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Recently, visual encoding and decoding based on functional magnetic resonance
imaging (fMRI) has had many achievements with the rapid development of deep network
computation. In the human vision system, when people process the perceived visual
content, visual information flows from primary visual cortices to high-level visual cortices
and also vice versa based on the bottom-up and top-down manners, respectively.
Inspired by the bidirectional information flows, we proposed a bidirectional recurrent
neural network (BRNN)-based method to decode the corresponding categories from
fMRI data. The forward and backward directions in the BRNN module characterized
the bottom-up and top-down manners, respectively. The proposed method regarded
the selected voxels in each visual area (V1, V2, V3, V4, and LO) as one node of the
space sequence and fed it into the BRNN module, then combined the output of the
BRNN module to decode categories with the subsequent fully connected softmax
layer. This new method can use the hierarchical information representations and
bidirectional information flows in human visual cortices more efficiently. Experiments
demonstrated that our method could improve the accuracy of the three-level category
decoding. Comparative analysis validated and revealed that correlative representations
of categories were included in visual cortices because of the bidirectional information
flows, in addition to the hierarchical, distributed, and complementary representations
that accorded with previous studies.

Keywords: brain decoding, functional magnetic resonance imaging, bidirectional recurrent neural network,
bidirectional information flows, bottom-up manner, top-down manner

INTRODUCTION

In neuroscience, visual decoding has been an important way to understand how and what sensory
information is encoded and presented in visual cortices. Functional magnetic resonance imaging
(fMRI) is an effective tool to reflect brain activities, and visual decoding computation models based
on fMRI data have attracted considerable attention over the years (Kamitani and Tong, 2005;
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Haynes and Rees, 2006; Norman et al., 2006; Naselaris et al.,
2011; Nishimoto et al., 2011; Horikawa et al., 2013; Li et al.,
2018; Papadimitriou et al., 2018). Categorization, identification,
and reconstruction of visual stimuli based on fMRI data are
the three main means to visual decoding. Compared with
identification and reconstruction, categorization or category
decoding is common and feasible in the visual decoding domain,
because identification is limited to fixed image dataset and fine
reconstruction is limited to simple image stimuli.

The category decoding of visual stimuli can be mainly
summarized into three kinds of methods: (1) classifier-based
methods, (2) voxel pattern template matching-based methods,
and (3) feature pattern template matching-based methods.
Classifier-based methods accomplish category decoding by
training a statistical linear or non-linear classifier to directly learn
the mapping from specific voxel patterns in visual cortices to
the categories. Previous work (Cox and Savoy, 2003) employed
linear support vector machine (SVM) classifiers (Chang and
Lin, 2011) to discriminate voxel patterns evoked by each
category. In addition, various classifiers, including the Fisher
classifier and k-nearest neighbor classifier have been also used
(Misaki et al., 2010; Song et al., 2011). Wen et al. (2017)
employed the classifier of the pre-trained convolutional neural
network (CNN) (LeCun et al., 1998) to decode categories. Voxel
pattern template matching-based methods need to compute the
correlation between voxels to be decoded and the voxel pattern
template of each category, and the category decoding can be
accomplished according to the maximum correlation. The voxel
pattern template for each category (Sorger et al., 2012) needs to be
constructed in these methods. Haxby et al. (2001) directly used
the means of the voxels of the samples with the same category
as the voxel pattern template of each category. Kay et al. (2008)
built an encoding model to predict the voxel patterns using those
samples with a corresponding category and took the average of
the predicted voxel patterns as the voxel pattern template of
each category. Feature pattern template matching-based methods
realize the decoding by mapping voxels to specific image features,
comparing them to the feature pattern templates of each category
and finally selecting the category with the maximum correlation.
The third manner depends on the intermediate feature bridge,
and the mapping from voxels to feature representations plays
an important role. Horikawa and Kamitani (2017a) and Wen
et al. (2018) constructed a feature pattern template for each
category by averaging the predicted CNN features of all image
stimuli belonging to the same category. Among these studies, the
research based on hierarchical CNN features has received much
attention (Agrawal et al., 2014; Güçlü and van Gerven, 2015).

In the human vision system, visual cortices are functionally
organized into the ventral stream and the dorsal stream (Mishkin
et al., 1983), and the ventral cortices are mainly responsible
for object recognition. Anatomical studies have demonstrated
that connections between the ventral cortices were ascending
and also descending (Bar, 2003). The bidirectional (forward and
backward) connections provide an anatomical structure for the
bidirectional information flows in visual cortices. The forward
(Tanaka, 1996) and backward information (Eger et al., 2006)
flows play different roles in recognition tasks. Visual information

flows from primary visual cortices to high-level visual cortices,
and then we can obtain high-level semantic understanding, which
is known as the bottom-up visual mechanism (Logothetis and
Sheinberg, 1996). In this way, activities of visual cortices are
mainly modulated by sensory input. Beside the forward inputs,
the feedback modulation from high-level visual cortices can also
affect the activities of low-level visual cortices (Buschman and
Miller, 2007; Zhang et al., 2008). In this way, visual information
flows from high-level visual cortices to low-level visual cortices,
which is known as the top-down visual mechanism (Beck and
Kastner, 2009; McMains and Kastner, 2011; Shea, 2015).

The top-down role in representations of visual cortices can be
facilitated and enhanced under a task or goal (Beck and Kastner,
2009; Khan et al., 2009; Stokes et al., 2009; Gilbert and Li, 2013).
For example, Li et al. (2004) demonstrated that neurons can carry
more information about the stimulus attributes based on the
top-down manner when people perform a task. Horikawa and
Kamitani (2017a) showed that the categories of imaginary images
can be decoded, and Senden et al. (2019) concluded that imagined
letters can be reconstructed from early visual cortices, which
revealed the tight correspondence between visual mental imagery
and perception. These studies implied that visual information can
flow from high-level visual cortices to modulate representations
of low-level cortices based on the top-down manner. Moreover,
for those without tasks or goals during recognition, visual
attention (Kastner and Ungerleider, 2000; Baluch and Itti, 2011
Carrasco, 2011) seems also to be able to facilitate the top-down
role in representations of visual cortices. People can choose to
pay attention to the regions of interest on the basis of the visual
attention mechanism after obtaining the semantic understanding
of sensory input. In this way, semantic information can also flow
from high-level visual cortices to modulate representations of the
low-level visual cortices.

Although many works focused on the interactions (McMains
and Kastner, 2011; Coco et al., 2014) between bottom-up and
top-down manners, it is still unclear what is “top” and what is
“bottom” in the debate about top-down influences on perception
(Teufel and Nanay, 2017). However, the current anatomical and
function roles of the bottom-up and top-down visual mechanism
indeed indicate some important viewpoints. High-level visual
cortices can form semantic representations or knowledge by
hierarchical information processing based on the bottom-up
manner, and representations in low-level visual cortices can
also be modulated based on the top-down manner. In addition,
a human subject viewed the same image stimulus in several
repeated trials during the experiment of visual decoding, and
the subject would pay attention to those interesting areas after
grasping the main meaning of the image stimulus, because
humans can only focus on one part at a time due to the
visual bias competition (Desimone and Duncan, 1995). During
the processing of visual information in a bottom-up and top-
down manner, visual information frequently flows from low-
level visual cortices to high-level visual cortices and the reverse
direction. Thus, we can assume that the bidirectional information
flows carry semantic knowledge from high-level visual cortices.
Therefore, maximizing the bidirectional information flows in
visual cortices will have great significant for category decoding.
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However, the three types of category decoding methods
ignored the internal relationship between different visual areas
and regarded voxels in selected visual cortices as a whole to
feed into the decoding model. Therefore, we introduced the
bidirectional information flows into our decoding model to
characterize the internal relationship. Compared to feedforward
neural networks, recurrent neural networks (RNNs) (Mikolov
et al., 2010; Graves et al., 2013; LeCun et al., 2015) can perform
extremely well on temporal data and are widely used in sequence
modeling. The general RNNs usually have only one directional
connection from past to future (or from left to right) nodes
of the input sequence. Bidirectional recurrent neural networks
(BRNNs) (Schuster and Paliwal, 1997; Schmidhuber, 2015)
split the neurons of regular RNNs into positive and negative
directions. The two directions make it possible to use input
information from the past and future of the current time frame.
Inspired by BRNNs, we regarded the bidirectional information
flows (one space sequence) as one fake temporal sequence.
Therefore, we proposed to feed voxels in each visual area as one
node of the sequence into the bidirectional connection module
(Hochreiter and Schmidhuber, 1997; Sutskever et al., 2014). Thus,
the output of the bidirectional RNN module can be regarded as
the representations of the bottom-up and top-down manners.
The category can be predicted with a subsequent fully connected
softmax layer by combining the bidirectional representations.

In this study, our main contributions are as follows: (1) we
analyzed the drawbacks of current decoding methods based
on the bottom-up and top-down visual mechanisms, (2) we
proposed to employ the BRNN to simulate the bidirectional
information flows for the category decoding of visual stimuli, and
(3) we analyzed that the bidirectional information flows make
the internal relationship between visual areas related with the
category, and validated that modeling the internal relationship
was of significance for the category decoding.

MATERIALS AND METHODS

Experimental Data
The dataset employed in our work was constructed based on the
previous studies (Kay et al., 2008; Naselaris et al., 2009). The
dataset had visual stimuli, corresponding fMRI data and category
labels, consisting of 1750 training samples and 120 validating
samples. The detailed information about the visual stimuli and
fMRI data can be gained from previous studies (Kay et al., 2008;
Naselaris et al., 2009), and the dataset can be downloaded from
http://crcns.org/data-sets/vc/vim-1.

Visual Stimuli
The visual stimuli consisted of sequences of natural photographs,
which were mainly obtained from the famous Berkeley
Segmentation Dataset (Martin et al., 2001). The content of
the photographs included animals, buildings, food, humans,
indoor scenes, manmade objects, outdoor scenes, and textures.
Photographs were converted into grayscale and downsampled
to 500 pixels. The photographs (500 × 500 pixels) presented to
subjects were obtained by centrally cropping, masking with a

cycle, placing on a gray background, and adding a white square
with size of 4 × 4 pixels in the central position. In total, 1870
images were selected as visual stimuli, and they were divided into
1750 and 120 images for training and validating, respectively.

Experiment Design
Photographs were presented in successive 4s trials. Each trial
contained 1 s of presenting the photograph with a 200 ms
flashing frequency and 3 s of presenting a gray presentation. The
corresponding fMRI data was collected when two subjects with
normal or corrected-to-normal vision viewed the photographs
and focused on the central white square of the photographs. The
experiment of each subject was composed of five scan sessions,
and each session had five training runs and two validating
runs. Seventy different images were presented two times during
every training run and 12 different images were presented
13 times during the validating run. Images were randomly
selected and were different for each run. Therefore, all 1750
different (5 sessions × 5 runs × 70) images and 120 different
(5 sessions× 2 runs× 12) images for training and validating were
presented to the subjects.

fMRI Data Collection and Pre-processing
The 4T INOVA MRI system with a quadrature transmit/receive
surface coil was used to acquire fMRI data. Functional
and anatomical brain volumes were reconstructed with the
ReconTools software package https://github.com/matthew-brett/
recon-tools. The repetition time (TR) was 1 s and isotropic
voxel size was 2 × 2 × 2.5 mm3 in the single-shot gradient
EPI sequence. The acquired data was subjected to a series of
pre-processing, including phase correction, sinc interpolation,
motion correction, and co-registration with the anatomical scan.
Regarding the time-series of pre-processing for each voxel,
voxel-specific response time courses were estimated based on
the basis-restricted separable (BRS) model, and an estimate of
the amplitude (a single value) of the voxel responses for each
image was produced by deconvolving response time courses
from the time-series data for repeated trials. The responses
were then standardized to improve the consistency of responses
across scan sessions. Voxels were assigned to each visual area
based on the retinotopic mapping experiment performed in
separate sessions. Voxels in five regions of interest (V1, V2, V3,
V4, and LO) from low-level to high-level visual cortices were
collected in the dataset.

Category Labels
In addition to image stimuli and corresponding fMRI data,
five experienced persons manually labeled the 1870 images,
respectively, according to the three levels (5, 10, and 23
categories), and final labels were obtained through voting.
As shown in Figure 1, the dataset with three-level categories
can comprehensively validate the decoding method from coarse
grains to fine grains.

Samples (Data Tuples) in Training and Validating
Each sample included one image stimulus, the corresponding
preprocessed fMRI data, and three labels for three-level
categories. Image stimulus was resized 224 × 224 to fit the input
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FIGURE 1 | Three-level labels that have 5, 10, and 23 categories. Three-level categories were designed to validate the proposed method according to different
grains, which can make the comparison more persuasive.

of the encoding model (see section “Visual Encoding Based on
CNN Features”). It should be underlined that the fMRI data of
samples does not have the dimension of time. The fMRI data
removed the dimension of time through pre-processing, and each
voxel in visual areas had one response value for one viewed image.
One hundred voxels (one vector) in each visual area were selected
based on the encoding model. Three labels in each sample were
used for different levels of categorization. Because 1750 training
images and 120 validating images were shown to two subjects,
the dataset contained 1750 training samples and 120 validating
samples for each subject.

Overview of the Proposed Method
To introduce the bidirectional information flows into the
decoding method, we employed a BRNN-based method to
simulate the bottom-up and top-down manners in the human
vision system. Thus, not only information of each visual area but
also the internal relationship between visual cortices can be used
in the decoding method. As shown in Figure 2, the proposed
model included the encoding and decoding parts. For the

encoding part, we can obtain the corresponding features of the
given image stimuli based on the prevailing pre-trained ResNet-
50 (He et al., 2016) model and employ these features to fit each
voxel to construct the voxel-wise encoding model. According to
the fitting performance, we can measure the importance of each
voxel for all visual areas. We selected the fixed small number
of voxels with higher predictive correlation for each visual area
(V1, V2, V3, V4, and LO) to prevent the subsequent decoding
from overfitting. For the decoding part, we constructed a RNN
module and employed the selected voxels of each visual area
as the five nodes of sequence input to utilize both hierarchical
visual representations and bidirectional information flows in
visual cortices. Finally, we combined the extracted features of the
bidirectional RNN module as the input of the last fully connected
softmax classifier layer to predict the category.

Section “Visual Encoding Based on CNN Features” introduces
how to construct the visual encoding model based on hierarchical
CNN features. Section “Category Decoding Based on BRNN
Features” demonstrates how to use a BRNN to simulate the
bidirectional information flows to decode the category.
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FIGURE 2 | The proposed method. Hierarchical features in the deep network were used to predict voxel patterns in each visual area for the encoding direction.
Based on the performance, the valuable voxels can be selected to reduce the dimension of voxels to a fixed number. To predict the category, the voxel sequence
comprising five visual areas is fed into the BRNN-based method to extract semantic information from each visual area and the bidirectional information flows in visual
cortices.

Visual Encoding Based on CNN Features
The brain can be looked as a system that non-linearly maps
sensory input into brain activity. The linearizing encoding
model (Naselaris et al., 2011) is validated and recognized in
many studies. Therefore, we used the linear encoding model
that consisted of non-linear mapping from image space to
feature space and a linear mapping from feature space to
brain activity space.

Non-linear Mapping From Image Space to Feature
Space Based on Pre-trained ResNet-50 Model
Many works (Agrawal et al., 2014; Yamins et al., 2014; Güçlü and
van Gerven, 2015) have indicated that hierarchical visual features
extracted through the pre-trained CNN model demonstrated
strong correlation with neural activities of visual cortices, and the
visual encoding based on CNN features obtained better encoding
performance than those hand-designed features such as Gabor
features (Kay et al., 2008). In this study, we used the prevailing
deep network ResNet-50 to extract hierarchical features for visual
encoding. The pre-trained ResNet-50 can recognize 1000 types
of natural images (Russakovsky et al., 2015) with state-of-the-
art performance, which demonstrated that the network possessed
rich and powerful feature representations.

In the ResNet-50 model, 50 hidden layers were stacked into
a bottom-up hierarchy. Besides the first convolutional layer, four
modules (16 residual blocks with each block mainly comprising 3
convolutional layers) and the last fully connected softmax layer
were included in the network. Detailed network configuration
can be seen in Table 1. Compared with the previous classic
AlexNet (Krizhevsky et al., 2012) model, ResNet-50 was much
deeper and contained more fine-grained hierarchical features,
which is of benefit for the encoding. In order to reduce
the computational cost, we only selected some representative

features, including outputs of the last AvgPooling operation
and 16 residual blocks for visual encoding. Thus, we extracted
17 kinds of features for each stimulus (1750 training images
and 120 validating images) to learn the mapping from specific
kinds of features to each voxel in each visual area (V1, V2,
V3, V4, and LO). In the experiment, the pre-trained ResNet-50
model can be downloaded from https://download.pytorch.org/
models/resnet50-19c8e357.pth, under the prevailing PyTorch
deep network framework (Ketkar, 2017).

Linear Mapping From Feature Space to Activity
Space Based on Sparse Regression
For each layer, a linear regression model maps the feature vector
X to each voxel y, and it is defined as follows:

y = Xw (1)

where y is an m-by-1 matrix and X is an m-by-n matrix, where
m is the number of training samples and n is the dimension of
the feature vector. w, an n-by-1 matrix, is the weighting vector
to be trained. Table 1 presents the dimension of each selected
feature vector. The number of training samples m (∼2 K) is
considerably less than the dimension of features n (∼100 K),
which is an ill-posed problem. Thus, we assumed that each voxel
can be characterized by a small number of features in the feature
vector and regularized w was sparse to prevent overfitting when
training the mapping from the high dimension of the feature
vector to one voxel. On the basis of the above assumption, the
major problem can be expressed as follows:

min
w

w0 subject to Xw = y (2)

In this study, we employed a sparse optimization method
called the regularized orthogonal matching pursuit (ROMP)
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(Needell and Vershynin, 2010) to fit the voxel pattern. ROMP
adds an orthogonal item and group regularization based on the
matching pursuit algorithm (Mallat and Zhang, 1993). Details
of these algorithm steps can be found in Needell and Vershynin
(2010). We constructed voxel-wise encoding models using each
of the 17 different layers of features and optimized 17 linear
models for each voxel. The correlation was used to measure
the encoding performance, and the mean correlation of the top
200 voxels for each visual area was computed. The features
that had the best correlation were selected as the final features
for encoding that visual area. Figure 3 presents the encoding
performance for each visual area when using a different layer of
features. In the figure, the features of the optimal layer are marked
in the “circle” according to the encoding performance. Finally, we
selected the top 100 voxels for each visual area (V1, V2, V3, V4,
and LO) according to the fitting performance, and a total of 500
voxels for five areas were selected for the next category decoding.
On the basis of the encoding model, the dimension of voxels for
each visual area was reduced to a small and fixed number, while
valuable information was reserved. In addition, the encoding
performance demonstrated that low-level features were better for
encoding low-level visual cortices, and high-level features were
appropriate for encoding high-level visual cortices, which was
consistent with the previous study (Wen et al., 2018). Moreover,
we illustrated that the selected voxels in visual areas shown in
Figure 4 indicated the clustered distribution for selected voxels.

Category Decoding Based on BRNN
Features
In order to introduce bidirectional information flows to model
the relationship between visual cortices, we used the prevailing

FIGURE 3 | Encoding performance of each visual area based on ResNet-50
features. Seventeen types of features were used to encode each voxel in each
visual area (V1, V2, V3, V4, and LO), and each node represents the average
encoding performance of the top 200 voxels with higher correlation. Each
color represents one type of visual area, and the corresponding “circle”
indicates the optimal performance. In this way, the optimal features can be
selected and the top 100 voxels were selected for each visual area.
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FIGURE 4 | The distribution of selected voxels in visual areas. The white lines
divide the five visual areas (V1, V2, V3, V4, and LO). Each yellow point
represents one voxel, which indicates where 100 selected voxels of each
visual area locate. These selected voxels are clustered instead of scattered
distribution.

long short-term memory (LSTM) module in the decoding
method to extract the features about the category from the space
sequence consisting of five visual areas. Then, the category could
be predicted through fully connected softmax layer.

RNN Module
Long short-term memory (Hochreiter and Schmidhuber, 1997;
Sutskever et al., 2014) is a famous RNN module in many RNN
variants (Cho et al., 2014; Greff et al., 2016) and has been widely
used in applications of sequence modeling. In this study, we
employed bidirectional LSTM to characterize the bidirectional
information flows in visual cortices, and bidirectional LSTM
can be easily constructed by adding bidirectional (forward
and backward) connections based on LSTM. Hence, we firstly
overviewed the LSTM, and for detailed description the reader is
referred to the following blog: http://colah.github.io/posts/2015-
08-Understanding-LSTMs/.

Long short-term memory is normally augmented by recurrent
gates called “forget” gates and can prevent backpropagated errors
from vanishing or exploding. LSTM can learn tasks that require
memories of events that occurred previously. LSTM includes
three gates (“forget,” “input,” and “output” gates), which depend
on previous state ht−1 and current input xt. The “forget” gate can
control how much to forget previous information according to ft
computed through Equation (3), where σ represents the sigmoid
function to restrict ft from 0 to 1. In this way, LSTM can include
long-term or short-term memory as needed by adjusting the ft.
The “input” gate can control how much to feed current input xt
into the computation according to it computed through Equat-
ion (4). The “output” gate can control how much information to
output according to ot computed through Equation (5).

ft = σ
(
Wf ·

[
ht−1, xt

]
+ bf

)
(3)

it = σ
(
Wi ·

[
ht−1, xt

]
+ bi

)
(4)

ot = σ
(
Wo ·

[
ht−1, xt

]
+ bo

)
(5)

On the basis of the three gates, LSTM can compute the state ct
and htthrough the Equation (6) and (7), which is also the output
of the current computation.

ct = ft · ct−1 + it ·
{
tanh

(
Wc ·

[
ht−1, xt

]
+ bc

)}
(6)

ht = ot · tanh (ct) (7)

The Proposed Architecture
The connections in the RNN module usually only have one
direction (from left to right), but the BRNN adds the other
direction (from right to left) to render the module bidirectional.
Based on the bidirectional LSTM module, we presented the
category decoding architecture.

As shown in Figure 5, the input of architecture is the voxels
selected from five visual areas (V1, V2, V3, V4 and LO), which
comprise one space sequence, hence the length of the sequence
is five. According to section “Visual Encoding Based on CNN
Features,” we selected 100 voxels for each visual area. Because the
voxels do not have the dimension of time, the 100 selected voxels
from each area were regarded as one node (100-D vector) of the
input sequence that was fed into the bidirectional LSTM module.
In this way, each node can also be regarded as one moment (t1, t2,
t3, t4, and t5) of the fake temporal input. Essentially, we employed
the modeling of space sequence instead of time sequence for
category, and we used bidirectional LSTM to characterize the
space (several visual areas) series of the relationship instead of
time series of the relationship for each voxel, which is the essential
characteristic of our method.

One layer of bidirectional LSTM was added as the input layer
in the decoding architecture to characterize the relationship in
the input sequence. The directions from left to right and from
right to left characterize the bottom-up and top-down manners
in the human vision system, respectively. In this way, output
features of one node are affected by the left low-level visual
cortices and right high-level visual cortices. Hence, the features
of category in each visual area and relationship between areas can
be extracted. Then, the proposed method combined the output
features from two directions and fed them into the successive
fully connected softmax layer to predict the category. In addition,
the focal loss (Lin et al., 2017) with the gamma 5.0 was used
during the training to deal with the difficult samples. Regarding
the details for the architecture, the input node was 100-D and the
output of the node in each direction of LSTM was a 16-D feature.
Thus, a 32-D feature combining two directions was obtained
for the next classification. The number of nodes in the last fully
connected softmax layer was 5, 10, and 23 for three-level labels,
respectively. We added the dropout operation with a rate of 0.5
behind the output of bidirectional LSTM to avoid overfitting.
Finally, not only visual information in each visual area but also
the relationship between areas were used in the decoding model.

The proposed method can be trained in an end-to-end manner
using similar algorithms as standard RNN. Through training
under PyTorch deep network framework (Ketkar, 2017), the
bidirectional information flows, including category information,
can be mined on the basis of training samples. During the
training, we set the batch size as 64 and used Adam optimization,
in which the learning rate was 0.001 and the weight regularization
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FIGURE 5 | Category decoding model based on the BRNN module. All visual areas are regarded as one sequence, and the BRNN module is especially good at
sequence modeling. The red line indicates the bottom-up information flows, and the green line indicates the top-down information flows in visual cortices. The
combination of features from two directions are used to predict category. In this way, information from each visual area and bidirectional information flows in visual
cortices can both be used for the decoding.

was 0.001, to update parameters. About 200 epochs were required
to accomplish the training on the Ubuntu 16.04 system with one
NVIDIA Titan Xp graphics card.

RESULTS

Conventional Linear and Non-linear
Classifiers
We chose some classical classifiers, including decision tree (DR),
random forest (RF), AdaBoost (AB), linear and non-linear SVM.
The three-level category (5, 10, and 23) decoding was performed
on the basis of these conventional classifiers. For the 5-category
decoding in Figure 6, these conventional methods using a single

visual area were more accurate than random, and even primary
visual regions are beneficial for semantic category decoding. The
linear trend of decoding performance from low-level to high-level
visual cortices is also depicted in the Figure, which shows that the
decoding performance had been improved. This phenomenon
indicated that more semantic information was obtained from
higher-level visual areas. In addition, these classical classifiers
obtained better decoding performance when all visual regions
were used instead of a single visual region, which indicated
that representations of category in different visual regions were
complementary. The results of the other two levels (10 and 23
categories) of decoding demonstrated a similar phenomenon,
which was shown in Figures 7, 8. Additionally, the mean and
variance of decoding accuracy through five repeated experiment

FIGURE 6 | Decoding of five categories using conventional classifiers. Accuracies of different conventional classifiers when using only a single visual area and all
visual areas (“V”) are presented. The distributed, hierarchical, and complementary representations of the semantic category in the human vision system can be
observed (detailed analysis in the Discussion part).
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FIGURE 7 | Decoding of 10 categories using conventional classifiers.

FIGURE 8 | Decoding of 23 categories using conventional classifiers.

tests with the same hyper parameters were calculated and plotted
in Figures 6–8. It should be noted that the variance of the stable
linear and non-linear SVM and AB classifier was zero. We can
see from the Figures that the decoding accuracy of SVM was
higher than that of other methods (DR, RF, and AB) and the
performance of the linear and non-linear SVM was similar. In
addition, the performance of S1 was higher than that of S2, which
accorded with previous studies (Kay et al., 2008).

Fully Connected Neural Network
In addition to the traditional classifiers in Section “Conventional
Linear and Non-linear Classifiers,” the fully connected neural
network (NN) method was also tested. In order to compare
and validate the effect of modeling the bidirectional information
flows, the NN method employed similar architecture as the
proposed method except for the RNN module. In detail, the
NN method had three fully connected layers. The number of
neural nodes of each layer was 500, 64, and 32, respectively.
The “500” was from the combination of selected voxels in
five visual regions. The outputs of the last fully connected

softmax layer were 5-D, 10-D, and 23-D for the three-level labels,
respectively. Similar hyper parameters were employed during
training. In this way, the difference between the NN- and BRNN-
based methods was whether bidirectional information flows were
modeled. From Figure 9, we can see that the NN method had
better or comparative performance regarding the linear and non-
linear SVM methods. We analyzed the gains benefited from the
powerful non-linear ability of neural networks.

The Proposed Method
As shown in Figure 9, our proposed method had the best
performance for all three levels of category decoding because
it can additionally utilize the bidirectional information flows
in visual cortices. Table 2 gave the accuracy of our method,
and the accuracy for 5-, 10- and 23-category decoding reached
60.83 ± 1.17%, 46.17 ± 0.42%, and 39.50 ± 0.85%, respectively.
The proposed method obtained more than 5% improvement
compared to the other best methods. Similar results for subject
S2 can be found in Table 3. In order to validate the statistical
significance, we calculated corresponding p-values to measure
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FIGURE 9 | Quantitative comparison of decoding performance for different methods. Conventional methods and the NN method can employ all visual areas.
However, the NN method with powerful non-linear capability obtains higher accuracy. BRNN-based methods with powerful non-linear capability can also employ
additional information (bidirectional information flows), leading to the best performance.

TABLE 2 | Quantitative comparison of decoding performance for different methods for subject S1.

Category level DR RF AB Linear SVM Non-linear SVM NN BRNN

5 39.50 ± 0.85 41.83 ± 3.55 33.33 51.67 55.83 55.00 ± 1.13 60.83 ± 1.17

10 22.50 ± 2.47 30.83 ± 4.52 27.50 40.00 41.67 42.00 ± 2.72 46.17 ± 0.42

23 10.67 ± 1.93 23.00 ± 1.95 19.17 33.33 35.00 31.67 ± 0.91 39.50 ± 0.85

The BRNN-based method obtains about 5% improvement than the other best method, which validates our proposed method and the significance of bidirectional
information flows.

TABLE 3 | Quantitative comparison of decoding performance for different methods for subject S2.

Category level DR RF AB Linear SVM Non-linear SVM NN BRNN

5 28.00 ± 0.85 30.83 ± 1.49 34.17 40.83 37.50 38.69 ± 1.69 42.50 ± 0.74

10 15.00 ± 2.64 22.00 ± 1.55 18.33 25.83 25.00 30.83 ± 1.39 36.33 ± 0.85

23 6.00 ± 0.63 14.50 ± 3.52 16.67 20.83 20.83 23.83 ± 2.15 26.33 ± 0.86

the difference between the proposed method and other classifiers
in Table 4. It showed that most significance values reached the
higher level (P < 0.001), which validated the significance of the
proposed method. Moreover, the minimum significance values
for each category level were underlined in Table 4, and the
significance values were between (P< 0.01) and (P< 0.05), which
demonstrated acceptable statistical significance. The underlined
values indicated that our proposed method showed significance

even though stricter comparisons were used, in which we
compared the proposed method to the best of other all methods.
In addition, Figure 10 presented the confusion matrix that
reflected detailed classification results, and it was shown that
the majority of samples were correctly classified. However, the
class “texture” had the worst result, and we presented two
images whose corresponding fMRI data were misclassified. One
was misclassified into the class “natural,” and the other was

TABLE 4 | Statistical significance of our proposed method compared to other methods for subject S1 and S2.

Method Category level Linear SVM (S1/S2) Non-linear SVM (S1/S2) NN (S1/S2)

5 9.96 × 10−5/1.08 × 10−2 ∗∗∗/∗ 1.05 × 10−3/1.49 × 10−5 ∗∗/∗∗∗ 5.47 × 10−5/7.46 × 10−3 ∗∗∗/∗∗

BRNN 10 7.38 × 10−6/1.59 × 10−5 ∗∗∗/∗∗∗ 2.59 × 10−5/5.08 × 10−7 ∗∗∗/∗∗∗ 3.66 × 10−2/3.40 × 10−4 ∗/∗∗∗

23 1.30 × 10−4/2.06 × 10−4 ∗∗∗/∗∗∗ 4.49 × 10−4/1.82 × 10−5 ∗∗∗/∗∗∗ 1.58 × 10−6/8.01 × 10−2 ∗∗∗/∗

Differs between two methods: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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FIGURE 10 | Normalized confusion matrix of results and two examples of the misclassification for the proposed method. The normalized confusion matrix presents
detailed misclassification, and two image samples are used to analyze the class (“texture”) that has the worst classification performance.

misclassified into the class “man-made.” The visual attributes
of the two images were indeed similar with those of images
belonging to the “natural” and “man-made” classes. Moreover,
the “human” and “animal” classes were easily confused, which
may result from similar visual attributes between the “human”
and “animal” classes.

The Effect of Feedforward, Backward
and Bidirectional Connections
Furthermore, we compared the accuracy of the RNN
module when using feedforward, backward and bidirectional
connections. The bidirectional connections included the
feedforward and backward connections. The feedforward
connections characterized the bottom-up information flows,
and the backward connections characterized the top-down
information flows in visual areas. We compared the bidirectional
connections (bidirectional LSTM) with forward connections
(LSTM with the input of V1→V2→V3→V4→LO sequence),
backward connections (LSTM with the input of LO→V4→V3→
V2→V1 sequence), and no recurrent connections (fully
connected layer with the input of entire visual areas as whole).
Corresponding results were presented in Table 5. We can
see that the LSTM (“→→”)-based method that characterized
the bottom-up information flows behaved better than the

NN method without recurrent connections and the LSTM
(“←←”)-based method that characterized the top-down
information flows. However, there were still benefits after using
bidirectional connections, because more relationships were
characterized and more visual information was utilized. The
bidirectional LSTM-based methods overall behaved the best
according to the mean value in Table 5 through combining
the LSTM (“→→”) and LSTM (“←←”) connections. We also
computed the significance values to measure the difference
between LSTM (“→→”) and bidirectional LSTM (“→→
and ←←”). For subject 1, the significance values for 5-, 10-,
and 23-category decoding were 7.83 × 10−4, 7.72 × 10−3,
and 4.34 × 10−5, respectively. For subject 2, the significance
values for 5-, 10-, and 23-category decoding were 3.07 × 10−1,
2.41 × 10−2, and 5.31 × 10−3, respectively. These results
showed the certain difference between LSTM (“→→”) and
bidirectional LSTM (“→→ and ←←”), and the accuracies of
the decoding task for subject 1 have higher significance values
than for subject 2. In conclusion, the single LSTM (“←←”)
connections behaved slightly worse than the NN-based method,
but the improvement validated the role of the LSTM (“←←”).
Therefore, bidirectional connections that characterized the
bottom-up and top-down information flows are necessary
for the decoding.

TABLE 5 | The comparison about whether using feedforward, backward, and bidirectional connections for the RNN module.

Category level NN (S1/S2) LSTM (→→) (S1/S2) LSTM (←←) (S1/S2) Bidirectional LSTM (→→←←) (S1/S2)

5 55.00 ± 1.13/ 38.69 ± 1.69 56.83 ± 0.97/ 41.83 ± 0.95 49.17 ± 0.91/ 39.83 ± 1.62 60.83 ± 1.17/ 42.50 ± 0.74

10 42.00 ± 2.72/ 30.83 ± 1.39 44.50 ± 0.85/ 34.67 ± 0.57 39.73 ± 1.23/ 30.17 ± 0.63 46.17 ± 0.42/ 36.33 ± 0.85

23 31.67 ± 0.91/ 23.83 ± 2.15 34.33 ± 0.97/ 24.33 ± 0.62 31.50 ± 0.62/ 22.33 ± 0.97 39.50 ± 0.85/ 26.33 ± 0.86

mean 37.00 ± 1.67 39.42 ± 0.82 35.46 ± 0.99 41.94 ± 0.96

“→→” represents the feedforward connections that characterize the input of V1→V2→V3→V4→LO sequence with the LSTM, “←←” represents the backward
connections that characterize the input of the LO→V4→V3→V2→V1 sequence with the LSTM. BRNN module can characterize the bidirectional information flows
including V1→V2→V3→V4→LO sequence and LO→V4→V3→V2→V1 sequence with bidirectional LSTM, and NN employed a plain fully connected neural network
without recurrent connections. The “mean” represents the mean performance through averaging the three category levels and two subjects for each method.
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DISCUSSION

It is known that visual decoding is to explore what exists
in visual cortices, but it is easier to explore the pattern of
visual representations in the human vision system. Hence,
we concluded some existing points and summarized the
similarities and differences between our method and others.
In addition, the CNN- and RNN-based methods for visual
decoding were discussed to demonstrate the advantage and
limitations of our proposed method, and our contribution to this
domain was presented.

Some Accordance With Previous Studies
It is known that low-level and high-level features of deep
networks are focused on detailed and abstract information,
respectively (Mahendran and Vedaldi, 2014). From the viewpoint
of visual encoding, Figure 3 shows that the low-level and high-
level features are suitable to encoding low-level and high-level
visual cortices, respectively, which has been shown in a series
of previous studies (Güçlü and van Gerven, 2015; Eickenberg
et al., 2016; Horikawa and Kamitani, 2017b). From the viewpoint
of visual decoding, Figures 6–8 of our study show a linear
improvement from low-level visual cortices to high-level visual
cortices, which can be a supplement to CNN-based visual
encoding methods to support the hierarchical representations in
visual cortices.

When only one specific visual area is used in different
classifiers, the category decoding performance is better than
random, and even the low-level visual areas can contribute to
category decoding, which indicates that low-level visual areas
can contain visual information of categories. Thus, just like the
previous work (Haxby et al., 2001; Cox and Savoy, 2003), the
distributed representations of categories in visual cortices can
be concluded. For example, Haxby et al. (2001) demonstrated
that there were distributed representations of faces and objects
in ventral cortices. Based on the bidirectional information flows,
we suggested that the distributed representations may be caused
by the dynamic information flows. The visual information of
low-level visual areas can flow to high-level visual areas, and
visual information of high-level visual cortical areas can also
flow to low-level visual cortical areas. Therefore, the visual
areas in ventral cortices are interactive, which may make the
representations in visual cortices distributed.

The results reveal that the decoding performance using five
visual areas is superior to using only one single area. The
improvement validates that these representations in different
visual areas are not redundant but contain various information.
The encoding results based on hierarchical CNN (see Figure 3)
have revealed that low-level features are suitable for encoding
primary visual cortices, and high-level features are more useful
for encoding high-level visual cortices. Considering that the
low-level and high-level features of the deep network focused
on detailed and abstract information (Mahendran and Vedaldi,
2014), the improvement supplements the viewpoint that low-
level visual cortices mainly process low-level representations
(edge, texture, and color) and that high-level visual cortices
are mainly responsible for high-level representations (shape

and object). Moreover, the complementary representations
indicate that more visual areas should be considered. However,
this study only covers five visual areas, which is a limitation, and
some previous studies even mention fewer visual cortical regions
(Senden et al., 2019). Hence, it might be the next direction to use
more visual areas in the decoding method and to model more
complex relationships in visual areas.

Correlative Representations About the
Category in Visual Cortices
Except hierarchical, distributed and complementary represen-
tations about categories in visual cortices, the results in Figure 9
demonstrated that we can obtain about 5% improvement after
introducing the bidirectional information flows and modeling
the internal relationship in the decoding method, which indicates
that the relationship between visual areas may contain semantic
information of categories and can contribute to the decoding.
This shows that these visual areas are related, and the category
representations in visual cortices are correlative. The correlative
representations of categories mean that the relationship between
visual areas contains the attributes about categories. Since we had
not found literatures that modeled the correlative representations
to decode categories from fMRI data, we tried to analyze
the origin of the phenomenon according to the bidirectional
information flows. Namely, semantic knowledge is firstly formed
through bottom-up hierarchical processing of sensory input.
Then, semantic information can flow from high-level visual
cortices to modulate neural activities in low-level visual cortices
because of the task or attention. Thus, we can conclude that the
semantic information contained in the relationship derives from
bottom-up visual processing and top-down visual modulating,
and the relationship is related with categories due to the effect of
a top-down manner. Current methods, such as prevailing CNN-
based methods, fail in simulating the top-down visual mechanism
and usually only consider the hierarchical representations.

Difference From Prevailing Visual
Decoding Method-Based CNNs and
RNNs
The goal of our study is to directly decode categories from
voxels (fMRI activities) using a classifier based on the RNN
module. It has been known that CNNs are very efficient for visual
recognition tasks through extracting hierarchical and powerful
features from 2D images. Thus, CNNs are especially suitable for
visual encoding but not for classifying voxels (1D). As shown
in Section “Visual Encoding Based on CNN Features,” features
extracted by the CNN are used to encode voxels to select valuable
voxels. In addition, CNNs can perform decoding through an
indirect manner called “Feature pattern template matching-based
methods” (Han et al., 2017; Horikawa and Kamitani, 2017a),
which is essentially different from our method called “Classifier-
based methods,” which is the most direct way to decode. Besides,
the kind of “Feature pattern template matching-based methods”
takes entire visual areas as a whole and maps it to CNN features,
which makes it difficult to exploit the inner relationship between
voxels. However, RNNs are usually used to model the sequence
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data, and RNN-based methods (Spampinato et al., 2017; Shi
et al., 2018) can characterize the data with the dimension
of time in visual decoding domain. For example, Spampinato
et al. (2017) proposed to employ the RNN to extract features
from EEG data for decoding, and they used the LSTM module
to characterize the time series of the relationship. As an
improvement, we used the LSTM module to characterize the
space (several visual areas) series of the relationship since the
dimension of time for fMRI data usually is not considered
too much in the visual encoding and decoding domain. More
specifically, their sequence is composed of different time points
for each voxel, but the sequence for our RNNs is composed
of voxels in different visual areas, which is the essential
difference between our method and other RNN-based methods.
In conclusion, our method is direct and novel because we
employ the modeling of space sequence instead of time sequence
for category. Thus, the next direction for visual decoding
might be to characterize the space-time sequence of voxels
in visual areas.

CONCLUSION

In this study, we analyzed the drawbacks of current decoding
methods from the perspective of the bidirectional information
flows (bottom-up and top-down visual mechanisms). In order
to characterize the bidirectional information flows in visual
cortices, we employed the BRNN module to model the space
series of the relationship instead of the common time series
of the relationship. We regarded the selected voxels of each
visual area (V1, V2, V3, V4, and LO) as one node in the
space sequence, which fed into the BRNN to additionally
extract the relationship features related with category to improve
decoding performance. We validated our proposed method

on the dataset with three levels of (5, 10, and 23) category
labels. Experimental results demonstrated that our proposed
method was capable of more accurate decoding results than
other linear and non-linear classifiers, while validating the
statistical significance of bidirectional information flows for
category decoding. In addition, based on experimental results,
we concluded that representations in visual cortices were
hierarchical, distributed, and complementary, which accorded
with previous studies. More importantly, we analyzed that the
bidirectional information flows in visual cortices made the
relationship between areas contain representations of categories
and can be successfully used based on BRNN, which we called
correlative representations of categories in visual cortices.
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