVM classifier was implemented,
as suggested in Zhang et al. (2015), using a linear kernel for
neonatal brain image segmentation. To optimize the SVM model,
the soft margin C was selected via a linear search from a set of
empirical values [i.e., C= (2−10, 2−8, ..., 1, ....28, 2

10
)]. The soft

margin was determined optimal when the DWMA detection
performance of the model on the testing data was maximal. The
DNN and SVM models were configured and optimized with
flattened vectors of image patch sizes, individually. T-test was
applied to test whether there is a significant difference (p < 0.05)
between the mean performances of two models.

RESULTS

Computer Simulation
We simulated 10 neonatal T2-weighted brain images with
manually drawn synthetic DWMA regions using a method
presented in our previous study (He and Parikh, 2013b).
Rician noise (SD = 10) was imposed on the simulated images.
The signal-to-noise ratio (SNR), defined as the mean cerebral

tissue intensity divided by noise SD, of the synthesized brain
images was 22.5. Four deep CNN models (Table 2) were
implemented to detect these synthetic DWMA regions. We
applied a leave-one-subject-out cross-validation strategy to
evaluate the models. The detection performance of four CNN
architectures are displayed in the Figure 3 box plots. We observed
that deeper architectures for the larger patch sizes were generally
better than ones for smaller sizes and the CNN architecture for
patch size 13 × 13 was slightly more accurate than for patch
size 17× 17.

Next, we examined the Dice index and balanced accuracy of
the 12-layer deep CNN model for patch size 13 × 13 across 10
subjects with varying noise levels (Figure 4). Different Rician
noise [SD = (10, 15, 20, 25, and 30)] was added into the
synthetic images, whose corresponding SNR were [22.5, 15, 11.3,
9.0, and 7.6], respectively. Deep CNN was able to achieve the
Dice index (mean ± SD, 0.993 ± 0.006) and balanced accuracy
(0.996± 0.004) when SNR = 22.5. As noise levels were increased,
the detection performance of deep CNN decreased, but only
marginally. When SNR = 7.6, the deep CNN model achieved
0.931 ± 0.019 for Dice index and 0.976 ± 0.014 for balanced
accuracy Figure 5 shows that the deep CNN-identified brain
regions strongly overlap with ground truth.

FIGURE 3 | Box plots of the DWMA detection performance, including (A) Dice index and (B) balanced accuracy using four different deep CNN architectures tested
on 10 simulated preterm neonatal brain images. The central line indicates the median, and edges of the box indicate the 25 and 75th percentiles. The whiskers
extend to the maximum and minimum values.

FIGURE 4 | DWMA detection performance, including (A) Dice index and (B) balanced accuracy of the 12-layer deep CNN model with input patch size of 13 × 13 on
10 simulated preterm neonatal brain images with varying noise levels. The error bars indicate the SD of performance. Increasing noise levels only marginally affect
DWMA detection performance. Noise levels were displayed with simulated Rician noise standard deviation (SD) and image signal-to-noise ratio (SNR).
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FIGURE 5 | Visualization of automated DWMA detection on simulated
preterm neonatal MRI images using a 12-layer deep CNN. Left column,
simulated images in axial orientation at the level of the centrum semiovale and
lateral ventricles; Middle column, images with outlined ground truth (synthetic
DWMA); Right column, images with CNN-detected DWMA.

TABLE 3 | Cross-validation.

Dice Balanced accuracy

CNN 0.864 (0.052) 0.942 (0.028)

DNN 0.831 (0.122) 0.922 (0.018)

SVM 0.818 (0.115) 0.895 (0.071)

Mean (SD) Dice index and balanced accuracy of the three machine learning models
for DWMA detection. The proposed CNN model outperformed compared DNN
and SVM in the 10-fold cross-validation with 50 subjects. CNN, convolutional
neural networks; DNN, deep neural networks; SVM, support vector machine.
The boldface denotes the best performance for individual metrics in the
validation experiment.

In vivo Data
Internal Cross-Validation
We randomly selected 50 subjects from cohort 1 and conducted
a 10-fold cross-validation scheme to validate the deep CNN
model using preterm infants’ MRI data. The 50 subjects were
randomly divided into 10 equal sized portions. For each iteration,
5 subjects (∼5× 105 image patches) were held out for the model
testing, and the remaining 45 subjects (∼45× 105 image patches)
were used for model training. This process was repeated for
10 iterations until each of the 10 portions was evaluated once
as the testing data. We first compared the DWMA detection
performance of four deep CNN architectures (Table 2) and
reported the Dice index and balanced accuracy for each subject
using box plots (Figure 6). As we found for the computer
simulation (Figure 3), the 12-layer CNN designed for patch size
13 × 13 achieved more accurate detection performance than
other architectures.

Next, we compared the proposed 12-layer deep CNN with
DNN and SVM models. Table 3 shows the DWMA detection
performance using these different models. The CNN model
exhibited a significantly higher Dice index than DNN (p = 0.019)
and SVM (p < 0.001). The balanced accuracy for CNN
was also significantly higher than that of DNN (p = 0.043)
and SVM (p < 0.001). Figure 7 displayed a representative
DWMA detection using deep CNN. The automatically detected

FIGURE 6 | Box plots of DWMA detection performance, including (A) Dice index and (B) balanced accuracy, using four different deep CNN architectures on 50 very
preterm neonatal brain images. The central line indicates the median, and edges of the box indicate the 25 and 75th percentiles. The whiskers extend to the
maximum and minimum values.
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FIGURE 7 | A male subject born at age 28.3 weeks and imaged at
term-equivalent age exhibiting DWMA (highlighted in yellow) in periventricular
white matter regions on T2-weighted brain images. Left column, 4 axial levels
of T2-weighted images; Middle column, segmented images with gold
standard DWMA; Right column, images with deep CNN-detected DWMA.

DWMA closely approximated the DWMA gold standard regions
confirmed by human experts (both highlighted in yellow).

Then, we calculated DWMA volumes – a prognostic
biomarker that has been shown to be a significant predictor
of later cognitive scores (Dyet et al., 2006; Krishnan et al.,
2007; Iwata et al., 2012; He and Parikh, 2013a) – based on
detection using the deep CNN, DNN, and SVM. DWMA volumes

TABLE 4 | Holdout validation.

Dice Balanced accuracy

CNN 0.859 (0.098) 0.924 (0.06)

DNN 0.817 (0.109) 0.905 (0.033)

SVM 0.806 (0.093) 0.885 (0.037)

Mean (SD) Dice index and balanced accuracy of the three machine learning models
for DWMA detection. The proposed CNN model achieved better performance than
DNN and SVM in the internal holdout validation with 50 subjects as training set
and 45 subjects as holdout testing set. CNN, convolutional neural networks; DNN,
deep neural networks; SVM, support vector machine. The boldface denotes the
best performance for individual metrics in the validation experiment.

were normalized by head size, denoted as DWMA-to-brain-
ratio [DBR = DWMA volume divided by total brain volume
(He and Parikh, 2013a)]. Bland-Altman plots were utilized to
assess the degree of agreement between the automatic and gold
standard DBRs (Figure 8). The mean difference between CNN
and gold standard DBRs was near zero (1.007E-04). Compared
to this, mean difference between gold standard and the other two
automatic DBRs were more than one order of magnitude larger
(DNN:+0.003 and SVM:−0.003).

Internal Holdout Validation
We further compared our CNN with DNN and SVM models
using internal holdout validation. We trained models using 50
randomly selected subjects (∼50 × 105 image patches) in cohort
1 (N = 95) and tested the models on the remaining 45 subjects
(∼45 × 105 image patches) from the same cohort. Table 4
highlights the higher performance of the CNN model over the
DNN and SVM models with a mean Dice index of 0.859 and a
mean balanced accuracy of 0.924. CNN exhibited a significantly
higher Dice ratio than DNN (p = 0.027) and SVM (p = 0.036).
In addition, balanced accuracy of CNN was also higher than for
DNN (p< 0.001) and SVM (p< 0.001) models.

Similar to cross-validation, we calculated DBR of each subject
based on detection using the deep CNN, DNN, and SVM. Bland-
Altman plots were utilized to assess the degree of agreement
(Figure 9). The mean difference between CNN and gold
standard DBRs was near zero (1.217E-04). The DBR of our

FIGURE 8 | Cross validation. Bland-Altman plots of gold standard DWMA-to-brain-ratio (DBR) and automatic DBRs: (A) convolutional neural networks (CNN),
(B) deep neural networks (DNN), and (C) support vector machine (SVM) in the 10-fold cross-validation with 50 subjects. Each blue asterisk represents one subject.
Solid horizontal lines represent the mean difference and dashed lines represent the limits of agreement (±1.96 SD).
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FIGURE 9 | Internal holdout validation. Bland-Altman plots of gold standard DWMA-to-brain-ratio (DBR) and automatic DBRs: using (A) convolutional neural
networks (CNN), (B) deep neural networks (DNN), and (C) support vector machine (SVM) in the internal holdout validation with 50 subjects as training set and 45
unseen subjects as holdout testing set. Each blue asterisk represents one subject. Solid horizontal lines represent the mean difference and dashed lines represent
the limits of agreement (±1.96 SD).

CNN outperformed other two automatic DBRs (DNN: +0.004
and SVM:−0.002).

External Independent Validation
Last, in order to evaluate the robustness and generalizability of
our methods, we tested our models on an independent dataset
that was obtained using a different MRI scanner. The models
trained using 50 subjects (∼50 × 105 image patches) from
cohort 1 were tested on this independent cohort 2 with 28
subjects (∼28 × 105 image patches). The CNN performance
remained robust and once again significantly outperformed DNN
(p = 0.018 for Dice ratio; p = 0.009 for balanced accuracy)
and SVM (p = 0.021 for Dice ratio; p = 0.006 for balanced
accuracy) (Table 5).

Again, DBR based on detection using the deep CNN, DNN,
and SVM were calculated for individual subjects. Bland-Altman
plots were used (Figure 10). The mean difference between CNN
and gold standard DBRs (0.001) was smaller than the ones
between two compared automatic DBRs and god standard DBRs
(DNN:+0.005 and SVM:−0.003).

DISCUSSION

We present a deep CNN approach to objectively and automati-
cally quantify DWMA regions on T2-weighted MRI images.

TABLE 5 | External validation.

Dice Balanced Accuracy

CNN 0.845 (0.079) 0.874 (0.065)

DNN 0.788 (0.075) 0.836 (0.067)

SVM 0.786 (0.077) 0.832 (0.056)

Mean (SD) Dice index and balanced accuracy of the three machine learning
models for DWMA detection. The proposed CNN model outperformed compared
DNN and SVM in the external validation with 50 subjects from Siemens scanner
as training set and 28 subjects from GE scanner as independent testing
set. CNN, convolutional neural networks; DNN, deep neural networks; SVM,
support vector machine. The boldface denotes the best performance for individual
metrics in the validation experiment.

This is the first study to detect DWMA regions and quantify
associated volumes in preterm infants by using a state-of-the-art
deep learning algorithm. The excellent image pattern recognition
capability of deep CNN enabled our proposed approach in
automated detection of DWMA with a detection level similar to
human experts. The desirable generalizability of our approach,
tested on two preterm cohorts and scanner platforms, suggests
that we can achieve consistent and reliable diagnosis of DWMA.

To date, the diagnosis of DWMA in preterm neonates has
lacked sufficient reliability, even by trained neuroradiologists.
Reported inter- and intra-observer agreement for qualitative
diagnosis of DWMA is poor (Hart et al., 2010a). Technical
variations such as imaging protocols and platforms may
contribute to the difficulty of consistent DWMA detection.
Moreover, DWMA diagnosis can also be confounded by
the developmental crossroad regions in frontal and occipital
periventricular white matter that contain multiple crossing fibers
and rich extracellular matrix (Judaš et al., 2005; Kidokoro
et al., 2011). These confounding factors could partly explain the
conflicting reports of significant association (Dyet et al., 2006;
Krishnan et al., 2007; Iwata et al., 2012; He and Parikh, 2013a)
vs. no association with cognitive outcomes (Jeon et al., 2012), and
hypotheses about whether DWMA represents a developmental
delay or pathologic lesions (Counsell et al., 2003; Inder et al.,
2003; Krishnan et al., 2007; Cheong et al., 2009; Hagmann et al.,
2009; Hart et al., 2010b; He and Parikh, 2013a). Our experiments
on computer simulated and in vivo data suggest that the proposed
deep CNN approach can yield reproducible DWMA diagnosis
across different cohorts.

The computer simulation experiments provided theoretical
support to the validity of the proposed approach. Unlike gold
standard data that is derived by human experts, the ground truth
of DWMA regions in computer-simulated brain images is well
grounded. Additionally, confounding factors such as imaging
protocol, scanner configuration, and subject motion are not a
concern when using computer simulated images. Our proposed
CNN approach detected DWMA regions with high accuracy and
its tolerance to varying signal noise levels was high. Although
noise level for a clinical neonatal MRI scan is dependent on
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FIGURE 10 | External validation. Bland-Altman plots of gold standard DWMA-to-brain-ratio (DBR) and automatic DBRs: (A) convolutional neural networks (CNN), (B)
deep neural networks (DNN), and (C) support vector machine (SVM) in the external validation with 50 subjects as training set and 28 independent subjects as testing
set. Each blue asterisk represents one subject. Solid horizontal lines represent the mean difference and dashed lines represent the limits of agreement (±1.96 SD).

scanner and environment, a generally acceptable noise SD is less
than 25 (He and Parikh, 2013b). At such a noise level (α = 25),
the CNN model still achieved a very high Dice index (0.96) and
balanced accuracy (0.98).

The comparison of deep CNN architectures, utilizing
the computer simulation and cross-validation experiments,
demonstrated that deeper architectures perform better for
DWMA detection. This is consistent with previous works
(Bengio, 2009; Zhang et al., 2015; Goodfellow et al., 2016) on
the general trend that a deeper architecture tends to perform
better for complex image pattern recognition. Meanwhile, the
CNN architecture for patch size 13× 13 performed slightly better
than the one for patch size 17 × 17, suggesting that simply
increasing the size of patches may not further improve detection.
Peak performance for detection of DWMA in infant brain images
was achieved by the deep CNN with the patch size 13 × 13,
which may be related to the spatial scale of the regional anatomy.
Prior research (Kamnitsas et al., 2017) suggests that increasing the
spatial scale may negatively impact the detection of the regional
spatial patterns.

With respect to comparing machine learning models, the
strong performance of deep CNN for image pattern recognition
shown here is consistent with numerous prior image classification
studies (Krizhevsky et al., 2012; de Brebisson and Montana,
2015; LeCun et al., 2015). Given sufficiently large training data,
deep learning methods have outperformed traditional classifiers
(e.g., SVM) in decoding complex image patterns (LeCun et al.,
2015). As a specialized neural network, CNN further leverages
the performance of DNN by using a convolution function, which
improves the utilization of spatial information within images
(Goodfellow et al., 2016).

Our experiments of internal holdout validation and external
independent validation support the strong generalizability of our
CNN approach. In the holdout validation, the performance of
CNN on 45 holdout subjects from cohort 1 was comparable to
the one achieved for cross-validation experiments. Compared
to internal holdout validation, the external validation results
for cohort 2 provided additional evidence that this method
is generalizable to very preterm infants imaged on different
scanners and using different imaging parameters.

Our current work has certain limitations. First, the per-
formance of machine learning methods for automated detection
and classification is highly dependent on the training data.
Although we had a substantial data set available from very
preterm infants, training the CNN with more data that
has been classified by experts can be expected to improve
performance. Second, although computer simulation and two
independent cohorts from separate studies were utilized to
evaluate our method, the in vivo data were collected by
the same research group (despite enrollment at different
centers) and all images were acquired at a field strength of
3 Tesla, limiting the variability of tested MRI images. The
sizes of our in vivo cohorts are relatively small. Additional
data from other institutions or research groups, and possibly
at other field strengths would provide further validation of
the generalizability of our approach. Third, to ensure deep
learning models had adequate training data, we utilized image
patches, typically ∼105 for each subject, as the training
samples. However, this strategy introduced redundancy among
overlapping patches, causing expensive computing cost. Fourth,
although we strived to obtain a robust gold-standard dataset,
it is worth mentioning that the inter-rater variability may be
a source of bias in the evaluation of the proposed and peer
models. Finally, our current CNN approach was developed based
on T2-weighted images only. Additional imaging modalities
(e.g., T1-weighted images) may further improve the accuracy
of DWMA detection.

In summary, we developed a deep CNN approach for
automated and objective DWMA detection. The experiments
were conducted by applying the proposed method to
T2-weighted anatomical images at term-equivalent age
from very preterm infants. The computer simulations
and internal and external validation demonstrated very
accurate and reproducible DWMA detection performance
that may facilitate the clinical diagnosis of DWMA in
very preterm infants. Future studies to investigate the
association between CNN-detected DWMA volumes and
long-term neurodevelopmental outcomes, as we are currently
doing, will be important to further validate the clinical
significance of this work.
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