
ORIGINAL RESEARCH
published: 04 July 2019

doi: 10.3389/fnins.2019.00686

Frontiers in Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 686

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Hesham Mostafa,

University of California, San Diego,

United States

Arindam Basu,

Nanyang Technological University,

Singapore

*Correspondence:

Nicholas Soures

nms9121@rit.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 01 March 2019

Accepted: 17 June 2019

Published: 04 July 2019

Citation:

Soures N and Kudithipudi D (2019)

Deep Liquid State Machines With

Neural Plasticity for Video Activity

Recognition. Front. Neurosci. 13:686.

doi: 10.3389/fnins.2019.00686

Deep Liquid State Machines With
Neural Plasticity for Video Activity
Recognition
Nicholas Soures* and Dhireesha Kudithipudi

Neuromorphic AI Laboratory, Rochester Institute of Technology, Rochester, NY, United States

Real-world applications such as first-person video activity recognition require intelligent

edge devices. However, size, weight, and power constraints of the embedded

platforms cannot support resource intensive state-of-the-art algorithms. Machine

learning lite algorithms, such as reservoir computing, with shallow 3-layer networks

are computationally frugal as only the output layer is trained. By reducing network

depth and plasticity, reservoir computingminimizes computational power and complexity,

making the algorithms optimal for edge devices. However, as a trade-off for their frugal

nature, reservoir computing sacrifices computational power compared to state-of-the-art

methods. A good compromise between reservoir computing and fully supervised

networks are the proposed deep-LSM networks. The deep-LSM is a deep spiking

neural network which captures dynamic information over multiple time-scales with

a combination of randomly connected layers and unsupervised layers. The deep-

LSM processes the captured dynamic information through an attention modulated

readout layer to perform classification. We demonstrate that the deep-LSM achieves

an average of 84.78% accuracy on the DogCentric video activity recognition task,

beating state-of-the-art. The deep-LSM also shows up to 91.13% memory savings

and up to 91.55% reduction in synaptic operations when compared to similar recurrent

neural network models. Based on these results we claim that the deep-LSM is capable

of overcoming limitations of traditional reservoir computing, while maintaining the low

computational cost associated with reservoir computing.

Keywords: spiking, LSM, local learning, deep, recurrent

1. INTRODUCTION

Enabling intelligence on the edge minimizes the round trip delay in decision-making,
lowers communication costs, load-balances for the end user, and enhances security with caching
or local algorithms to pre-process the data. An emerging input source for edge devices is streaming
visual data from first person cameras, such as in smart vehicles, or wearable devices. Being
able to accurately process streaming video is crucial for edge devices to understand and react
to their environment in a wide range of applications (eg: path planning, action selection, or
surveillance). A popular application for demonstrating understanding of first-person video data
in machine learning and computer vision is video activity recognition. However, majority of
state-of-the-art methods for video activity recognition do not target low-end embedded platforms.
Complex networks are not amenable for on-device intelligence due to their compute and memory
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intensive operations (networks with 10–60 million synapses
require 0.32–2GB to store synaptic weights Alom et al., 2018) and
long training times (in the order of hours to days with GPUs Fu
and Carter, 2016).

In the early 2000s, a computationally light algorithm known
as reservoir computing (RC) was proposed by two research
groups independently. The two algorithms are otherwise known
as the Echo State Network (ESN) (Jaeger, 2001) and the Liquid
State Machine (LSM) (Maass et al., 2002). The main difference
between the two is that the LSM is a biologically inspired
spiking neural network (SNN), whereas the ESN is a rate-
based approximation. In this work we focus on the LSM,
a neurally inspired algorithm, with innate characteristics for
edge devices that bring in size, weight, and power constraints.
In particular SNNs can store the neuronal activation’s in a
single bit (all or nothing signal), can consume as low as
≈ 20pJ per spike (Neftci et al., 2017), and shown to be
computationally at least as powerful as sigmoid and threshold
neurons (Maass, 1997).

The LSM is a three-layer neural network which consists
of an input layer, a liquid layer, and a readout layer. The
recurrent connections in the liquid layer allow it to capture
dynamic information, where information fades out over time.
The advantage of the LSM is that all the synaptic connections,
except for those which connect to the readout layer, are randomly
initialized and remain fixed. Unique inputs will produce distinct
perturbations in the state of the high-dimensional liquid layer
from which information can be extracted. By using fixed
connections, the LSM can circumvent the need for expensive
learning rules and the problem of vanishing gradients which can
impede learning with gradient descent approaches in recurrent
neural networks. In Soures et al. (2017), it was shown that
these networks are robust to internal noise, making them
a natural choice for embedded systems, particularly analog
implementations which are prone to device noise. However,
the conventional LSM model has shown limited applicability in
complex real-world problems owing to the single dynamical layer
driven by an input signal (Hermans and Schrauwen, 2013; Ma
et al., 2017). The single layer constricts the temporal dynamics
of the LSM resulting in very large reservoir networks to solve
trivial tasks. Another drawback with LSM is its dependence
on the initialization of random synaptic connections. Recent
literature highlights the gaps in conventional LSM, RC networks
in general, and the need to extend the capabilities of these
networks (Jaeger, 2007; Triefenbach et al., 2010, 2013; Gallicchio
and Micheli, 2016; Wang and Li, 2016; Ma et al., 2017; Bellec
et al., 2018). Motivated by these observations, we propose a novel
framework that drastically reduces the overall computational
resources without sacrificing the overall performance in complex
spatiotemporal task. Specific contributions of this work are

1. Deep-LSM, a semi-trained deep spiking recurrent neural
network with LSM as a core building block, capable of
capturing information over multiple time-scales.

2. Demonstrate that a modular/deep architecture significantly
reduces the memory requirements for storing synaptic
weights.

3. Use local, unsupervised plasticity mechanisms to partially
train the network yields state-of-the-art performance while
minimizing the cost of training.

4. Design an attention modulated readout layer to selectively
process information in the deep-LSM with limited
computational resources.

5. Analyze the model performance on first-person video activity
recognition with DogCentric dataset (Iwashita et al., 2014)
and demonstrate state-of-the-art performance.

6. Observe ≈ 90% memory savings and reduction in number
of operations compared to a LSTM and ≈ 25% reduction of
memory consumption in comparison to a standard LSM and
16% decrease in number of operations.

2. RELATED WORK

2.1. Video Activity Recognition
Egocentric video activity recognition is quickly becoming a
pertinent application area due to first person wearable devices
such as body cameras or in robotics. In these application
domains, real-time learning is critical for deployment beyond
controlled environments (such as deep space exploration), or
to learn continuously in novel scenarios. Many research groups
have focused on solving video activity recognition problems
with 2D and 3D convolutions (Tran et al., 2015), optical flow
(Simonyan and Zisserman, 2014; Zhan et al., 2014; Ma et al.,
2016; Song et al., 2016a), hand-crafted features (Ryoo et al., 2015),
combining motion sensors with visual information (Song et al.,
2016a,b), or using long-short term memory (LSTM) networks
to capture dynamics about spatial information extracted by a
convolutional neural network (CNN) (Baccouche et al., 2011;
Yue-Hei Ng et al., 2015). These approaches, while befitting for
high-end compute platforms, are often not suitable for wearable
devices due to the resource intensive networks or the long
training times.

Efficient video activity recognition designed for mobile
devices has been studied by several research groups. An energy
aware training algorithm was proposed in Possas et al. (2018),
to demonstrate energy efficient video activity recognition on
complex problems. In this work, the authors use reinforcement
learning to train a network on both video and motion
information captured by sensors while penalizing actions that
have high energy costs. Another approach to minimizing energy
consumption in mobile devices when using an accelerometer for
activity recognition is tominimize the sampling rate (Zheng et al.,
2017). In Yan et al. (2012) and Lee and Kim (2016), the authors
investigate a network with adaptive features, sampling frequency,
and window size for minimizing energy consumption during
activity recognition.

Recently Graham et al. (2017) proposed convolutional drift
networks (CDNs) for enabling real-time learning on mobile
devices. CDNs are an architecture for video activity recognition
which use a pre-trained CNN to extract features from video
frames and an ESN to capture temporal information. The
motivation behind the CDNs is to minimize the training time
and compute resources for spatiotemporal tasks when compared
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to networks akin to LSTMs (Yue-Hei Ng et al., 2015; Graham
et al., 2017). A similar sized RC network requires one fourth of
the weights, has faster training, and lower energy consumption
as that of an LSTM.

2.2. Hierarchical Reservoir Computing
As conventional reservoir networks are shallow and capture
information in short time-scales, recently several research groups
have investigated hierarchical reservoir models. A hierarchical
ESN is introduced in Jaeger (2007) with the goal of developing
a hierarchical information processing system which feeds on
high-dimension time series data and learns its own features
and concepts with minimal supervision. The hierarchical layers
help the system to process information on multiple timescales
where faster information is processed in the earlier layers and
information on slower timescales is processed in the final layers.
The outputs of each reservoir feed sequentially into the next
reservoir in the network. The networks prediction is made from
a combination of all the reservoir outputs. More recently, a
hierarchical ESN was proposed in Ma et al. (2017). In this
work the authors explore the use of trained auto-encoders,
principal component analysis, and random connections as
encoding layers between each reservoir layer. The downside
to this approach is that the output layer is trained on the
activity of every encoding layer, the last reservoir, and the
current input. This means as the number of layers increases,
the output layer size will increase. Another hierarchical model
was developed in Triefenbach et al. (2010). This model is
implemented by stacking trained ESNs on top of each other
to create a hierarchical chain of reservoirs. The hierarchical
ESN is applied to speech recognition where the intermediary
layers have a readout layer trained to perform the tasks and
the inputs to the hierarchical layers are the predictions of the
previous layers. With this approach each layer corrects the
error from the previous layer. The authors later designed a
hierarchical ESN where each layer was trained on a broad
representation of the output, which became more specific at
later layers (Triefenbach et al., 2013). Another hierarchical
ESN proposed in Gallicchio and Micheli (2016) connects an
ensemble of ESNs together. In Carmichael et al. (2018), our
group has proposed a mod-deepESN architecture, a modular
architecture that allows for varying topologies of deep ESNs.
Intrinsic plasticity mechanism is embedded in the ESN that
contributes more equally toward predictions and achieves better
performance with increased breadth and depth. In Wang and
Li (2016), a deep LSM model is proposed for image processing
which uses multiple LSMs as filters with a single response. The
authors use convolution and pooling similar to the process of
CNNs and train the LSMs with an unsupervised learning rule.
In Bellec et al. (2018), the authors introduce an approximation
of backpropagation-through-time for LSMs to optimize the
temporal memory of the LSM. The network shows a large
improvement in performance on sequential MNIST and speech
recognition with the TIMIT speech corpus. Another approach to
optimizing the LSM is Roy and Basu (2016), which proposes a
computationally efficient on-line learning rule for unsupervised
optimization of reservoir connections.

This work aims to develop an algorithm that overcomes few of
the gaps in the vanilla RC network while focusing onmaintaining
the inherent efficiency of LSMs.

3. DEEP-LSM MODEL

The proposed deep-LSM, shown in Figure 1, is a network
comprised of deep randomly initialized hidden layers to capture
the key dynamics of input streams. Sandwiched between
the hidden layers, unsupervised winner-take-all (WTA) layers
encode a low-dimensional representation of the dynamic
information captured by the high-dimensional hidden layer.
The encoded representation is then passed to the next hidden
layer in the network. The main role of the WTA layer is to
extract features from the hidden layer to represent its dynamic
behavior as a low dimensional input. As data flows through
the deep-LSM, different hidden layers process information over
multiple time-scales. The main elements of the proposed deep-
LSM are optimization of short-term plasticity and initialization
of the random hidden layers, the use of spike-timing dependent
plasticity (STDP) to implement the unsupervised WTA layers,
and the attention modulated readout layer.

3.1. Hidden Layer Optimization
The hidden layers in the deep-LSM are similar to the liquid
layer in the LSM. The connections between neurons in the input
layer to the hidden layer are random and sparse. The probability
of a connection is drawn from a uniform random distribution
and the degree of sparsity varies based on the application and
number of input signals. In Litwin-Kumar et al. (2017), the
authors state that the granule cells produce a 10–30x increase
in dimensionality. They also highlight that the granule cells
need to connect to a sparse number of inputs to produce a
unique high-dimensional representation. Using these claims as
guiding principles for the initialization of the hidden layer, the
number of neurons is set to be approximately 10x the size of
the input space in this work. The hidden layer consists of two
populations of neurons, primary neurons which are connected to
the input layer, and auxiliary neurons which only have recurrent
connections within the hidden layer but do not connect to the
input layer. Each primary neuron only connects to a sparse
number of input neurons, creating a selective response such
that no neuron responds to the same feature or set of features.
The auxiliary neurons then help to capture dynamic information
through their recurrent connections and propagate information
through the network.

The hidden layer in this work is implemented with excitatory
(E) and inhibitory (I) leaky integrate-and-fire neurons whose
dynamics are modeled by (1).

τ
∂V

∂t
= −V + Iext ∗ R, (1)

When a neuron recieves a pre-synaptic spike, the current
is modeled by a square pulse of current with a magnitude
proportional to the synaptic strength for 3 ms after the spike
occurs. The LIF neurons are instantiated as a 3D grid of neurons
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FIGURE 1 | Architecture of deep-LSM with three layers. (1) The input signals are randomly projected to a high dimensional space in the first hidden layer. (2) Hidden

layers with random recurrent connections capture temporal information. (3) Spiking winner-take-all layers extract temporal features from the random hidden layers

through the deep-LSM. (4) An attention function condensed the representation of the deep-LSM’s hidden layers for efficient classification. (5) A readout layer is trained

to perform a specific task.

with a ratio of 4:1 for the number of excitatory to inhibitory
neurons. The probability of a recurrent connection forming is
computed by (2).

Pr
(

wres
i,j 6= 0

)

= Cexp
(

−D(i, j)/λ
)2
, (2)

Where the probability of a connection depends on a scalar
C (determined by the neuron types and the direction of
the connection) which sets the maximum probability of a
connection, and the Euclidean distance between the neurons
scaled by λ which controls how quickly the probability
of a connection drops off as the distance increases. The
recurrent connections are initialized using fixed weights for each
connection type where excitatory to excitatory (EE) connections
have a synaptic strength of 3, EI have a strength of 3, IE have a
strength of 4, and II have a strength of 1. In Renart et al. (2003)
it was shown that neurons having homogeneous excitability is
important in the dynamics of temporal memory. To maintain a
homogeneous excitability in the hidden layer, the excitatory and
inhibitory pre-synaptic connections are normalized so the sum of
excitatory synapses and sum of inhibitory synapses is consistent
for all neurons.

Another biologically inspired mechanism in the hidden layer
is the use of short-term plasticity (STP). STP acts as a form of
hiddenmemory in the hidden layer by reflecting a neurons recent
firing activity. It also helps to regulate the overall firing activity

by reducing the strength of spikes from highly active neurons. To
optimize the STP function for neuromorphic systems, we reduce
the computational cost of the STP equations fromMarkram et al.
(1998) to (3) which simplified the model from an exponential
function to a simple linear model.

S(n) = S(n− 1)− α ∗ (x(n)− β) (3)

where S is the synaptic efficacy regulating the strength of a
neurons action potential and is bounded between 0 and 1. If a
neuron emits a spike (x(n) = 1), the strength of S is decreased
and if x(n) = 0 then S is increased. α and β are hyper-parameters
used to control the dynamics of STP. A timestep of 1ms is used
for all results presented in this work. The benefits of the STP rule
in 3 are (i) changes in synaptic efficacy are constant and, (ii) are
not dependent on the previous state of the synaptic efficacy.

The outputs of the hidden layer need to be sent to a readout
layer to perform classification or prediction. If a binary state
matrix (i.e., if a neuron fired) is used to represent the hidden
layer’s activity, several states collapse upon each other which
can impact the networks ability to distinguish the different
temporal patterns. Typically an exponential filtering operation
is performed on the output of each neuron in the hidden layer
(Schrauwen et al., 2007). In this work a synaptic trace operation
is implemented at the output of each hidden neuron before
transmitting to the readout layer which does not require the
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computation of any exponential terms. This operation is given
by Equation (4)

dXtrace

dn
=

−Xtrace

τtrace
+

∑

nf

δ(n− nf ) (4)

where the synaptic trace (Xtrace) keeps track of the behavior of
the spike activity of a neuron (x(n)) by increasing the trace by a
count of one every time a spike occurs and slowly decaying over
time. This trace value is used by the readout layer to perform
classification and prediction by capturing the short term behavior
of each hidden neuron.

3.2. Deep-LSM Implementation
In Jaeger (2007), the authors provide evidence that deep networks
are computationally more efficient and powerful than a shallow
(single-layer) architecture. A deep model allows the network
to learn more complex abstractions of the input and process
the input on different timescales in the case of RNNs (Jaeger,
2007). Therefore the deep-LSM can extract higher level temporal
features in each subsequent hidden layer before finally sending
the information to a readout layer.

The inputs to each layer in the deep-LSM can be described by
Equations (5)–(7)

IL1 (n) = Win
L1

∗ u(n)+Wrec
L1

∗ xL1 (n− 1) (5)

IEk (n) = Win
Ek

∗ xLl=k
(n) (6)

ILl (n) = Win
Ll
∗ xEk=l−1 (n)+Wrec

Ll
∗ xLl (n− 1) (7)

where (5) is the input to the first hidden layer L1 which combines
information from the input layer u(n) and input from the
spiking activity of the hidden layer xL1 through the recurrent
connections. The input to the kth WTA layer is described by
(6) where xLl=k

(n) is the spiking activity of the previous hidden

layer. Lastly, (7) is the input to the lth hidden layer which
receives the spiking activity at the current timestep from the
previous encoding layer xEk=l−1 (n) and input about the hidden
layer’s previous spiking activity xLl (n − 1) through recurrent
connections. In this architecture there is always one more hidden
layer than the number of WTA layers because the activity of the
hidden layer is what is used for classification.

In the deep-LSM architecture shown in Figure 2, the synaptic
connections from the input layer to the first hidden layer, and
from the WTA layers to the hidden layers are sparse. The
synaptic connections from the hidden layers to the WTA layers
(represented by dashed lines) are fully connected and trained
with Spike-time Dependent Plasticity (STDP). STDP is a form
of hebbian learning which postulates that neurons which fire
together grow together (Hebb, 1949). In this case if a pre-synaptic
potential occurs before a post-synaptic potential the synaptic
strength is increased and vice-versa, if a post-synaptic potential
occurs before a pre-synaptic potential the synaptic strength
is decreased.

A simple learning rule based on a pre-synaptic trace from
Diehl and Cook (2015) is used to model STDP. The pre-synaptic

trace is a function which tracks the recent activity of the pre-
synaptic neurons given by (4). The unsupervised learning rule
can then be defined as

1Wi,j = α ∗ (Xtrace
j − Xtar) (8)

where α is a hyper-parameter to control the magnitude of the
weight change. The change in the synaptic strength between
pre-synaptic neuron j and post-synaptic neuron i is increased
proportional to the difference between the trace of pre-synaptic
activity Xtrace

j and the threshold activity level Xtar which

determines whether potentiation or depression occurs.
STDP alone can exhibit runaway dynamics which result

in synaptic strengths saturating. In order to stabilize the
performance of STDP, it is necessary to use the same synaptic
scaling function used in the initialization step and intrinsic
plasticity (Watt and Desai, 2010). Synaptic scaling normalizes the
sum of pre-synaptic connections to α, as shown in (9).

Wi,j =
Wi,j

N
∑

j=1
Wi,j

∗ α (9)

Here, the synaptic connection from pre-synaptic neuron j to
post-synaptic neuron i (Wi,j) is scaled so the total sum of the
synaptic connections to neuron i remains constant. This helps
stabilize the weights while maintaining the hebbian relation
between synapses and removes the effect of noise on the network.

Global inhibition forces unsupervised learning through STDP
to generate competition between neurons and causes neurons to
learn different patterns. Global inhibition results in a winner-
take-all network so that when a neuron fires to a specific
pattern, it inhibits all other neurons from firing and learning
that same pattern. To prevent a single neuron from constantly
inhibiting other neurons, intrinsic plasticity (Watt and Desai,
2010) regulates how often a neuron fires by regulating the
neurons firing threshold according to (10)

Vth = Vth + 2 (10)

where the neurons firing threshold Vth is increased by 2 and 2

is increased every time a neuron fires and decays back toward
its resting value when a neuron does not fire according to a
time constant τ shown in (11) (Zhang and Linden, 2003). The
increased firing threshold decreases the probability of a neuron
spiking multiple times in succession to allow other neurons
to learn.

τ
d2

dt
= −2 (11)

Unsupervised STDP with homeostatic mechanisms results in
meaningful, low-dimensional representations of information
present in the hidden layers utilizing only local plasticity
mechanisms in contrast to training the entire network with
expensive gradient descent based learning algorithms. This
allows the deep-LSM to extract temporal information over
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FIGURE 2 | Diagram of connectivity between layers in the deep-LSM. Dashed lines represent connections trained with STDP from a hidden layer to a WTA layer.

multiple time-scales with only local learning rules which is ideal
for neuromorphic implementations (Neftci et al., 2017).

To summarize the information processing in the deep-LSM,
the hidden layers capture dynamic information about the input
signal over multiple times-scales. The WTA layers are trained
to condense the high-dimensional hidden layer activity into a
meaningful low-dimensional representation. This ensures that
the inputs to each hidden layer provide useful information,
while keeping the inputs to each hidden layer low-dimensional.
This is important because the hidden layers rely on creating a
high-dimensional representation of their input, by forming low-
dimensional inputs it reduces the size of the deeper hidden layer
which improves the scalability of the architecture.

3.3. Attention Mechanism
Another neural mechanism in the deep-LSM is the use of
attention to selectively process information in the hidden layers
as shown in Figure 3. As the size of the deep-LSM grows,
attention allows the readout layer to perform classification
with limited resources. Attention is applied by adding two
separate single layer neural networks, which compute a weighted
summation of all the hidden layers. This results in a single
representation with the same dimensionality as one hidden layer
being passed to the output layer. The attention networks receive
the filtered state of the deep-LSM based on (4), Xdeep−LSM =

[X1,X2, ...,XL−1,XL] where L is the number of hidden layers in
the deep-LSM, to predict the appropriate attention coefficients.

First, the deep attention network predicts the importance of
each layer in the deep-LSM. The attention network will predict
a coefficient for each hidden layer in the deep-LSM based on
the current state. The function of the deep attention network’s
operation is given by

A
deep

l
= softmaxl(W

Adeep
∗ Xdeep−LSM) (12)

where Al refers to the attention coefficient for the lth hidden layer

in the network such that Adeep = [A
deep
1 ,A

deep
2 , ...,A

deep
L−1,A

deep
L ]

and L represents the total number of layers and WA
deep

l are
the learned weights of the deep attention network. A softmax
function is used to assign a probability to each layer which
represents the importance of that layer. Then, based on the
attention coefficients, a weighted sum of all the hidden layers is

computed to generate a final representation of the deep-LSM (XS)
as shown in (13)

XS =

L
∑

l=1

A
deep

l
∗ Xl (13)

Second, the spatial attention network will predict the importance
of each neuron in the final representation XS. The second
attention network receives the same input as the first attention

network and will predict a coefficient A
Spatial
n for every value in

the final representation XS, this can be applied to every neuron
or a population of neurons. This will assign a weight to each
neuron/population, allowing the output layer to focus on a select

subset of signals. The operation for computing A
Spatial
n is given by

A
Spatial
n = σ (WASpatial

n ∗ Xdeep−LSM) (14)

where each coefficient A
Spatial
n is determined based on the

learned weights for the nth neuron in the spatial attention

network, WAspatial

n , the state of the deep-LSM, and ASpatial =

[A
Spatial
1 ,A

Spatial
2 , ...,A

Spatial
N−1 ,A

Spatial
N ] where N is the total number

of neurons in a hidden layer. The coefficients in ASpatial will then
be used to produce a weighted representation of XS where

XF = XS ⊙ ASpatial (15)

where the final representation of deep-LSM’s state XF , is
computed by an element-wise multiplication between the spatial
attention coefficients and their corresponding location in XS. XF

is then sent to the output layer which performs classification or
prediction, given by (16)

y(n) = σ (Wout ∗ XF) (16)

where y(n) is the output of the readout layer based on the state
HF of the deep-LSM at time t = n.

4. EXPERIMENTS

The proposed deep-LSM was benchmarked for video activity
recognition using the DogCentric dataset (Iwashita et al., 2014).
The DogCentric dataset consists of 209 videos recorded for ten
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FIGURE 3 | Attention applied to the cumulative deep-LSM network referred to as the deep attention network (Left) and spatially to a single hidden layer through the

spatial attention network (Right).

FIGURE 4 | Sample video frame sequence from DogCentric dataset for the shake class [models tested with hand crafted features (HFC) and without HFCs

are separated].

different activities being performed by four different dogs from
a first-person view point. A sample of the image frames for the
shake class is shown in Figure 4. The videos possess rapid and
erratic movement, similar to a person running around with a
camera, making it challenging to process what is occurring. There
is also an imbalance in the datasamples with unequal number of
videos per class. To make a fair comparison with prior networks,
samples for every class were distributed equally between training
and test data, similar to Graham et al. (2017).

The video frame features were extracted with a pre-
trained ResNet-50 architecture which were then reduced to
100 dimensions using principal component analysis. The 100-
dimensional features for each frame were used as an input to
the deep-LSM and LSM models for classification at the end
of each video sequence. The framelength in the DogCentric
dataset varies from 30 frames to 650, with an average of 157
frames per video. Results were averaged for 150 runs of each
model. The deep-LSM outperformed state-of-the-art models
shown in Table 1, including a single layer LSM with an equal
number of neurons and an attention modulated readout layer.
The parameters used to obtain the results presented are given
in Table 2.

To analyze the impact of different architectures in the
deep-LSM, the network was studied for a different number of
layers, for different sizes of the hidden layer, and for different
sizes of the WTA layer. As shown in Figure 5, a single layer LSM
is inferior to a deep-LSM with multiple layers and as the number
of layers increases from three to five, the deep-LSM is better at
processing the complex temporal information in the video.

The next analysis was how the size of the hidden layer
affects performance shown in Figure 6. Increasing the size of
the hidden layers or the WTA layers does not result in much
difference in performance. For the size of the hidden layer,
it is already sufficient with 1,000 neurons to create a high-
dimensional representation of the input for extracting temporal
information and further increases do not result in any change. If
we decrease the hidden layer size, eventually a point is crossed
where the high-dimensional representation does not capture
enough information about the input and the performance will
drop. This can be seen from the degradation in accuracy as the
hidden layer size decreases to 250 neurons.

Lastly, Figure 7 shows the performance as a function of the
size of theWTA layer. For a 1,000 neuron hidden layer, increasing
the WTA layer size from 50 to 100 neurons shows an increase in
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TABLE 1 | Comparison of state-of-the-art accuracy results on the DogCentric

dataset.

Approach Accuracy

HCF GOFF + VIF + Log-C + Cuboids (Arabacı et al., 2018) 64.0%

HOG+HOF+LBP+Cub.+Opt.Fl. (Iwashita et al., 2014) 60.5%

ITF (Wang and Schmid, 2013; Piergiovanni et al., 2016) 67.7%

ITF+CNN (Jain et al., 2014; Piergiovanni et al., 2016) 69.2%

POT (Ryoo et al., 2015) 73.0%

POT+ITF (Ryoo et al., 2015) 74.5%

TDD (Wang et al., 2015; Piergiovanni et al., 2016) 76.6%

TDD+Temp. Fil. (Piergiovanni et al., 2016) 79.6%

TDD+Temp. Fil.+LSTM (Piergiovanni et al., 2016) 81.4%

No HCFVGG+Max Pooling (Piergiovanni et al., 2016) ≈ 57.2%

VGG+Mean Pooling (Piergiovanni et al., 2016) 59.9%

VGG+Sum Pooling (Piergiovanni et al., 2016) 59.9%

VGG+Temp. Fil.-Learned (Piergiovanni et al., 2016) ≈ 65.0%

VGG+Temp. Fil.-Learned+LSTM (Piergiovanni et al., 2016) ≈ 65.0%

CDN (VGG-16) (Graham et al., 2017) 75.8%

CDN (ResNet-50) (Graham et al., 2017) 77.2%

TCF (CaffeNet) (Kahani et al., 2017) 72.19%

TCF (VGG-16) (Kahani et al., 2017) 77.79%

TCS (VGG, TDD) (Kahani et al., 2017) 82.24%

LFP (G+SD+GS) (Kwon et al., 2018) 82.5%

Deep-LSM (ResNet-50) 84.78%

LSM (ResNet-50) 76.5%

TABLE 2 | Parameters used in proposed deep-LSM and standard LSM

implementation.

Parameter Value

Simulation timestep 1 ms

Vth 16.5 mV

τm 28 ms

Cmem 1 pF

τref 4 ms

DH (deep-LSM/LSM) 1,000/3,000

E:I Ratio 4:1

Synaptic Strength (EE/EI/II/IE) 3/3/1/4

λ (2) (EE/EI/II/IE) 3/3/3/3

C (2) (EE/EI/II/IE) 0.6/1/0.2/1

α (9) (E/I) 40/36

α (3) 0.007

β (3) 0.739

DW 50–100–150

Xtar (8) 25–50

τtrace (4) 300 ms

α (9) (Synaptic scaling in WTA layer) 15

2 (10) 1.5 mV

τ (11) 500 ms

performance because the WTA layer can capture more features
describing the hidden layer. However, when the WTA layer size
increases to 200 neurons the performance significantly drops.
Similar results were observed for a 500 neuron hidden layer,
which showed degradation in performance beyond 50 neurons.
The reason for this is that there are now too many signals
feeding into the next hidden layer which dominates the hidden

FIGURE 5 | Accuracy on the DogCentric dataset as a function of the number

of layers in the deep-LSM (each hidden layer has 1,000 neurons, while each

encoding layer has 50 neurons).

FIGURE 6 | Accuracy on the DogCentric dataset as a function of hidden layer

size in a 3-layer deep-LSM (each WTA layer has 50 neurons).

layers dynamics, and because there is likely little information
gained by the extra 100 neurons.We hypothesize that the optimal
size of the WTA layer is dependent on the size of the hidden
layer. With smaller hidden layers, there will be less features for
the WTA layer to identify and learn so increasing the number
of neurons does not have an impact on the information sent
between layers. Another way to view this is as if one was
doing principal component analysis on the hidden layers output,
only the top few principal components would be needed to
convey the important information between layers. In addition,
the dimensionality of the WTA layer cannot be too close to
the dimensionality of the hidden layer or it will negatively
impact the information processing of deeper hidden layers.
Another potential cause of this result is the hyper-parameters
for the WTA layer are not optimal for allowing the network to
efficiently learn at larger sizes (e.g., homeostatic mechanisms,
training epochs).

4.1. Theoretical Efficiency for Neuromophic
Implementations
To analyze the efficiency of the deep-LSM for on-device
implementations, we study the deep-LSM in an application
dependent framework for processing temporal information on
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embedded platforms. The first analysis is to compare the total
number of synaptic connections as well as the types of training
computations needed to assess the scalability and memory cost
of the proposed model with respect to other recurrent neural
networks. Table 3 reports of the number of synaptic connections
based on the type of learning for three temporal networks
with an equal number of neurons; the deep-LSM, a traditional
LSM, and an standard LSTM. A hypothetical LSTM model is
used as a baseline purely for scalability analysis on the basis
of an equivalent number of neurons and does not consider
architectures such as stacked LSTMs. The analysis is performed
for a deep-LSM which consists of 100 input neurons, 3 hidden
layers with 500 neurons, two winner-take-all layers with 50
neurons, two attention networks (one with 3 neurons for each
hidden layer and one with 500 neurons for each location in the
hidden layer), and a readout layer with 10 neurons, one for each
class. To determine the synaptic connections in the LSM and
LSTM networks, we consider them to possess recurrent layers
with 1500 neurons (which is equivalent to the total number of
neurons in the three deep-LSM hidden layers). In addition, we
consider a similar attention-based readout layer for the LSM
which would implement spatial attention with 1500 neurons. As
can be seen in Table 3, the deep-LSM with attention requires
35.69% of the number of synapses as the LSM with attention,
but 613% the number of synapses as a standard LSM. However, a
deep-LSM without attention only has 77.86% as many synapses
as a standard LSM. In comparison to the LSTM model, a
deep-LSM with the proposed attention mechanism has 8.87%
of the number of synaptic connections with a similar number
of neurons.

FIGURE 7 | Accuracy on the DogCentric dataset as a function of WTA layer

size in a 3-layer deep-LSM (each hidden layer has 1,000 neurons).

From the table we can see that between the deep-LSM and
LSM, with a similar readout layer (attention or single-layer), the
deep-LSM shows a reduction in the number of synaptic weights.
These calculations account for the sparsity values which had
been used in our simulations, which was 95% sparsity in the
input connections of both models, 89.24% sparsity in the deep-
LSM hidden layers, and 95% sparsity in the LSM. Though the
degree of sparsity varied in the hidden layer between the deep-
LSM and LSM, they were generated from the same network
hyper-parameters in (2). The difference arises from the deep-
LSM having a smaller reservoir size which reduced the number of
long-range connections which tended to not form a connection.
In comparison to the LSTM, the deep-LSM with attention only
has 7.93% as many trainable synaptic connections. In addition
the deep-LSM attention weights are trained by a gradient descent
algorithm which does not require sequential back-propagation-
through-time. As for the connections trained through STDP, they
only require an accumulation of a neurons activity (which is
done per neuron rather than per synapse) and is only invoked
when a neuron fires rather than every synapse being updated
on each training operation. Therefore, the deep-LSM’s training
is computationally much lighter than the LSTM with respect to
both the number and type of operations, and total number of
trainable synapses.

The number of operations during inference and training in
each model is reported in Table 4, which we computed for the
deep-LSM and LSM based on our implementation, and for the
LSTM based on derivation of the training and inference phase
in Chen (2016) and are summarized in Table 5 for inference
and Table 6 for training. These estimates calculate the number
of multiplications needed in the specified models assuming that
the number of additions would be similar and ignoring the cost
of neuron functions and hyper-parameters. Based on the results,
the deep-LSM with attention only has 8.45% of the number of
computations as a vanilla LSTM and only 0.65% the number
of computations without the attention module. In comparison
between a deep-LSM and LSM, when an attention-based readout
layer is used the deep-LSM has 64.84% fewer operations and
significantly lower number of weight updates. Without attention
the deep-LSM shows a 16.2% decrease but a slightly higher
number of weight updates due to the unsupervised connections.
Thus, separating the attention layer from the analysis, the deep-
LSM shows a slight reduction in computational cost compared to
the standard LSM.

Another important feature for algorithms on embedded
platforms is robustness to device noise. To assess the robustness
of the deep-LSM, we mimic device noise in a neuromemristive
system by adding Gaussian noise on every read and write

TABLE 3 | Number of synaptic connections trained with different learning rules and their memory consumption for the deep-LSM, LSM, and LSTM.

Backpropagation Random Unsupervised Total Memory (Gb)

Deep-LSM 15,000 90,738 2,500 108,238 0.0035

Deep-LSM + Attention 759,500 90,738 2,500 852,738 0.0273

LSM 15,000 124,016 0 139,016 0.0044

LSM + Attention 2,265,000 124,016 0 2,389,016 0.0764

LSTM 9,615,000 0 0 9,615,000 0.3077

Frontiers in Neuroscience | www.frontiersin.org 9 July 2019 | Volume 13 | Article 686

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Soures and Kudithipudi Deep Spiking Neural Networks

TABLE 4 | Number of synaptic operations for a single frame of training data (for

STDP synapses, only one post-synaptic neuron can win at any time frame).

Network #Multiplications

(FP)

#Multiplications

(BP)

# Weight

updates

Deep-LSM 110,700 15,000 17,500

Deep-LSM + Attention 857,200 773,506 760,500

LSM 135,000 15,000 15,000

LSM + Attention 2,386,500 2,251,500 2,251,500

LSTM 9,619,500 9,675,000 9,615,000

TABLE 5 | Computation of the number of multiplications needed during

inference (FP).

Network # Multiplications (Forward pass)

Deep-LSM Sin ∗N∗Hd+2(l−1)∗Sin ∗ (W ∗Hd )+ l∗SR ∗ (Hd ∗Hd )+ l∗Hd ∗O

Deep-LSM + A Sin ∗ N ∗ Hd + 2(l − 1) ∗ Sin ∗ (W ∗ Hd )+ l ∗ SR ∗ (Hd ∗ Hd )+

l(Hd ∗ A)+ l ∗ Hd + Hd + Hd ∗ O

LSM Sin ∗ N ∗ H+ SR ∗ H ∗ H+ H ∗ O

LSM + A Sin ∗ N ∗ H+ SR ∗ H ∗ H+ H ∗ H+ H ∗ O

LSTM 4 ∗ (N ∗ H+ H ∗ H)+ 3 ∗ H+ H ∗ O

N is the dimensionlaity of the input, Hd is the dimensionality of the deep-LSM hidden

layers, W is the dimensionality of the WTA layers, A is the combined dimensionality of

both attention networks, O is the dimensionality of the output, l is the number of layers,

and H is the dimensionality of the hidden layer in the LSM and LSTM. For the LSM and

deepLSM, Sin is the input sparsity and SR is the hidden layer sparsity. Note “+ A” refers

to inclusion of the attention-based readout layer.

TABLE 6 | Computation of the number of multiplications needed during training

(Backward Pass).

Network # Multiplications (Backward pass)

Deep-LSM l ∗ (O ∗ Hd )

Deep-LSM = A 3 ∗ (O ∗ Hd )+ A ∗ Hd ∗ l + 2 ∗ Hd + 2 ∗ l + l ∗ 2 ∗ Hd

LSM H ∗ O

LSM + A H ∗O+ H ∗ H

LSTM 2 ∗ (H ∗ O)+ 30 ∗ H+ 4 ∗ (H ∗ N)+ 4 ∗ (H ∗ H)

TABLE 7 | Performance on the DogCentrric dataset for a 3 layer deep-LSM when

Gaussian noise is introduced.

Model (3 layers) Accuracy Standard deviation

Deep-LSM 82.9 6.78

Deep-LSM (with noise) 81.92 10.08

operation as in Soures et al. (2018). As shown in Table 7, the
networks performance suffers very little degradation due to the
presence of noise.

Finally, the energy consumption (estimated based on Han
et al., 2016, for 45 nm technology node) of the proposed deep-
LSM is compared with that of an LSM and LSTM. The energy
is estimated by calculating the number of addition (0.9pJ) and
multiplication (3.7pJ) operations (of 32-bit precision) for training
and inference, and the number of synaptic weights stored in
DRAM (360pJ).

Based on Table 8, it can be observed that the deep-LSM is
more energy efficient than an LSTM during training, inference,
and consumes less memory. When compared to the LSM, we
see that the deep-LSM is more energy efficient when using an
equivalent readout layer.

TABLE 8 | Energy portfolio of deep-LSM, LSM, and LSTM for inference, training,

and memory.

Inference Training Weights Total

Energy(µJ) Energy (µJ) Energy (µJ) Energy (µJ)

Deep-LSM 0.5092 0.069 38.9657 39.5439

Deep-LSM + Attention 3.9431 3.5581 306.9857 314.4869

LSM 0.621 0.069 50.0458 50.7358

LSM + Attention 10.9779 10.3569 860.0458 881.3806

LSTM 44.24 55.56 5866.6 5966.4

Estimates are for a 45 nm CMOS technology node (Han et al., 2016).

From this analysis, we conclude that the deep-LSM is a
computationally lite model for processing temporal information
with a fraction of the memory and compute operations compared
to other popular recurrent neural network architectures. The
deep-LSM has several features which result in its higher
performance with respect to other algorithms. The first key
feature of the deep-LSM is its modular reservoirs which create the
deep architecture for the network. By using a modular approach,
the deep-LSM reduces the size of the recurrent matrices needed
by the network and also demonstrates a much better capability
at extracting information over multiple time-scales as shown by
the large increase in performance over traditional RC approaches.
The second key feature of the deep-LSM is the use of spiking
WTA layers in between hidden layers. This allows to extract
meaningful features to propagate through the network and helps
alleviate the dependence of traditional RC approaches on their
initialization. The WTA layers learn their features through an
unsupervised local learning rule which allows the network to
learn and optimize its connections at a lower cost than gradient
descent. Additionally, because STDP is a local learning rule
the layers can be trained without waiting for information to
be propagated backwards speeding up the training time and
allowing the WTA layers to be updated in parallel. Finally, the
last feature of the deep-LSMwhich contributes to its performance
are the attention layers. Due to the large savings in total number
of synaptic connections and reduced amount of training due to
random connections, the deep-LSM can implement the attention
layers while still maintaining an overall reduction in the number
of synapses.

5. CONCLUSIONS

We proposed a new approach for performing spatio-temporal
tasks on a budget. The proposed deep-LSM has promising results
in video activity recognition achieving 84.78% on a representative
dataset and surpasses state-of-the-art algorithms in accuracy.
More importantly, the deep-LSM consumes significantly lower
synaptic memory storage and computational resources. Edge
devices naturally benefit from this computationally light
algorithm and the following benefits ensue.

1. Edge intelligence framework: Suitable for real-time on-device
learning and inference.

2. Local unsupervised plasticity mechanisms: Enable fine-
grained tuning to trade-off compute complexity vs. accuracy.
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3. Broaden applicability of RC approaches to complex temporal
problems that require integration of information over
multiple time-scales.

4. An overall reduction in energy consumption and memory
requirements compared to current recurrent networks.
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