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Electroencephalography (EEG) data can be used to decode an attended speech source
in normal-hearing (NH) listeners using high-density EEG caps, as well as around-
the-ear EEG devices. The technology may find application in identifying the target
speaker in a cocktail party like scenario and steer speech enhancement algorithms
in cochlear implants (CIs). However, the worse spectral resolution and the electrical
artifacts introduced by a CI may limit the applicability of this approach to CI users. The
goal of this study was to investigate whether selective attention can be decoded in
CI users using an around-the-ear EEG system (cEEGrid). The performances of high-
density cap EEG recordings and cEEGrid EEG recordings were compared in a selective
attention paradigm using an envelope tracking algorithm. Speech from two audio books
was presented through insert earphones to NH listeners and via direct audio cable
to the CI users. 10 NH listeners and 10 bilateral CI users participated in the study.
Participants were instructed to attend to one out of the two concurrent speech streams
while data were recorded by a 96-channel scalp EEG and an 18-channel cEEGrid setup
simultaneously. Reconstruction performance was evaluated by means of parametric
correlations between the reconstructed speech and both, the envelope of the attended
and the unattended speech stream. Results confirm the feasibility to decode selective
attention by means of single-trial EEG data in NH and CI users using a high-density EEG.
All NH listeners and 9 out of 10 CI achieved high decoding accuracies. The cEEGrid was
successful in decoding selective attention in 5 out of 10 NH listeners. The same result
was obtained for CI users.

Keywords: cochlear implant, EEG, cEEGrid, selective attention, speech decoding

INTRODUCTION

Cochlear implants (CIs) are medical devices that partly replace the function of a damaged inner
ear. It roughly consists of a behind-the-ear sound processor and a set of electrode contacts located
inside the cochlea. The CI acts as a kind of artificial cochlea, transforming the acoustic signals,
captured by a microphone into electric pulses, thereby bypassing the damaged structures of the
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ear and directly stimulating the auditory nerve (e.g., Wilson
and Dorman, 2008). Most CI users obtain good speech
understanding in the absence of background noise (Krueger
et al., 2008; Zeng et al., 2008). However, CI users still face
difficulties in understanding speech in more challenging listening
environments with multiple speakers, background noise and
reverberation (i.e., the cocktail party problem; Cherry, 1953). In
such situations, normal-hearing (NH) listeners can focus on one
target speaker and effectively suppress other present speakers
(Mesgarani and Chang, 2012). This ability is probably impaired
in CI users and may be one of the reasons for the limitations
in speech understanding in challenging listening environments.
This work investigates the possibilities of decoding selective
attention in CI users.

Auditory selective attention seems to operate via facilitation
and inhibition mechanisms (e.g., Michie et al., 1993; Bidet-
Caulet et al., 2007). It modulates low-frequency oscillations of
cortical responses to speech stimuli, exhibiting both enhanced
tracking of target-speech signals and enhanced suppression
of masker-speech signals (e.g., Mesgarani and Chang, 2012;
O’Sullivan et al., 2015). Neural activity in the cerebral cortex,
especially in the delta (1–4 Hz) and theta (4–8 Hz) frequency
bands, tracks the amplitude envelope of a complex auditory
stimulus such as speech (Ding and Simon, 2012; Giraud and
Poeppel, 2012; Power et al., 2012). It is now well accepted that
auditory selective attention can modulate the sensory analysis of
relevant and irrelevant stimuli not only in the auditory cortex
(Coch et al., 2005; Bidet-Caulet et al., 2007), but also at the level
of the brainstem (e.g., Forte et al., 2017) and even peripherally at
the level of the cochlea as demonstrated by changes in otoacoustic
emissions (e.g., Walsh et al., 2015).

Previous studies have shown that an attended target sound
source can be identified from cortical recordings in demanding
auditory scenarios. This has been proven using several recording
technologies, such as electrocorticography (Nourski et al., 2009;
Zion Golumbic et al., 2013), magnetoencephalography (Ding and
Simon, 2012; Akram et al., 2016), and electroencephalography
(EEG) (Mirkovic et al., 2015; O’Sullivan et al., 2015). O’Sullivan
et al. (2015) showed that it is possible to detect an attended
speech source from cortical activity in a simplistic cocktail party
scenario. The procedure for detecting the target speaker was
based on an envelope tracking approach, which correlates the
speech envelope with the recorded cortical activity using a linear
model. Previous studies, using a two-speaker scenario, reached
a decoding accuracy of up to 88% based on single-trial EEG
recordings in NH subjects (e.g., Mirkovic et al., 2015). Moreover,
Wöstmann et al. (2016) showed that the power of alpha rhythm in
subjects with hearing problems is higher than in people without
any problems. Finally, a recent study by Nogueira et al. (2019)
demonstrated that in principle it is possible to decode selective
attention in CI users with an accuracy of up to 70% using high-
density EEG recordings. The lower decoding accuracy compared
to the results in NH listeners may be explained by the smeared
representation of the sound and by the electrical artifacts of the
CI introduced into the EEG recordings.

In general, best decoding results can be obtained using a high-
quality and high-density EEG system. However, the idea to use

real-time EEG recordings to report the current focus of attention
requires the establishment of a miniaturized EEG registration
system that is portable, small in size, comfortable in use and
which receives EEG signals with high accuracy (Bleichner and
Debener, 2017). With this purpose, the C-shaped cEEGrid sensor
array, comprising 10 flex-printed miniaturized EEG sensors
that can be placed around the ear was developed (Debener
et al., 2015). The cEEGrid sensors are light and comfortable to
wear, providing the possibility for long-term EEG recordings
without discomfort for the user. The cEEGrid system requires
the use of a small amount of contact gel, thus combining the
advantages of the wet EEG sensor technology with the advantages
of the dry sensor technology, avoiding disadvantages of both
systems. Previous work already applied the cEEGrid in a selective
attention paradigm in NH listeners and reached a decoding
accuracy of up to 70% (Mirkovic et al., 2016).

CIs have been designed not only to stimulate the auditory
nerve but also to record neural activity from the intracochlear
electrodes. Accordingly, the CI offers implanted stimulators
and a receiver that can be used to record diverse auditory
responses (see McLaughlin et al., 2012), as short latency
compound action potentials, auditory brainstem responses (1–
10 ms) and mid-to-late cortical potentials (20–300 ms). However,
current commercial CIs only offer short recording time buffers
and therefore these recordings have been only conducted in
laboratory conditions. Though, in the near future it is expected
that CIs will be optimized to record neural activity from the
intracochlear electrodes. To this end it is essential to assess
the limitations in recording neural activity in CI users from
electrodes located close to the ear. As the electrodes are located
close to the transmitter coil as well as the CI electrodes in the
cochlea, the electrical artifact may be enhanced, which, combined
with the smeared neural representations of sounds received
by CI users, might limit the possibility to decode selective
attention in CI users.

In our previous work we showed that it is possible to decode
selective attention in CI users using a high-density EEG system
(Nogueira et al., 2019). In the present study our goal was to
examine the practicability of an around-the-ear EEG to decode
selective attention in CI users. The data revealed that, on single-
subject level, it is possible to infer the listener’s focus of attention
from single-trial EEG using scalp electrodes in both, NH and
CI users. However, accuracy drops when only using around-the-
ear EEG electrodes.

MATERIALS AND METHODS

Participants
10 NH listeners (8 male; mean age: 42.8, range: 24–77, SD:
20.2 years) and 10 bilateral CI users (5 male; mean age:
67.5, range: 59–80, SD: 6.13 years) participated in the study.
Speech recognition scores for both CI users and NH listeners
were assessed using the Göttingen sentence test in adaptive
background noise (Kollmeier and Wesselkamp, 1997). CI users
furthermore performed the Hochmair-Schulz-Moser sentence
test in noise (+10 dB SNR; Hochmair-Desoyer et al., 1997).
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All subjects were native German speakers. CI users had
more than 6 months experience with their implant. The
demographics for NH listeners and CI users are provided
in Tables 1, 2, respectively. Prior to the experiment all
participants provided written informed consent and the study
was carried out in accordance with the Declaration of
Helsinki principles, approved by the Ethics Committee of the
Hannover Medical School.

Stimuli
Similar to previous studies (Mirkovic et al., 2015; Nogueira
et al., 2019) two German narrations (‘A drama in the air’ by
Jules Verne narrated by a male speaker and ‘Two brothers’
by the Grimm brothers, narrated by a female speaker) were
presented to the study participants. To maintain attention to
the correct story and to avoid capture of attention by the other

TABLE 1 | Subject demographics NH listeners.

# Göttingen sentence test (dB
SNR for SRT50%)

Attended story

NH1 −4.8 Jules Verne

NH2 −6.6 Brother Grimm

NH3 −6.0 Brother Grimm

NH4 −5.6 Jules Verne

NH5 −5.4 Jules Verne

NH6 −5.6 Brother Grimm

NH7 −4.3 Jules Verne

NH8 −5.0 Brother Grimm

NH9 −3.8 Jules Verne

NH10 −3.2 Jules Verne

F, female; M, male; GOESA, Göttingen sentence test in adaptive noise.
Speech recognition.

story, silent periods were limited to 0.5 s. The audio signal
for NH was provided through inserted earphones (3M E-A-
RTONE 3A, 50 ohm). CI users received the audio signal via
audio cables directly connecting the sound system and the CI
sound processor. Stimulus presentation was controlled by the
Presentation Software (Neurobehavioral Systems, Inc., Berkeley,
CA, United States; version 16.5) as in our previous work
(Nogueira et al., 2019). Every participant adjusted the loudness
to an individual moderate level (60–70 dB(A); Allen et al., 1990;
Zeng, 1994) by means of a seven-point loudness-rating scale
(where 1 is “very soft” and 7 is “extremely loud”).

Procedure
Each participant was instructed to sit relaxed and calm, keep
eyes open, and maintain fixation to a fixation point on a screen
in the front. The audio stories were segmented into 24 parts of
2 min each, resulting in a total stimulus presentation time of
48 min. The whole paradigm was subdivided into 6 sections with
4 segments each. After each section participants had a break.
Stories were presented simultaneously, with one story being
presented at the one and one story being presented at the other
ear. Subjects were instructed to focus their attention to one of
the two concurrent stories, while ignoring the other one. The
to-be-attended story was randomized between participants. Each
participant, respectively, attended to the same story throughout
the whole session, but the side on which the attended speech
stream was presented changed after each 2 min segment to
exclude effects of side of presentation. Before the start of each
segment, participants were instructed which side to attend. The
starting side of the attended speech stream was randomized
between participants. After each 2 min segment, participants had
to answer eight multiple-choice questions, four related to the
attended and four to the unattended story, with four answer
possibilities each, to ensure attention to the correct story.

TABLE 2 | Subject demographics CI users.

# Etiology Age at onset of
profound

deafness (years;
L/R∗)

Duration of
deafness

(months; L/R∗)

Implant use
(months; L/R∗)

HSM sentence
test in noise

(+10 dB SNR) (%)

Göttingen
sentence test (dB
SNR for SRT50%)

Attended
story

CI1 Genetic 59/25 1/265 109/243 73.58 n.a. Brother Grimm

CI2 Unknown 50/50 38/92 102/49 95.28 0 Jules Verne

CI3 Genetic 54/49 1/49 115/128 66.04 3.2 Brother Grimm

CI4 Unknown 57/59 1/1 58/34 80.19 1.4 Jules Verne

CI5 Unknown 71/67 1/25 97/123 80.00 10.8 Jules Verne

CI6 Unknown 60/60 21/4 114/132 85.85 8.6 Brother Grimm

CI7 Genetic 69/71 1/1 33/12 50.00 7.4 Jules Verne

CI8 Unknown 56/56 60/47 38/71 78.30 2.6 Brother Grimm

CI9 Acute hearing
loss

57/41 1/182 42186 83.96 11.9 Brother Grimm

CI10 Otosclerosis
cochleae

33/50 289/20 112/178 89.62 1.6 Jules Verne

F, female; M, male. Age at onset of profound deafness refers to the age at which the amount of hearing loss was too severe to be sucessfully treated by a conventional
hearing aid. Duration of deafness is defined as the time between the age at onset of profound deafness and the CI implantation.∗Values are provided for the left and the
right CI, respectively. HSM, Hochmair-Schulz-Moser sentence test (+10 dB SNR). GOESA, Göttingen sentence test in adaptive noise. Speech recognition scores are
obtained in a bilateral listening condition.
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EEG Recordings
The recording of the EEG data was performed in an
electromagnetically and acoustically shielded booth. High-
density continuous EEG data were recorded using a BrainAmp
System (Brain Products GmbH, Gilching, Germany) with 96
Ag/AgCl electrodes mounted in a customized, infracerebral
electrode cap with an equidistant electrode layout (Easycap
GmbH, Herrsching, Germany). The ground electrode was placed
on a central frontopolar site, and the nose tip served as reference.
Data were recorded with a sampling rate of 1000 Hz and an
online filter from 0.2 to 250 Hz. Impedances were controlled
and maintained below 10 k�. Some electrodes around the ears
and in the proximity of the transmitter coil were excluded as a
consequence of using the cEEGrid system or the placement of the
CI. On average, across subjects, 8 electrodes were excluded.

The cEEGrid array contains 10 electrodes printed with silver
ink on a flexible material that is placed around the ear (Debener
et al., 2015). Before applying the cEEGrid system - one array to
each side of the head – the skin behind the ear is prepared with
an abrasive gel and alcohol. Subsequently, the cEEGrid arrays
are placed around the ear with a double-sided adhesive, whereby
the electrodes are covered with a small amount of electrolyte
gel. The two cEEGrid arrays were connected to a wireless
mobile 24-channel EEG amplifier (SMARTING, mBrainTrain,
Belgrade, Serbia). Positions R4a and R4b were used as ground
and reference, respectively (Figure 1). In the end, data from
18 electrodes were recorded with a 24 bit resolution and a
500 Hz sampling rate.

The CI sound processors were moved from their usual
position (behind the ear) to the participant’s collar, as otherwise
the CI processors would have occupied the same position as the
cEEGrid. The change in placement did not affect the participant’s
sound perception with the CI, as the sound was delivered via a
direct audio cable and not received via the microphones.

The data recorded with the high-density EEG cap were
transmitted to a personal computer though a physical
connection, whereas the data recorded with the cEEGrid
arrays were transferred via Bluetooth. EEG streams were joined
into one output file in an extensible data format (.xdf) using
the LabStreamingLayer software1. The data were preprocessed
offline using EEGLAB (Figure 2; Delorme and Makeig, 2004).

A timing test was performed to test for a delay between
sound presentation and EEG recordings based on the procedure
of Mirkovic et al. (2016). A time delay of 77 ms and 5 ms
was observed for the BrainAmp and the SMARTING system,
respectively. These time delays are corrected for the analysis in
the results section.

EEG and Speech Envelope
Preprocessing
EEG data were analyzed offline using custom scripts in MATLAB
8.1.0.604 (R2013a; Mathworks, Natick, MA, United States) and
EEGLAB version 14.0.0b (Delorme and Makeig, 2004). The
obtained EEG data were preprocessed according to the procedure
of similar previous studies (Mirkovic et al., 2015; O’Sullivan et al.,
2015). The EEG data were filtered using a bandpass filter from 2
to 8 Hz and down sampled to 64 Hz. Afterward, the data were
epoched in consecutive 60 s intervals, resulting in 48 trials for
each subject. The envelopes of both audio stories were obtained
using the Hilbert transform of the original audio signal. The
audio signal likewise was low-pass filtered (8 Hz) and down
sampled to 64 Hz.

Speech Reconstruction
Speech reconstruction from the EEG data was accomplished
through the “backward” modeling of neural responses (mTRF;

1https://github.com/sccn/labstreaminglayer

FIGURE 1 | cEEGrid recording. (A) Schematical placement of the cEEGrid system. The C-shaped cEEGrid arrays are fixated around the ear with a double-sided
adhesive. Both cEEGrid arrays are connected to a wireless mobile 24-channel EEG amplifier (SMARTING, mBrainTrain, Belgrade, Serbia). The CI sound processors
were moved from their usual position (behind the ear) to the participant’s collar, as otherwise the CI processors would have occupied the same position as the
cEEGrid. (B) cEEGrid electrode layout. Each cEEGrid array consists of 10 single electrodes. Electrodes L1–L4 and L5–L8 around the left ear and electrodes R1–R4
and R5–R8 around the right ear measure the voltage between the respective electrode and the reference electrode R4b. Electrode R4a is the ground electrode. The
electrode L4b was used in the offline analysis for re-referencing the data. In order to keep the layout symmetric, electrode L4a was excluded from the data analysis.
Accordingly, 16 channels, 8 around each ear, were used for the analysis.
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FIGURE 2 | Synchronized streaming of the two separate EEG systems
(adapted from Mirkovic et al., 2016). The software Presentation
(Neurobehavioral Systems, Inc., Berkeley, CA, United States) was used to
present the sound to the participants and to send event markers to the Lab
recorder software. EEG was recorded with one cEEGrid located around each
ear (head, light blue) and a high-density cap (head, red). By means of the
SMARTING mobile amplifier (mBrainTrain, Belgrade, Serbia), the cEEGrid
signal was wirelessly sent to the recording computer, while the cap-EEG
signals were recorded using the Brain Amp amplifiers (BrainProducts GmbH,
Gilching, Germany) with a physical connection to the recording computer.
EEG streams were joined into one output file in an extensible data format
(.xdf). Further preprocessing of the EEG data was performed using the
EEGLAB Toolbox (Delorme and Makeig, 2004).

Crosse et al., 2016). The toolbox developed by Crosse et al. (2016)
can, in general, use “backward“ and “forward“ linear modeling,
based on a least square estimation between neural data and
the stimulus. The “forward” model can be used to predict the
neuronal impulse response to a continuous stimulus, thereby
describing how the system generates or encodes information
(Haufe et al., 2014). The analysis of such impulse response can
then be likened to traditional analysis of event-related potentials
(Lalor et al., 2009; Petersen et al., 2016; Di Liberto et al., 2018).
“Backward” model however, is used to reconstruct the attended
stimulus from neural data and by comparing this reconstruction
to all available stimuli, it is possible to decode the locus of
attention, which is exactly what this work focuses on.

The spatio-temporal filter, also termed “decoder,” at specific
time-lags l = 0 . . . L− 1 and electrodes n is denoted by wn,l, and
performs the linear mapping from the neural response back to
the speech envelope. L refers to the index corresponding with
the upper boundary of time lags. The maximum time lag was
set to 510 ms and a decoder was created every 15 ms resulting
in L = 35 decoders. The neural response at time sample k =
0 . . .K − 1 of the electrode n = 0 . . .N − 1, is denoted as yn

[
k
]
.

The reconstructed attended signal is estimated as follows:

x̂a,u
[
k
]
=

N−1∑
n=0

L−1∑
l=0

wn,l · yn
[
k+1+ l

]
, (1)

where x̂a,u
[
k
]

denotes the reconstructed attended or
unattended signal at time sample k = 0 . . .K − 1, and 1
models the latency or lag.

During training, the decoder Wa is estimated using
least squares error minimization between the Hilbert
envelope extracted from the attended audio signal xa

[
k
]

and the reconstructed envelope x̂a
[
k
]
. To avoid overfitting,

regularization is applied, using the norm of the coefficients:

JRLS (Wa) = E
{∣∣∣xa [k]−WT

a Y
[
k
]∣∣∣2}+ λWT

a Wa, (2)

with λ being the regularization parameter.
Minimizing JRLS (Wa), with respect to the decoder coefficients

leads to the following solution:

WT
a =

(
RxaY + λI

)−1
· RYY , (3)

where RxaY and RYY are defined as follows

RxaY =
K∑

m=0

xa
[
k
]
y
[
k+m

]
, (4)

RYY =
K∑

m=0

y
[
k
]
y
[
k+m

]
. (5)

Empirically, it was found that a regularization parameter
of λ = 0.001 led to the highest accuracy for the NH
group, for both, the high-density scalp data and the
cEEGrid data. As CI users had different CIs with different
stimulation settings, the regularization parameter was fitted
individually for each subject to maximize the selective
attention accuracy.

Selective attention was decoded comparing the correlation
coefficient between the reconstructed attended and the original
attended signal (Rxax̂a) with the correlation coefficient between
the reconstructed attended and the original unattended signal
(Rxux̂a). If Rxax̂a was larger than Rxux̂a , the attended speech stream
was decoded correctly. This procedure was repeated for all 48
trials and the accuracy of the decoder was calculated as the
number of times the signal was correctly decoded, divided by
total number of trials. To improve the procedure, “leave-one-out”
cross-validation was used. Each test-trial was evaluated using the
(averaged) decoder obtained from the average of the decoders
trained on every other trial.

RESULTS

With the goal of assessing the feasibility to decode selective
attention in CI users using the cEEGrid, we first analyzed
the effect of reducing the number of EEG scalp electrodes
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to approximate the cEEGrid layout. Next, we evaluated the
influence of the electrical CI artifact on the decoding accuracy
using a simple experimental model. Furthermore, the effect
of the regularization parameter on the decoding accuracy
was examined for both, NH listeners and CI users. The
correlation coefficients between the original envelope of the
audio signal across lags and the reconstructed signal from
both, the scalp EEG and the cEEGrid data were analyzed
in detail. Finally, the overall decoding accuracy using a
generic regularization parameter and the optimized decoding
accuracy using an individual regularization parameter for each
subject was reviewed.

Effect of Reducing the Number of
Electrodes
As the cEEGrid system has only a small number of electrodes
compared to the high-density EEG cap, we evaluated the effect
of decreasing the number of electrodes and the influence
of electrode placement. We therefore calculated the decoding
accuracy for different combinations of scalp electrodes, also
trying to simulate the placement of the cEEGrid electrode arrays.
The decoding accuracy was compared using all scalp electrodes,
using 19 electrodes on the top and 14 electrodes from the area

behind the ear. It should be mentioned that we did not interpolate
data, but simply chose electrodes in the area of interest.

Figure 3A presents the decoding accuracy using all scalp EEG
electrodes. It can be seen that the maximum accuracy of around
80% is obtained at a lag of around 320 ms. The chance level
was estimated as 0.95 of the confidence interval of a binomial
distribution (Combrisson and Jerbi, 2015) and resulted in a
range between 41.8 and 58.2% and is presented as the shaded
areas in Figure 3.

From the results presented in Figure 3B, it seems that as
long as the number of electrodes is not reduced below 19 (for
electrodes located on the top of the head) or 14 (for electrodes
located close to the ears), the decoding accuracy remains similar.
However, the chosen scalp electrodes are positioned higher
than the cEEGrids, with larger coverage of the temporal areas.
Moreover, the location of the electrodes toward similar positions
as those corresponding to the cEEGrid likewise does not produce
a significant decrease in decoding accuracy (Figure 3C).

Effect of the Electrical CI Artifact
Auditory electrophysiological measurements in CI users are
corrupted by artifacts introduced by the CI. They can be caused
by the radiofrequency transmission between the external part and

FIGURE 3 | Comparison of electrode locations. (A) Selective attention decoding accuracy using all electrodes (eye electrodes 29 and 30 and scalp EEG electrodes
spared at the position of the cEEGrid are excluded from the analysis); (B) Selective attention decoding accuracy using 19 electrodes on the top of scalp;
(C) Decoding accuracy using 14 electrodes in the area next to the ear.
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the implanted part of the CI, or by the electrical stimulation in
the cochlea. These artifacts can impact both the scalp and the
cEEGrid recordings. A simple physical model based on a melon
was used to investigate the effect of the CI artifact on the cEEGrid
recordings. Two MED-EL Sonata implants (MED-El, Innsbruck,
Austria) were implanted in a melon, simulating in this scenario a
head. The headpiece of each CI was placed outside on the melon
skin and connected to an OPUS speech processor. In total, two
speech processors and two implants were used. The two cEEGrids
were placed on each side of the water melon. The melon passed
exactly the same procedure as the human subjects. The two audio
stories were presented to the speech processors and data were
recorded via the cEEGrid. Since melons do not generate any
neural activity, any selective attention decoding in the simulation
is solely based on the electrical artifact caused by the stimulation
of the CI. Since the CI extracts the envelope of the audio signal,
it is expected that the selective attention decoding accuracy does
not exceed 50%, as both, the attended and the unattended story
should result in similar correlation coefficients. Note that the aim
of this model is not to model the volume conduction of in a
human head, but to demonstrate that selective attention based
solely on the CI artifacts is not possible. For a more detailed
human model of the volume conduction after CI stimulation
refer to Wagner et al. (2018).

Figure 5 presents the decoding accuracy and the correlation
coefficients for the attended decoder using the model presented
in Figure 4. The results confirm that indeed, if only artifact is
present in the EEG recording, the accuracy is below chance level
(Figure 5A). Additionally, Figure 5B shows that the correlation
coefficients between the reconstructed attended signal and the
attended or the unattended speech are very similar.

FIGURE 4 | Schematic illustration of the experimental setup to investigate the
influence of the cochlear implant (CI) artifact on the decoding accuracy.

FIGURE 5 | Decoding accuracy and correlation coefficients using the physical
model. (A) Selective attention accuracy using the attended decoder, trained
with a simulated EEG signal containing only artifact. (B) Correlation
coefficients for the attended speech (light blue) and the unattended speech
(dark blue) using the attended decoder trained with simulated EEG data
containing only artifact. The correlation coefficients for the attended and the
unattended speech sounds overlap and drop rapidly with increasing lag.

Selective Attention Decoding Accuracy
Using Individual Regularization
Parameters λ
One factor that might have a large impact on decoding selective
attention is the regularization parameter λ. For this reason,
a parametric analysis was conducted, evaluating the influence
of λ on the decoding accuracy. Figures 6, 7 present the
decoding accuracies in NH listeners for scalp and cEEGrid data,
respectively, using different values of λ (0.0001, 0.001, 0.01,
0.1, 1, and 10). The chance level was estimated as 0.95 of the
confidence interval of a binomial distribution and resulted in
a range between 41.8 and 58.2% (Combrisson and Jerbi, 2015).
For scalp EEG data, the highest accuracy in NH listeners was
reached with λ equal to 0.001. The same value (λ = 0.001)
obtained the best results for the cEEGrid data in NH listeners.
As already pointed out, it may be reasonable to use individual
λ values for each CI user, as each subject has received different
input from the CIs, depending on the sound coding strategy and
the stimulation levels, as well as the specific artifacts caused by
the different radiofrequency (RF) transmission systems. Table 3
presents the λ that resulted in the highest accuracy for each CI
user. However, unless otherwise specified, the data from the CI
group was processed using the same λ value, which coincided
with the one found for the NH group.

Correlation Coefficients for Scalp and
cEEGrid Data
An attention related difference in the correlation coefficients
for the attended and the unattended speech envelope is a
precondition for the identification of the attended speaker.
Figure 8 presents the correlation coefficients between the
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FIGURE 6 | Decoding accuracies in NH listeners for the high-density scalp EEG data across lags for different values of the regularization parameter λ. The gray
shaded areas show the chance level.

original attended and the reconstructed speech, as well as the
correlation coefficients between the original unattended and the
reconstructed speech, using the attended decoder. The results are
presented for each condition (scalp EEG, cEEGrid) and group
(NH, CI). The results correspond with averaged correlations
across subjects for each lag (1). In NH listeners, highest
correlation coefficients for the scalp EEG data were obtained in
the lag interval of 180–350 ms. These results are in agreement
with previous results obtained in the same laboratory (Nogueira
et al., 2019). For the cEEGrid data, the interval with highest
correlation coefficients in NH listeners was 200–400 ms. The
course of correlation coefficients over lags is similar for scalp
EEG and cEEGrid data in NH listeners. However, compared
to the results of the scalp EEG data, the difference between
the attended and the unattended correlation coefficients of the
cEEGrid data decreased. For CI users the highest correlation
coefficients for the scalp EEG data are observed for lags of 80–
250 ms. The largest difference between the attended and the
unattended coefficients, however, is observed for lags between
300 and 400 ms, which is delayed with respect to the NH
listeners. For the cEEGrid data in CI users, the highest correlation
coefficients are observable at even earlier lags from 0 to 250 ms.
Moreover, the difference between coefficients for the attended
and the unattended speech decreased significantly, with both
courses becoming largely overlapping.

In general, correlation coefficients are much larger in
CI listeners for both, scalp EEG and cEEGrid data. This
difference might be explained by the huge artifact introduced
by the CI, which is related to the envelope of the speech.
However, with increasing lags, at around 200 ms, the
correlation coefficient between the reconstructed attended
signal and the original attended speech becomes larger than
the correlation coefficient with the unattended sound, at
least for scalp EEG data. This, in turn, would enable the
decoding of selective attention in CI users at later lags,
where the artifact has no strong influence. It seems like
the CI artifact correlates only with the speech at short lags.
These results agree with the results of our previous study
(Nogueira et al., 2019).

It is worth noting that the morphology of the correlation
coefficients across lags, using scalp or cEEGrid data was pretty
similar. However, the difference between the attended and
the unattended correlation coefficients was smaller using the
cEEGrid resulting in lower decoding accuracies.

Overall Decoding Accuracies
Figure 9 presents the individual single-subject decoding
accuracies across lags for NH listeners (top panel) and CI
users (bottom panel) for scalp EEG (left panel) and cEEGrid
data (right panel).
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FIGURE 7 | Decoding accuracies in NH listeners for cEEGrid data across lags for different values of the regularization parameter λ. The gray shaded areas show the
chance level.

TABLE 3 | Individual best λ value for CI users.

# CI1 CI2 CI3 CI4 CI5 CI6 CI7 CI8 CI9 CI10

λ Scalp 1 1 0.0001 0.001 1 0.0001 0.001 0.001 0.01 0.001

λ cEEGrid 0.0001 0.01 0.0001 0.01 0.0001 0.01 0.0001 0.1 0.001 0.01

The individual results demonstrate a large inter-subject
variability. All subjects of the NH group obtain accuracies above
chance level with the scalp EEG data. However, for the cEEGrid
data only 5 out of 10 obtained results significant above chance
level. In the group of CI users 9 out of 10 patients show decoding
accuracies above chance level when using the scalp EEG data.
Performance, accordingly, is almost the same as in NH listeners,
which proves that it is possible to decode selective attention
in CI users. When using the cEEGrid the performance further
dropped. Only 5 out of 10 CI users obtained decoding accuracies
above chance level, the same as for NH cEEGrid, but with a
lower mean accuracy.

Average decoding accuracies across NH subjects and across
CI users are shown in Figure 10. The accuracy values were
obtained using the attended decoder. Chance level (29.2–58.2%)
was determined using a binomial test at 5% significance level.

In Figure 8, it can be observed that the correlation coefficient
across lags shows two peaks for the scalp EEG data in the group

of NH listeners. For this reason, the accuracy values presented
in Figure 10 (top left) also show two peaks, one at around 200–
260 ms with a maximum value of 82.7% and a second one at
around 340–380 ms with a maximum value of 81.04%. For the
NH cEEGrid data, these two peaks can also be observed at similar
lags but with lower values, that is, 59.58 and 59.79% for the
first and second peak, respectively. For the scalp EEG data in
the group of CI listeners, the same two peaks can be observed
at similar lags with accuracies of 73.8 and 71.67%, respectively.
For the CI cEEGrid data, however, the difference between the
attended and the unattended correlation coefficient is only visible
beyond 350 ms (Figure 8 bottom right). This causes the accuracy
to reach the significance level only at around 350 ms (Figure 10
bottom right). Note that a peak in accuracy for the cEEGrid data
of CI users can also be observed at 100 ms, however, this peak
may be explained by random fluctuations as the attended and the
unattended correlation coefficients at these short lags are low and
very similar (Figure 8 bottom right).
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FIGURE 8 | Correlation coefficients for NH listeners and CI users. In each subplot lighter colors refer to the correlation coefficients for the attended speech and
darker colors refer to the correlation coefficients for the unattended speech. The thick lines represent the mean values and the shaded areas the standard deviation
across subjects.

Optimized Overall Performance
Given that each CI user likely obtains quite different CI
excitation patterns that, among other factors, depend on the CI
manufacturer, the radio frequency link, the sound coding strategy
and the fitting parameters, it seems plausible to optimize the
decoder on an individual level. Figure 11 presents the decoding
accuracies for NH listeners and CI users for both, scalp EEG
and cEEGrid data, using for each single CI user the individual
optimal lag and regularization parameter λ. Individualizing the
regularization parameter and the lag at which the decoding
accuracy is estimated results in an increase of the decoding
accuracy for CI users using the cEEGrid. Note that the same
value of the regularization parameter λ = 0.001 was used for
all NH listeners.

The results show that the cEEGrid causes a drop in accuracy
with respect to the scalp electrodes and that selective attention
decoding is more challenging in CI users than in NH listeners.

DISCUSSION

This study confirmed previous results that it is possible to
decode selective attention in NH listeners using a high-density
EEG (Mirkovic et al., 2015; Nogueira et al., 2019), as well as

a mobile EEG system with only 18 electrodes (Mirkovic et al.,
2016). There has been another study by Fiedler et al. (2017),
showing that even only two electrodes – a single in - ear - EEG
electrode and an adjacent scalp EEG electrode – are sufficient
to identify the attended sound source. Moreover, the present
work showed that selective attention can also be decoded with
both systems in some CI users, even if the CI introduces large
electrical artifacts. However, the inter-subject variability is very
high, with not all CI users reaching decoding accuracies above
chance level. Generally, the decoding accuracy dropped when
using the cEEGrid compared to the high-density scalp EEG data.
Nevertheless, it was still just above chance level in both groups.

Our results showed that selective attention in NH listeners
using a high-density EEG system can be decoded with a
maximum accuracy of 83.3%. These results are consistent with
previous studies that reported accuracies of 82–89% based on 30
trials (60 s each) of EEG data recorded from a high number of
electrode positions (e.g., O’Sullivan et al., 2015). The results of
the present study further confirmed previous findings (Mirkovic
et al., 2016), that reducing the amount of scalp electrodes did
not have a very strong influence on performance, at least if the
number of electrodes is larger than 14. The decoding accuracy
using 19 central electrodes around Cz reached a maximum
of 80%, while the accuracy using 14 electrodes in temporal
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FIGURE 9 | Selective attention accuracies for each subject across lags.

regions close to the ears reached 83%. These results are in
agreement with previous findings (Mirkovic et al., 2016) and
suggest that it is possible to decode selective attention with
around-the-ear electrodes such as with the cEEGrid. It should
be noted, however, that the channels we have chosen for the
comparative analysis with the cEEGrid spatially reach a wider
area than the cEEGrid arrays, potentially covering the auditory
cortex and thus capturing the dipole resulting from auditory
activity to a greater extent. This might be the reason why in
the present study, the difference between the simulated around-
the-ear decoding accuracy and the cEEGrid decoding accuracy
was bigger than 20% in NH listeners. The cEEGrid decoding
accuracy is slightly below the maximum decoding accuracy
(69.3%) found by Mirkovic et al. (2016).

The present work was based on a previous study, using a
highly similar paradigm and decoder to assess and compare the
decoding of selective attention with the cEEGrid system and a
high-density EEG system in NH listeners (Mirkovic et al., 2016).
In the study by Mirkovic et al. (2016) the stories were always
presented dichotically but on the same side. In contrast, the
current study switched the side of attention from trial to trial.
In the study by Mirkovic et al. (2016), the maximal accuracies
were 84.78% for the high-density EEG system and 69.33% for

the cEEGrid. The accuracy reached with the high-density EEG
electrodes was similar to the accuracy obtained in the present
study in NH listeners. However, the accuracy obtained with
the cEEGrid was around 6% higher than in the current study.
Only two of their 18 NH participants did not reach accuracies
above chance level, whereas in the current study only 5 out of
10 NH subjects reached accuracies above chance level with the
cEEGrid. Another difference between both studies is the age of
the participants, 24.8 years vs. 42.8 years.

The large difference between the cEEGrid performance and
the scalp EEG performance using a decreased number of
electrodes can be explained by the position of the reference
electrode. The cEEGrid uses a local reference that is the reference,
the ground and the recording electrodes are all allocated around-
the-ear, which gives small signal amplitudes. For the scalp EEG
using a decreased number of electrodes around-the-ear, however,
the nose tip is used as reference, which is located far away from
the recording electrodes and therefore gives higher amplitudes.
Apparently this amplitude/signal to noise ratio is crucial for good
decoding (Bleichner and Debener, 2017).

Somers et al. (2019) showed that it is possible to perform
neural tracking of the speech envelope in CI users if care is taken
about the artifacts introduced by the CI. The study applied an
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FIGURE 10 | Average decoding accuracies and standard deviation of the mean. The upper panel shows the average decoding accuracies in the group of NH
listeners, for both the scalp EEG (left) and the cEEGrid (right) data. The lower panel shows the average decoding accuracies in the group of CI users, for both the
scalp EEG (left) and the cEEGrid (right) data.

FIGURE 11 | Individually optimized decoding accuracies. Average decoding
accuracies for NH listeners and CI users for both, scalp EEG and cEEGrid
data. Note, for the CI users the accuracies are obtained using the individual
optimal lag and regularization parameterλ. The optimal λ for each CI subject
can be found in Table 3. The gray area indicates the chance level.

approach that periodically interrupted the electrical stimulation
of the CI. In these gaps, the EEG signal was recorded without
any artifact. This work was extended by Nogueira et al. (2019),

who showed that the decoding using high-density scalp EEG is
as well possible without stimulation gaps, in the presence of a
continuous electrical artifact. We obtained an average decoding
accuracy across subjects of 70.5% (Nogueira et al., 2019). In the
present study we obtained a similar decoding accuracy of 73.8%.
Analyzing the data on an individual level shows that only one
subject out of 10 obtained a decoding accuracy below chance level
when using the high-density EEG system. Using the cEEGrid the
performance, however, dropped and reached an average decoding
accuracy of 59.79%, which is just above chance level. On an
individual level, only five subjects achieved decoding accuracies
above chance level.

The decoding accuracy was analyzed across lags to better
characterize the physical delay between the presented sounds
and the recorded neural responses. Previous studies on cortical
responses to attended continuous speech in NH listeners have
reported peak latencies or lags of the highest decoding accuracy
ranging from short delays (100 to 150 ms; Ding and Simon,
2012; Koskinen and Seppä, 2014) to longer delays (150–300 ms;
e.g., Aiken and Picton, 2008; O’Sullivan et al., 2015; Mirkovic
et al., 2016). NH listeners (scalp and cEEGrid) in the present
study showed the maximum decoding accuracy at lags of
around 260 ms, which is consistent with these previous findings.
The data, both, for scalp EEG and cEEGrid, however, actually
showed two peaks in accuracy, the first one at 200–260 ms and
the second one at 340–380 ms. For CI users only the high-
density scalp EEG, but not the cEEGrid data showed two peaks
in decoding accuracy occurring at similar lags as in normal
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hearing listeners. For the cEEGrid data in CI users, the accuracy
remained below chance level for most of the lags. At 350 ms
(corresponding with the second peak in the other datasets),
however, the accuracy just reached significance. Another peak
in accuracy at around 100 ms was observed, but correlation
coefficients at this lag were very low and very similar to each
other, and for this reason this early peak is attributed to
random fluctuations.

The methodology used in the present study uses backward
mapping of neural responses to reconstruct the speech envelope.
This mapping approach derives a reverse stimulus-response
mapping by exploiting all of the available neural data in a
multivariate context (Haufe et al., 2014; Crosse et al., 2016). In
contrast to the forward mapping approach, with the backward
model the decoder channel weights are not readily interpretable
in a neurophysiological sense, their weighting reflects the
channels that contribute most toward reconstructing the stimulus
signal (Haufe et al., 2014). Previous studies have shown that
using all EEG electrodes to reconstruct the speech envelope
results in the highest decoding accuracy, however the number
of EEG electrodes can be reduced to 25 without decreasing
performance (e.g., Mirkovic et al., 2016). In Nogueira et al.
(2019), we showed the power spectral density of each EEG
electrode across frequency and location. In CIs, the highest
power spectral density was observed at locations close to the
CI electrodes resulting in higher values for the decoder weights
corresponding to these locations.

One possibility to improve the accuracy in CI users would
be to use artifact rejection methods such as independent
component analysis relying on covariance of multiple EEG
channels (Makeig et al., 2004). Moreover, new artifact rejection
algorithms, especially algorithms designed to remove the artifact
of the CI, combined with sound coding strategies that reduce
the CI artifact (Somers et al., 2019) may optimize selective
attention decoding accuracy. Another possibility to improve
the decoding accuracy would be based on novel decoding
algorithms. Most auditory attention detection algorithms use
a linear EEG decoder to reconstruct the attended stimulus
envelope. Classifying attention within a short time interval
remains the main challenge. However, since the human auditory
system is inherently non-linear (Faure and Korn, 2001), non-
linear models could be beneficial. Recent developments have
shown that convolutional neural networks (CNN) can be used to
solve this problem (Deckers et al., 2018; Taillez et al., 2018).

The application of high-density EEG systems in the clinical
environment is highly limited, as preparation time is fairly
long. Moreover, the use of high-density EEG-systems for daily
life applications is unrealistic. Here, miniaturized EEG systems,
located around-the-ear or even within-the-ear, would constitute
a clear advantage. In parallel, it is necessary to develop optimized
paradigms to objectively quantify speech performance with
hearing devices to be able to automatically fit and adapt
the respective signal processors. In this context, it would be
interesting to investigate whether the accuracy in decoding
selective attention or the correlation coefficient between the
reconstructed and the attended speech indeed correlate with the
subject’s speech performance in larger cohorts.

The implementation of unobtrusive recording functionality
seems possible by adding EEG recording functionality into
a future CI, by attaching a few electrodes in the outer
ear canal (Bleichner et al., 2015; Mikkelsen et al., 2015) or
by placing electrodes around the ear (Debener et al., 2015;
Mirkovic et al., 2016). Since EEG measures voltage, that is, the
potential difference between two locations, the exact position
of the electrodes, the distance between the electrodes and the
orientation of the two electrodes relative to the source signal
of interest, influences whether a signal of interest can be
captured. Current technology is far from optimal for monitoring
signals reflecting selective attention. However, designing a closed-
loop CI that integrates physiological signals into this loop
seems feasible. It has been demonstrated that by using the
extra-cochlear electrode in a CI as a recording electrode it is
possible to record longer latency neural responses and that
the timings of these responses are in general agreement with
auditory brainstem and auditory cortex responses recorded
with scalp electrodes (McLaughlin et al., 2012). In the near
future, it therefore might be possible to decode selective
attention from CI electrodes without the need of additional
external electrodes.

In general, a classification accuracy of around 70% after 1 min
of training might not yet comply with the requirements of a
CI user to steer sound processing algorithms in a cocktail-party
like scenario. Furthermore, the current measurements did not
resemble real life situations. The data were recorded in a shielded
room with reduced environmental noise. Moreover, subjects
were asked to move as less as possible to minimize muscle
artifacts. The current study has used a very simple paradigm
to simulate the cocktail party effect. The results presented here
are therefore not easily applicable to daily life situations and
more realistic sound environments (e.g., Das et al., 2016) need
to be explored to better understand the selective attention
processes in both NH and CI users. Nevertheless, the use of
novel algorithms to decode selective attention, EEG artifact
rejection methods and the use of implanted electrodes, such
as the ones employed in a CI may held potential for a future
closed-loop system.

CONCLUSION

The current work was able to confirm that it is possible to
decode selective attention in NH listeners with high decoding
accuracies using a high-density scalp EEG, as well as a small
mobile EEG system, in this case consisting of 2 cEEGrid arrays,
each containing 10 electrode contacts. However, the decoding
accuracy was significantly lower with the cEEGrid, compared to
the high-density scalp EEG. Furthermore, the study could show
that it is possible to decode selective attention in CI users despite
of the introduced electrical artifact. Though, the inter-individual
variability in CI users is high and when using the mobile EEG
system, the decoding accuracy dropped significantly, being just
above chance level on the group level. However, results on the
single-subject level showed that in several CI users selective
attention could be successfully decoded with cEEGrids. An
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individual optimization of certain parameters of the algorithm,
as the regularization parameter or the best time lag, further
improved the decoding accuracy.
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