
ORIGINAL RESEARCH
published: 23 July 2019

doi: 10.3389/fnins.2019.00754

Frontiers in Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 754

Edited by:

Gert Cauwenberghs,

University of California, San Diego,

United States

Reviewed by:

Edward Paxon Frady,

University of California, San Diego,

United States

Runchun Mark Wang,

Western Sydney University, Australia

*Correspondence:

Kaitlin L. Fair

kaitlin.fair@gatech.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 07 September 2018

Accepted: 08 July 2019

Published: 23 July 2019

Citation:

Fair KL, Mendat DR, Andreou AG,

Rozell CJ, Romberg J and

Anderson DV (2019) Sparse Coding

Using the Locally Competitive

Algorithm on the TrueNorth

Neurosynaptic System.

Front. Neurosci. 13:754.

doi: 10.3389/fnins.2019.00754

Sparse Coding Using the Locally
Competitive Algorithm on the
TrueNorth Neurosynaptic System
Kaitlin L. Fair 1*, Daniel R. Mendat 2, Andreas G. Andreou 2, Christopher J. Rozell 1,

Justin Romberg 1 and David V. Anderson 1

1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States, 2Department of

Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States

The Locally Competitive Algorithm (LCA) is a biologically plausible computational

architecture for sparse coding, where a signal is represented as a linear combination

of elements from an over-complete dictionary. In this paper we map the LCA algorithm

on the brain-inspired, IBM TrueNorth Neurosynaptic System. We discuss data structures

and representation as well as the architecture of functional processing units that perform

non-linear threshold, vector-matrix multiplication. We also present the design of the

micro-architectural units that facilitate the implementation of dynamical based iterative

algorithms. Experimental results with the LCA algorithm using the limited precision,

fixed-point arithmetic on TrueNorth compare favorably with results using floating-point

computations on a general purpose computer. The scaling of the LCA algorithm within

the constraints of the TrueNorth is also discussed.

Keywords: sparsity, sparse-approximation, sparse-code, brain-inspired, TrueNorth, spiking-neurons

1. INTRODUCTION

Physiological evidence exists of sparse coding being employed by biological systems to achieve
processing efficiency (Olshausen and Field, 2004). In sparse coding, redundancy in the environment
is leveraged to produce efficient representations; therefore, to process a given stimuli, the number
of firing neurons are minimized (Field, 1994; Olshausen and Field, 1996; Olshausen, 2003).
Sparse codes are computed by solving for the sparse approximation of a signal. The sparse
approximation is represented by the weights of each element from an over-complete dictionary,
that can be employed to reconstruct the original signal via a linear combination of the elements.
The dimensionality of the data is not reduced; however, the number of dictionary elements with
non-zero weights are few relative to the dictionary size and hence a sparse representation. The
Locally Competitive Algorithm (LCA) (Rozell et al., 2008) is a biologically plausible algorithm that
solves the sparse approximation problem. Convergence of the algorithm to the correct solution
is theoretically proven and guaranteed (Balavoine et al., 2012, 2013a,b; Shapero et al., 2014).
In more general terms the LCA algorithm is a non-linear dynamical system, that computes a
sparse approximation of a signal iterating in time until the desired solution is stable. Sparse
approximation algorithms such as the LCA have applications in a number of signal enhancement
and reconstruction applications, especially in image processing (Elad et al., 2010; Zibulevsky and
Elad, 2010; Yang et al., 2013).

Using the LCA algorithm as a proof of concept, this work establishes a meaningful
computational framework for implementing recurrent network architectures on the low-precision,
neuromorphic IBM TrueNorth Neurosynaptic System (Merolla et al., 2014). A typical image

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00754
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00754&domain=pdf&date_stamp=2019-07-23
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kaitlin.fair@gatech.edu
https://doi.org/10.3389/fnins.2019.00754
https://www.frontiersin.org/articles/10.3389/fnins.2019.00754/full
http://loop.frontiersin.org/people/567778/overview
http://loop.frontiersin.org/people/613306/overview
http://loop.frontiersin.org/people/143962/overview
http://loop.frontiersin.org/people/625002/overview
http://loop.frontiersin.org/people/638986/overview
http://loop.frontiersin.org/people/691023/overview

Fair et al. LCA on the TrueNorth Chip

patch, about 8 × 8 pixels, and a dictionary of 100 LCA nodes,
uses only 113 of the 4096 cores available on the TrueNorth.
Much larger dictionaries can also be programmed or the mapped
algorithm can be implemented such that multiple image patches
are processed in parallel. Results are presented in section 6.
Previously, a recurrent neural network has been mapped to
physically simple but highly-non-linear, analog circuit models of
neurons and synapses (Pineda and Andreou, 1995). This problem
was approached using a decompression algorithm for fractal
block codes. Parameters in the non-linear system were chosen
in a way that there was only one stable, correct solution, much
like the LCA, but computed with only 16 neurons on a purely
analog CMOS chip. Implementations of specifically the LCA as
a recurrent network using integrate and fire neurons have been
demonstrated on field-programmable analog arrays (FPAAs)
(Shapero et al., 2012, 2013). These designs use small, proof-of-
concept dictionaries, up to 18 LCA nodes. A theoretical scaling
analysis of the LCA on the FPAA architecture could consume
less power than the currently-implemented architecture for the
same dictionary size (see section 7). However, no FPAA design
has been realized to a scale comparable to that implemented
on the TrueNorth system. More recent works (Olshausen and
Rozell, 2017; Sheridan et al., 2017) describe memristor crossbar-
based solutions for implementing the LCA. Even though thus
far the latter work has applied to small image patches (4 ×

4 pixels, 32 LCA nodes) this new avenue of research has
the potential to eventually scale to larger dictionaries such as
those implemented in this work. In the latter paper (Sheridan
et al., 2017) the original recursive LCA algorithm was re-written
in terms of two feedforward computations; a mathematical
transformation that facilitates the hardware implementation on
neuromorphic hardware.

In summary, the main contribution of this paper is a highly-
scalable mapping of the neurally-inspired LCA algorithm to
solve for the sparse code of a signal within the architectural
framework of a crossbar-based, non-von Neumann biologically-
inspired architecture, the IBM TrueNorth neurosynaptic
system. The implementation described in this paper moves
past proof-of-concept implementations and offers a highly
scalable, sparse approximation solver for low-power, signal
processing applications. The differences between a conventional
computer architecture and the TrueNorth necessitate a novel
design methodology to map the algorithmic structures of
the LCA onto the TrueNorth system. The mapping of the
LCA to the TrueNorth architecture in this work serves as a
blueprint for further exploration of general techniques to map
basic iterative linear algebra and dynamical systems based
algorithms within the constraints of emerging computational
architectures. Addressing the challenges of implementing basic
iterative linear algebra in neuromorphic hardware such as the
TrueNorth, which is available for experimentation and supported
by software programming environments (Amir et al., 2013),
lays the foundation for further exploration of computational
architectures inspired by the nervous system for a wide range
of applications in sensory processing and cognitive computing.
These non-von Neumann combined hardware/software
architectures are vital to improving computing capabilities as

conventional CPU architectural improvements are plateauing.
Programming in these new paradigms is not trivial, therefore
developing tools for performing common computations using
these hardware architectures provides building blocks to the
community for further utilizing these new neuromorphic
devices in other applications. This work advances computational
sciences and is a step toward the engineering of truly cognitive
machines (Cauwenberghs, 2013; Boahen, 2016) in the era
“beyond Moore” (Bahar et al., 2007; Cassidy et al., 2013a; Cavin,
2015).

Section 2 presents the discrete time approximation of the
LCA dynamics with variables scaled to account for the limited
precision of the hardware. Section 3 outlines the TrueNorth
neurosynaptic system architecture and section 4 addresses
programming challenges with data representation. In section
5 we discuss three functional processing units that enable an
efficient implementation of an iterative algorithm, i.e., dynamical
data structures and locality of reference. These processing units
include fixed-point integer vector-matrix multiplication, a non-
linear threshold function, and dynamic memory. Results and
discussion follow in section 6, 7, respectively.

2. DISCRETE TIME REPRESENTATION OF
LCA DYNAMICS

The LCA computes the sparse approximation, or sparse code, of
a signal relative to a given over-complete dictionary. Each LCA
neuron or node represents an element from the dictionary 8

combined to reconstruct a signal y(t) via its sparse approximation
a(t): ŷ(t) = 8a(t). The internal state of each node is contained in
the vector u(t). The sparse approximation a(t) is computed by
implementing a soft threshold on each node’s internal state u(t),
described in detail in Equation (2). The mth node’s state changes
according to the dynamics

u̇m(t) =
1

τ

bm(t)− um(t)−
∑

m 6=k

Gm,kak(t)

 . (1)

The value τ is a positive, system-determined time constant
that controls how quickly the system converges to the sparse
approximation. The lateral inhibition is performed by Gm,k on
each node, calculated by taking the inner product of each node
with all other nodes Gm,k = 〈8m,8k〉 where m 6= k, such
that a node does not inhibit itself in the computation. A concise
representation of this inhibition is to calculate 8T8 and set
diagonal values to zero, resulting in the inhibition matrix G.
Larger values within this matrix signify more closely related
nodes. Active nodes suppress nodes based on the values found
in G to reduce redundancy in the sparse approximation of a
signal. The initial projection of an LCA node bm(t) is calculated
by bm(t) = 〈8m, y(t)〉. Due to the competitive nature of the node
dynamics, y(t) can change with time and the LCA can converge
to a new sparse approximation a(t), resulting also in a dynamic
initial projection b(t).

To determine whether a node is active, meaning it contributes
to the sparse approximation of the signal (Rozell et al., 2008), a

Frontiers in Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

soft threshold function is used. If the state of a node calculated
by Equation (1) reaches or exceeds a threshold λ, the node
becomes active and contributes to the sparse approximation
while suppressing other similar node activity. The threshold
λ serves as the tradeoff between sparsity and reconstruction
accuracy. The soft threshold of the nth node is computed using

ak(t) = Tλ(uk(t)) =

{

uk(t)
gk

− sign(uk(t))
λ
gk

if |uk(t)| ≥ λ

0 if |uk(t)| < λ.
(2)

The term gk consists of the n diagonal values of 8T8 and is
used for nodes with non-uniform norms. For a dictionary with
unit norm nodes, gk = 1 and the term can be disregarded in
Equation (2).

To implement the LCA in a discrete time-step, limited
precision hardware architecture such as the TrueNorth, we
discretize the LCA algorithm by simple time-domain sampling

u[n+ 1] = u[n]+ 1u[n], (3)

1u[n] =
1

τ
(b[n]− u[n]− Ga[n]) , and (4)

ak[n] = Tλ(uk[n]) =

{

uk[n]
gk

− sign(uk[n])
λ
gk

if |uk[n]| ≥ λ

0 if |uk[n]| < λ.

(5)
All variables in Equations (3) to (5) represent the discrete-time
values of the continuous-time variables in Equations (1) to (2).
The value τ determines the convergence rate of the signal’s sparse
approximation. For the continuous dynamics system, τ ≈ 100
gives good convergence. To avoid the need for normalization
by division on TrueNorth, we scale our system by τ 2 and re-
write equations as shown in Equations (6) to (8) such that all
values are greater than or equal to one and can be accurately
represented within a limited precision architecture. This scaling
does not impact the rate of convergence, it only increases values
in the system by a factor of τ 2:

τ 2u[n+ 1] = τ 2u[n]+ τ 21u[n], (6)

τ 21u[n] = τb[n]− τu[n]− Gτa[n], and (7)

τak[n] = Tτλ(τuk[n]) =

{

τuk[n]
gk

− sign(uk[n])
τλ
gk

if |τuk[n]| ≥ τλ

0 if |τuk[n]| < τλ.

(8)

To implement these dynamics on the TrueNorth, the input to
the system is the original signal y[n] and the output is the
scaled sparse approximation τa[n] in Equation (8). The discrete
sparse approximation a[n] of the original signal is determined by
taking the output of the system and dividing by τ , on chip using
neuron thresholds or off chip manually. The original signal can
be reconstructed using ŷ[n] = 8a[n] on or off the TrueNorth.

3. TRUENORTH ARCHITECTURE
OVERVIEW

The concept of neuromorphic systems (Mead, 1990) was
introduced over two decades ago, defining such a system as
one that is based on the organizing principles of the nervous
system. The TrueNorth is a chip multi processor (Merolla et al.,
2014) with a tightly coupled processor/memory architecture, that
results in energy efficient neurocomputing and is a significant
milestone to over 30 years of neuromorphic engineering (Cassidy
et al., 2013a). The spiking neurons of the TrueNorth are
representative of how the human brain efficiently represents
and processes information (Cassidy et al., 2014). The TrueNorth
architecture comprises 4096 cores each core with 65K of local
memory (6T SRAM) or synapses and 256 arithmetic logic units,
neurons, that operate on a unary number representation and
compute by counting up to a maximum of 19 bits. The cores
are event-driven using custom asynchronous and synchronous
logic, and are globally connected through an asynchronous
packet switched mesh network on chip (NOC). The chip
development board includes a Zynq Xilinx FPGA that does the
housekeeping and provides support for standard communication
support through an Ethernet UDP interface. The asynchronous
Addressed Event Representation (AER) in the NOC is also
exposed to the user for connection to AER based peripherals
through a packet with bundled data full duplex interface. The
unary data values represented on the system buses can take
on a wide variety of spatial and temporal encoding schemes.
Pulse density coding (the number of events Ne represents
a number N), thermometer coding, time-slot encoding, and
stochastic encoding are examples. Additional low level interfaces
are available for communicating directly with the TrueNorth
to aid programming and parameter setting. A hierarchical,
compositional programming language, Corelet, is available to
aid the development of TrueNorth applications (Amir et al.,
2013). IBM provides support and a development system as well
as “Compass” a scalable simulator (Preissl et al., 2012). The
software environment runs under standard Linux installations
(Red Hat, CentOS, and Ubuntu) and has standard interfaces to
Matlab and to Caffe (later switched to Eedn—energy—efficient
deep neuromorphic networks) that is employed to train deep
neural network models. The TrueNorth architecture can be
interfaced using native AER to a number of bio-inspired sensory
devices developed over many years of neuromorphic engineering
(silicon retinas and silicon cochleas). In addition, the architecture
is well suited for implementing deep neural networks with
many applications in computer vision, speech recognition, and
language processing.

Each TrueNorth core consists of 256 axons, 256 neurons, and
256 × 256 synaptic connections between the two (Cassidy et al.,
2014; Merolla et al., 2014). An axon type is assigned to each
axon, 23 programmable parameters and one axon destination
are defined for each neuron, and synaptic connections between
axons and neurons are chosen. Each axon i is assigned one type
Gi ∈ {0, 1, 2, 3}. Each neuron j can assign one integer between

–255 and +255 to the four axon types, labeled s
Gi
j , and can be

thought of as synaptic weights if the synaptic connection between

Frontiers in Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

the axon and neuron is active. These four assignments can vary
for different neurons. Synaptic connections wi,j are binary.

Once the chip has been programmed, information is
processed through the system using a unary data representation
consisting of spikes that are routed between cores. Each neuron
output can target only one axon input within any core in the
system. If a neuron’s membrane potential Vj reaches its threshold
αj, it sends a spike to the appropriate axon Ai. For timestep
n, if an axon has received a spike, Ai[n] = 1; otherwise,
Ai[n] = 0. The cores update neuron states every 1 ms for real-
time operation. This clock can be sped up, but doing so can
cause spike delivery to be delayed such that simulation results of
the system are no longer equivalent to real hardware operation
(Cassidy et al., 2013b;Merolla et al., 2014). A simplified version of
TrueNorth neuron dynamics for neuron j at timestep n is shown
in Equation (9):

Vj[n] = Vj[n− 1]+

255
∑

i=0

Ai[n]× wi,j × s
Gi
j . (9)

We exploit these programmable properties of TrueNorth
neurons to map the LCA node dynamics to the hardware
architecture, resulting in the LCA corelet in Figure 1. The
computational units required to build this corelet are described
in detail in section 4.

4. CHALLENGES IN MAPPING LCA ON
TRUENORTH

4.1. Encoding Increased Precision Values
In recurrent algorithms, values are constantly evolving. To map
dynamic values onto the TrueNorth where neuron parameters
are static, we must encode data to achieve increased precision.
In the context of LCA, values u,1u, and a are constantly
evolving until the LCA system converges. This prevents the use
of programmable synaptic weights offered by the TrueNorth
directly. For instance, suppose we are performing the summation
in Equation (7). Ideally, for the LCA node m we would connect
three TrueNorth axons to the same TrueNorth neuron, one axon
to represent τum[n], one to represent τbm[n], and the last to

represent the mth value of τGa[n]. We would set the synaptic
weights of the axons to be −τum[n], τbm[n], and the mth value
of−τGa[n], respectively. The output spikes of the neuron would
therefore represent the solution τ 21um[n]. However, all terms
in the summation evolve as the input changes and the system
converges, whereas the synaptic weights cannot be changed once
the chip has been programmed.

We therefore encode values using a time window for each
LCA iteration. The value of an LCA variable at each iteration
is determined by counting the number of spikes within the
given time window. Spikes can occur anywhere within the
window to contribute to the resultant value. We use a window
of w ticks for each LCA iteration, where w is greater than
or equal to the largest value you would expect to see in a
system. We show our encoding techniques in Figure 2 with
w = 10, axons denoted by half-circles, neurons denoted by
triangles, synaptic connections between the two denoted by solid
black circles with weights overlaid for clarity, incoming and
outgoing spikes represented as solid gray circles, and the time
window represented by unfilled white blocks to make up a row
of 10 blocks, each block being one TrueNorth tick. For this
example, τum[1] = 5, and the mth value of τGa[1] = 3.
We assume a constant input and therefore τbm = 10 for
all time n. Synaptic weights for τum[n] and the mth value of
τGa[n] are assigned as negative one and for τbm as positive
one to accurately compute the update τ 21um[n] = 2 for
this example.

4.2. Representing Signed Values
TrueNorth neurons cannot emit negative spikes, and while
biologically plausible in the context of biological systems’
neurons, this requires TrueNorth neurons to be repeated so
that for each value, one neuron output represents the standard
positive spikes while an additional neuron is assigned to represent
negative numbers. For instance, if the true value of an element is
positive, we expect output spikes from the neuron that represents
the positive values of that element. If the true value of the element
is negative, we instead expect output spikes from the neuron
that represents negative values. To successfully implement this
technique, the positive representation neuron is repeated with

FIGURE 1 | The corelet used to implement the LCA on the TrueNorth using our novel design methodology.

Frontiers in Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

FIGURE 2 | The summation computation is accurate for every iteration so

long as values do not exceed the window size, w = 10.

the signs of the synaptic weights reversed, resulting in a negative
representation of the value shown in Figure 3.

For now, to motivate our methods used to represent positive
and negative values, we incorrectly assume TrueNorth neuron
potentials Vj are reset by

Vj[n+ 1] =

spike, Vj[n]− α if Vj[n] ≥ α

Vj[n]+ β if Vj[n] ≤ −β

Vj[n] if − β < Vj[n] < α,
(10)

where α is the positive threshold and β is the negative threshold
for the neuron. It is important to note that upon reaching the
negative threshold, a neuron potential resets without the neuron
emitting spikes. Using Figure 3 as an example, we choose α,β =

1 and send two input spikes into the first axon and three input
spikes into the second. The input spikes represent an input of [2
3], calculated by counting the number of spikes in a given time
window. For this example, we use a window of seven TrueNorth
ticks. We calculate output values in the same manner.

With neuron dynamics from Equation (10), the first neuron
representing the positive value will emit two spikes at ticks two
and three (due to the one tick delay on TrueNorth), the second
neuron representing the negative value will emit three spikes at
ticks five, six, and seven, and both neurons will have neuron
potentials of zero at the end of the time window. In Figure 3,
the vector [2 3] is encoded by input spikes and multiplied by
[1 –1]T , shown by the synaptic weights of the first neuron. The
total output of the negative representation neuron in w ticks is
subtracted from the total output of the positive representation
neuron in the same w ticks to find the final true value, for this
example being 2− 3 = 1.

This programming technique is promising; however, the
actual TrueNorth neuron resets have asymmetric thresholds and
pose a complication. Rather than membrane potentials resetting
upon the potential being less than or equal to the negative
threshold, they only reset once they drop below the negative
threshold, while the positive thresholds reset once they meet the

FIGURE 3 | The left neuron is the positive representation of a variable and the

right, the negative of the same variable.

threshold, as we show in Equation (10). The thresholds in the
TrueNorth chip actually have the following neuronal behavior:

Vj[n+ 1] =

spike, Vj[n]− α if Vj[n] ≥ α

Vj[n]+ β if Vj[n] < −β

Vj[n] if − β ≤ Vj[n] < α.
(11)

As a result, the first neuron emits two spikes at ticks two and
three as before, but the second neuron will emit only two
spikes at ticks six and seven. This produces an incorrect final
value of 2 − 2 = 0. The final neuron potentials are –1 and
zero for the first and second neurons at the end of the time
window respectively, meaning that if these same neurons are
used for computations in the next time window, the subsequent
calculations will be incorrect due to the asymmetric thresholds
not producing identical neuron states with opposite signs for
positive and negative representations.

For values to take on different polarities over time on the
TrueNorth chip, the positive and negative thresholds must be
symmetric, essentially resetting by our assumptions in Equation
(10). Therefore, we present a method to offset the negative
thresholds to achieve this property. We start by removing the
negative threshold parameter, i.e., β = 0. We then repeat
the positive and negative representations of the neurons, since
TrueNorth neurons are restricted to only one destination axon,
and send those outputs back to the same core. The output from
the repeated positive representation of a neuron is sent back to
its respective negative representation neuron and vice versa to
increment the neuron threshold by positive one, thus enabling
a neuron potential reset upon meeting the negative threshold
rather than having to drop below β . This requires two times the
original number of neurons in the system and additional axons
to accommodate the feedback.

Using this technique, we represent positive and negative
outputs via neurons. However, we additionally need inputs
that reflect strictly positive or strictly negative values for a
recurrent system representing values in this way. We therefore
also duplicate our axons to represent both positive and negative
values of a variable. This process is similar to having positive
and negative representations for neurons: we repeat axons with
opposite signs for synaptic weights.

Frontiers in Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

FIGURE 4 | A core with repeated axons and neurons to accommodate

positive and negative inputs and outputs.

We show an example of repeated neurons and axons in
Figure 4, where the input is [2 –3] multiplied by [1 –1]. Positive
inputs are represented by the first two axons and negative inputs
by the second two. The first two neurons are fed back to the
remaining axons, designated for feedback to create symmetric
thresholds. The outputs of these neurons are displayed in the
appropriate axon destination tick locations. The last two neurons
are used as positive and negative representations of outputs,
respectively. This technique results in the correct computation
for both positive and negative inputs and outputs.

Each value in our LCA corelet is programmed with the
appropriate positive and negative representation of axons and
neurons. Each element is also programmed with the appropriate
feedback of the neuron outputs to ensure that the positive and
negative representations’ neuron states are the same every clock
cycle. We explain the remainder of this work assuming all
incoming and outgoing values are positive to adequately convey
programming techniques. However, the reader should note that
resources are used on the TrueNorth chip to accommodate sign
and feedback requirements.

5. LCA PROCESSING UNITS

Three functional processing units are developed to map the
LCA to TrueNorth. The first processing unit performs fixed
point integer vector-matrix multiplication (VMM) in what is
essentially a collection of binary crossbar arrays. The non-
linear soft-threshold processing unit is used to constrain
coefficients and compute the sparse approximation of the signal
in the LCA. The on-chip memory processing unit enables
the implementation of dynamical based iterative algorithms on
the TrueNorth.

FIGURE 5 | Restricted precision for vector-matrix multiplication if implemented

using synaptic weights directly on the TrueNorth chip.

5.1. Vector-Matrix Multiplication With
Increased Precision
We are faced with programming complexities when mapping
iterative linear algebra functionality to TrueNorth. Vital to
our LCA corelet for both the initial projection and inhibition
functions, adapting the VMM computations to TrueNorth
requires novel programming techniques for matrices with
columns containing more than four different values. This
constraint is due to there being only four synaptic weights per
neuron and four axon types to choose from in a TrueNorth core.
For example, if we directly use synaptic weights to program a
VMM on TrueNorth, we would transpose the matrix by which
to multiply and assign synaptic weights the values of the matrix.
However, any axons assigned the same type will take on the same
synaptic weights if connected to the same neuron. We visualize
the VMM

M × v =

8 −1 2 4 4
6 2 −4 7 7
−3 5 8 −9 −9
2 −8 2 −5 −5

1
1
3
1
2

in Figure 5. The last two axons are assigned the same type,
therefore the last two columns in the multiplication matrix are
identical, limiting the precision of a VMM.

Frontiers in Neuroscience | www.frontiersin.org 6 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

Consequently, we use three layers of cores in series to achieve
9-bits signed precision multiplication matrices. The first layer
converts the integer values of the matrix to unsigned binary
values. The second layer applies the first set of weights {8 4 2 1},
to the first and second halves of the binary values. The third layer
applies the significance of the four most significant and the four
least significant bits.

To program the TrueNorth chip with the binary
representation in the first layer, one axon and eight neurons
are used. Each neuron represents one bit, where a binary zero
signifies no synaptic connection or a binary one denotes a
connection between the axon and that neuron with a synaptic
weight of one depicted using the value 146 (binary 10010010) as
an example shown as Layer 1 in Figure 6. For perfect precision,
in all VMM layers thresholds are α = 1 with linear resets to
neuron potentials. If we send an input into the first axon in
Figure 6 using these parameters, we will see one output spike
each from the first, fourth, and seventh neurons.

The output of the first layer is sent to the axons of the second
layer in order. Each set of four axons are connected to one neuron
with synaptic weights {8 4 2 1}, shown as Layer 2 in Figure 6. If we
continue our example from above, the first, fourth, and seventh
axons of the second layer will receive one input spike, the first
neuron in the second layer will update to a potential of 9 using
8× 1+ 1× 1, and the second to a potential of 2 using 2× 1.

The output of the second layer is then sent to the axons of
the third layer, with each set of two neurons connecting to the
same neuron with weights {16 1}, shown as Layer 3 in Figure 6.
Following the same example, over time the first axon in the third
layer will receive nine input spikes from the first neuron of the
second layer with a synaptic weight of 16. The second axon of
the third layer will receive two input spikes from the second
neuron of the second layer with a synaptic weight of one. Both of
these axons are connected to the only neuron in the third layer,
resulting in a total of 16 × 9 + 1 × 2 = 146 spikes, therefore
calculating the original single input spikemultiplied by the binary
value 146.

In the first layer, eight neurons are needed per column
for positive representation neurons, eight per negative
representation neurons, and each of those must also be
repeated to create symmetric thresholds. For a 9 × 9 matrix,
288 neurons are needed and cannot be accommodated using the
available 256 neurons in a single core. As matrices grow larger,
the number of required axons also exceeds the 256 available
axons within one core. We therefore split our matrix into
sub-matrices for each layer and implement each sub-matrix in
separate cores in parallel.

The first and second layers are implemented as described
above for each sub-matrix independently. The third layer is
used to not only apply the significance of the binary values
in the matrix, but also to reunite each column of the vector-
matrix multiply. The third layer produces positive and negative
representations of resultant values for each column of the VMM
in parallel. The output spikes from each layer three core are
concatenated for the full vector solution.

This method for implementing 9-bits signed VMM is used
in our LCA architecture to represent the matrix 8 in the scaled

initial projection b[n] = 8y[n] computation and to represent the
matrix G in the scaled inhibition Gτa[n] calculation.

5.2. Non-linear Threshold
The non-linear soft threshold in Equation (8) is essential to
compute the sparse approximation of the signal in the LCA.
For the purposes of explaining our implementation of the
LCA soft threshold on the TrueNorth, we assume unit norm
dictionary elements for this section, setting gk = 1 for all
dictionary elements.

The soft threshold parameter λ serves as the trade-off between
reconstruction error and sparsity of the sparse approximation
of a signal. The scaled soft threshold sets any LCA nodes in
|τu| < τλ to zero while otherwise adding or subtracting τλ from
−τu or τu, respectively. We add the scaled threshold τλ as a
user input to our TrueNorth mapping such that user-determined
parameters are not required prior to programming the hardware.

For instances where |τu| exceeds the soft threshold τλ, we
can use τu and τλ as inputs to the soft threshold core with
synaptic weights of one and negative one respectively. This
results in correct computation of the soft threshold with the
TrueNorth linear neuron potential resets in Equation (10) by
the computation τa = τu − τλ. For example, if τum = 5 and
τλ = 4, the resultant sparse approximation for that node am = 1
is correct. However, due to the non-linearity of the LCA soft
threshold, we cannot simply implement subtraction for cases in
which the node state does not exceed the soft threshold. Suppose
the values are instead τum = 4 and τλ = 5. The correct sparse
approximation for that node would therefore am = 0, but would
instead be computed on TrueNorth as am = −1 if we use the
same method as that of the prior case.

As a result, we set positive and negative thresholds to be one
and zero respectively, choose a hard reset of zero for neuron
potentials in Equation (12), and perfectly align the spikes of
τu and τλ. The method by which we perfectly align spikes
is as a result of the core outputs we explain in detail in the
next section. For the purposes of explaining the soft threshold,
however, assume that incoming spikes are either entirely positive
or entirely negative as well as sequential (i.e., if the value
represented is 10, all 10 spikes occur in 10 sequential TrueNorth
ticks). The soft threshold core neurons will never receive an
increase in neuron potential greater than one for a single tick,
therefore the hard reset upon reaching α = 1 will accurately
compute positive results. Any neuron potentials that fall below
zero are reset to zero:

Vm[n+ 1] =

spike, 0 if Vm[n] ≥ 1
0 if Vm[n] < 0
Vm[n] if 0 ≥ Vm[n] < 1.

(12)

For unit norm dictionary elements, the above computes the non-
linearity correctly. However, for non-unit norm elements, we
must consider the values gk for each element in the LCA soft
threshold. To take this into account, one option is to set the
prior core’s threshold to α = τdiag(G) on the neurons that
compute τ 2u, resulting in τu/diag(G) being one of the inputs
to the soft threshold core, while the other input is the user

Frontiers in Neuroscience | www.frontiersin.org 7 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

FIGURE 6 | All layers of our vector-matrix multiply overlaid onto one crossbar array, representing one multiplication matrix element with a binary value of 146. Only the

positive representations of inputs and outputs are shown.

generated τλ/diag(G). However, due to the thresholds being
greater than one, we now risk the misalignment of spikes due
to residual potential between LCA iterations. For instance, if
we use thresholds of τdiag(G) in the core that computes τ 2u,
unless we have an output value that is an exact multiple of
τdiag(G), we will have neuron potentials remaining between
iterations. When this occurs, future iterations’ spikes do not
align with the user generated input spikes −τλ/diag(G) as they
now spike at unpredictable times. Therefore, we scale the soft
threshold function by τdiag(G) and set the thresholds to α = 1
so that the neurons emit spikes sequentially and compute τ 2u,
resulting in the soft threshold function Tτ 2λ(τ

2u) implemented
in our corelet:

τ 2gkak[n] =

{

τ 2uk[n]− sign(uk[n])τ
2λ if |τ 2gkuk[n]| ≥ τ 2λ

0 if |τ 2gkuk[n]| < τ 2λ.
(13)

Inputs to the core are now τ 2u and a series of τ 2λ user-generated
spikes with synaptic weights of positive one and negative one
respectively. The first spikes for each input align in the first
tick of a time window of w ticks. We choose positive thresholds
α = τdiag(G) and negative thresholds β = 0 with the hard reset
above. Any LCA node states that fall within |τ 2diag(G)u| < τ 2λ

set the appropriate values to zero, while active nodes emit τa

output spikes.

5.3. On-chip Dynamic Memory
We address recurrence on the TrueNorth in the context
of updating node states of the LCA nodes, calculated by
Equation (6). As previously discussed, we wait a time window
of length w to get exact output values of neurons, computed by
counting the number of spikes within each window. This poses
complexities with recurrence within the system, illustrated in
the example in Figure 7. Inputs τ 2u[n] = 2 and τ 21u[n] =

1 are denoted by solid gray circles, resulting in outputs

Frontiers in Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

FIGURE 7 | Recurrence resulting in incorrect computations of the node state

update.

τ 2u[n + 1] = 3 denoted by diagonally striped circles.
The output spikes τ 2u[n + 1] are shown as feedback in the
appropriate tick locations for the first axon to compute the next
iteration’s values. The output spikes begin to saturate our time
window and cause incorrect calculations within the system for
proceeding iterations.

The TrueNorth chip does not have static memory. Instead,
each neuron has constantly evolving potentials. Therefore, we
must leverage the many neuron parameters to emulate on-chip
memory to store and retrieve high-precision values. We create a
corelet using a group of cores that computes and stores values
τ 2u[n + 1] on one path while sending the prior iteration’s
calculated values τ 2u[n] from another in parallel, shown in
Figure 8. For one LCA iteration of w ticks, one path’s neurons
are actively spiking while the other path’s neurons are inhibited.
Suppose Path B is our inhibited path. We send the first core of
Path B inhibitory spikes generated by on-chip triggers as input.
Inhibitory spikes have a synaptic weight of negative one so that
any incoming spikes from τ 21u[n] or τ 2u[n] are ignored since
the threshold of one is not met. Path A does not receive inhibitory
input spikes to its first core for this iteration. The incoming spikes
are therefore processed and sent to the second core on the same
path. The second core of Path A computes τ 2u[n + 1] using
incoming spikes for w ticks. The second core of Path B sends
the prior iteration’s calculation τ 2u[n] forward to the route core,
triggered by an incoming excitatory spike.

To ensure that each path is operating correctly at the
appropriate times, we create a clock using TrueNorth neurons
to generate triggers to send inhibitory and excitatory spikes to
each path. To inhibit one path for w ticks, w inhibitory spikes are
required starting at even multiples of w and w inhibitory spikes
are required to occur starting at odd multiples of w for the other
path. The largest synaptic weight we can choose is positive 255
and our window sizes are most times larger. We choose a leak of
one and a positive threshold of α = 255 for a first neuron and
send the output spikes to a second neuron with a synaptic weight
of one and a positive threshold α = 2w/255. The output of the
second neuron is therefore one spike everyw ticks. To emit spikes
on odd or even iterations only, we create two clocks with initial
potentials of w/255 and zero, respectively.

FIGURE 8 | Two subsequent LCA iterations to accommodate recurrence in the

system. Triggers enable one path to calculate τ2u[n+ 1] over w ticks while the

other path sends the prior iteration’s values τ2u[n] for use in the calculation.

We use these clocks to generate the on-chip inhibition triggers
by sending the output to neurons that constantly emit spikes if
turned on and otherwise do not spike, shown in Figure 9. We use
initial potentials of negative one and positive thresholds of α = 0
for the inhibition trigger neurons. The inhibition trigger neurons
are therefore turned on with an input spike given a synaptic
weight of one and off with an input spike with a synaptic weight
of negative one from the clock neurons. The initialize neuron is
used to begin the alternating inhibition triggers at the appropriate
time step for inhibition to occur properly.

The process of computing and sending information from the
second core of each path requires a more complex set of on-
chip triggers. To compute τ 2u[n + 1] in Path A’s second core,
we want the membrane potential to start at −w. All incoming
spikes add and subtract within the neurons for w ticks without
reaching threshold until the next iteration. After w ticks, the
membrane potential of neuronm is−w+ τ 2um[n+ 1]. To send
spikes from Path B’s second core in parallel, we send a trigger
of user-generated spikes that increases the membrane potential
by w. In the previous iteration, we compute τ 2um[n] in Path B
and store the value in the neuron potentials of the second core.
With a linear reset and a threshold of one, Path B now sends
−w + τ 2um[n] + w = τ 2um[n] spikes to the route core. The
route core sends these spikes back to Path A’s first core to compute
τ 2um[n+ 1] in parallel.

Once Path B’s second core has sent all τ 2um[n + 1] spikes to
the route core, the membrane potential settles to zero until the
next iteration. However, we again have both positive and negative
representations of the output of the sub-function, therefore

Frontiers in Neuroscience | www.frontiersin.org 9 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

FIGURE 9 | Programmed core that produces inhibition triggers for the first

blocks in both paths of the on-chip dynamic memory processing unit.

our neuron potentials have residual negative potentials for the
representation that does not spike given the threshold of one.
Suppose the positive representation of a neuron appropriately
calculates τ 2um[n + 1] for the output value. The negative
representation of the neuron is left with residual potential of
−τ 2um[n + 1]. When we move back to compute mode for the
next iteration, we have a starting potential of−w− τ 2um[n+ 1].
Switching back to send mode, we see −w − τ 2um[n + 1] +
τ 2um[n + 2] + w = −τ 2um[n + 1] + τ 2um[n + 2] rather
than the desired τ 2um[n + 2]. If a change of sign occurs in a
node’s dynamics, this problem causes the system to converge to
an incorrect solution.

To correct the problem, we feedback any output spikes of the
positive representation neurons to the negative representation
neurons and vice versa with a synaptic weight of one as similar to
what we described in section 4.2. During the iteration where the
core is sending information, the negative representation neuron
potentials from our example will move toward zero by a neuron
potential change of positive one for each time step, mirroring
the positive representation neuron potentials. This starts the next
count iteration correctly at Vm = 0 for both the positive and
negative representations.

Because our largest positive and negative synaptic weights are
integers +255 and −255 respectively, we set our window size
as a multiple of 255 ticks for the entire system. We then send
the required number of input spikes to send neuron membrane
potentials to−w and+w for the compute and send modes by the
triggers generated in Figure 10. Clock neurons are programmed
as before in Figure 9. The different modes represent triggers
that activate one path while inhibiting the other and vice versa.
The initialize neuron is again used to begin the triggers at the
appropriate time step for spikes to align properly.

FIGURE 10 | Programmed core that sends send and compute triggers to the

second blocks in both paths of the on-chip dynamic memory processing unit.

The on-chip memory processing unit reported is essential
to implementing iterative algorithms on the TrueNorth and
neuromorphic hardware architectures comparable to the
TrueNorth. This processing unit lays the framework for future
exploration of computational architectures inspired by the
nervous system.

6. RESULTS

Using our methods, experimental results of the LCA algorithm
mapped to the TrueNorth, which offers limited precision,
fixed-point arithmetic, compare favorably with results using
floating-point computations on a general purpose computer.
We demonstrate the success of the LCA corelet on TrueNorth
for dictionaries containing randomly distributed values {–1,0,1}
with up to 100 nodes, valuable for use in signal processing
applications such as compressed sensing that use image patches
as input data. We compare the LCA node dynamics u computed
by the TrueNorth to the dynamics of a discrete LCA system.
We consider our results a success if the LCA node dynamics
match, proving that our LCA system on the TrueNorth converges
to the same and therefore correct sparse approximation of the
original signal.

We choose a constant signal y as input to the LCA corelet.
The initial projection b is therefore also the same, and must be
repeated at the beginning of every time window for accurate
computation of each LCA iteration. We use the principles
from creating on-chip memory in section 5.3 to repeat the
initial projection values periodically on the hardware. The user
therefore only sends the signal as input for one iteration, our
9-bit signed vector-matrix multiply corelet computes the initial
projection once, and we implement a periodic repeater to send
the values at the beginning of every time window, shown in
Figure 11. For dynamic inputs, we remove the repeater from
our corelet.

Frontiers in Neuroscience | www.frontiersin.org 10 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

FIGURE 11 | The initial projection repeated on-chip using principles from our

on-chip memory corelet.

The soft threshold τ 2λ is an additional input to the corelet
such that the trade-off between reconstruction error and sparsity
of the sparse approximation of a signal can be determined at
run-time by the user. For this case, the soft threshold remains
constant, therefore periodic repetition is used in the same way as
for the initial projection. These units are combined to create the
final LCA corelet shown in Figure 1.

To compare and evaluate the node dynamics of each LCA
system, we repeat neurons within the sub-function that computes
the LCA node dynamics, set thresholds to one, and send output
spikes as outputs of the system.We count the number of spikes in
each window of w ticks to determine the evolving values at each
iteration. The resultant node dynamics represented by output
spikes from the TrueNorth for an example of a 50-node system
is shown in Figure 12. Pins 1 to 50 and pins 51 to 100 are outputs
that represent the positive and negative representations of τ 2u

respectively. We observe that pins 16 and 86 are the only pins
that emit spikes as the system evolves over time, while other pins
spike early on but decrease to zero due to inhibition performed
by LCA nodes.

The values τ 2u, calculated by counting spikes within each
window are divided by τ 2diag(G) and overlaid onto discrete
LCA node dynamics computed on a general purpose computer
with the same parameters. Node dynamics falling between the
dashed lines denote those that fall below the LCA threshold
and therefore do not contribute to signal reconstruction. Our
system produces identical curves to that of the discrete LCA
for hundreds of examples with randomly chosen dictionaries,
random input signals generated by a linear combination of one
to five dictionary nodes with random weights, and randomly
chosen parameters τ and λ, proving that we correctly compute
the sparse approximation of a signal for LCA systems. We show

the matching node dynamics for a single example in Figure 13,
which are the resultant values from the spikes from Figure 12.

6.1. Chip Utilization
Each sub-function of the LCA has a limit on the number of
LCA nodes it can support if using one core per sub-function.
Each core is limited to the aforementioned 256 axons and 256
neurons. By careful indexing, we can expand each sub-function
across multiple cores that operate in parallel. For this work we use
the original Neurosynaptic System, 1 million neuron evaluation
platform (NS1e), limited to 4096 cores. However, multiple NS1e
boards can be connected to run networks in parallel or connected
in a grid-fashion to execute much larger networks than can be
implemented on a single board if more neurons are needed for a
particular application. To date, 16 boards have been connected
using both methods. The NS1e-16 system connects 16 boards
to run many network instances in parallel. The Neurosynaptic
System 16 million neuron evaluation (NS16e) consists of three
boards with TrueNorth chips in a 4 × 4 grid, offering a platform
for networks 16 times larger than one NS1e board (Sawada et al.,
2016). Therefore, scaling the Locally Competitive Algorithm as
implemented in this work can be done to accommodate much
larger dictionaries or larger input signals.

Throughout our corelet, each individual neuron emits spikes
and each axon receives spikes representative of the positive or
negative representation of an LCA variable for a specific LCA
node. However, connections between axons and neurons might
not be constrained to the same LCA node. For example, in a
vector matrix multiply, we see that a single input is connected
to neurons that are representative of several distinct node’s
LCA variables.

We call axons that connect to neurons that represent the same
LCA node as itself unique axons and denote the number of such
axons per LCA node as Axu. We call those axons that connect to
more than one LCA node common axons and denote the number
of such axons as Axc. We denote the number of TrueNorth
neurons required per LCA node within a sub-function as N. The
maximum number of LCA nodes we can represent in a single
core for a specific sub-function is calculated by

Maximum LCA nodes = min

(

256− Axc

Axu
,
256

N

)

. (14)

We show the number of nodes that can be represented using one
core for each sub-function’s based on these parameters inTable 1.

We efficiently program the sub-function’s cores by
programming the maximum LCA nodes to each sub-
function’s core. This minimizes the resources required to
run the LCA on the TrueNorth chip, leaving additional
cores available to perform other processing tasks in
parallel. For a dictionary with 66 inputs and 100 LCA
nodes (computing the sparse approximation for a signal
approximately the size of an image patch), our implementation
requires 113 cores, falling far below the available 4096
cores available.

Frontiers in Neuroscience | www.frontiersin.org 11 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

FIGURE 12 | The output spikes from the LCA corelet on the TrueNorth chip, representing positive and negative representations of τ2u.

FIGURE 13 | The node dynamics of an LCA system with a 33× 50 dictionary compared to a discrete LCA system. Input signals are y = 14× 816 − 13× 836 and

parameters are τ = 13 and λ = 7.

6.2. Power Consumption
We measure power for several dictionary sizes and show results
in Table 2. The total power is calculated by scaling the leakage
power by the number of cores actually used, where P is power and
Ptotal = Pactive + Pleak ∗ Ncores/4096 (Cassidy et al., 2014). This
low-power consumption offers our implementation of the LCA
on TrueNorth as a feasible choice for embedded systems signal
processing applications.

7. DISCUSSION

In this work, we present a scalable implementation of the

neurally-inspired LCA sparse coding algorithm on a non-von

Neumann biologically-inspired architecture, the TrueNorth. The
LCA network is recurrent and neurons compete to contribute

to the sparse approximation by means of lateral inhibition.
While the TrueNorth was developed to successfully deploy neural

Frontiers in Neuroscience | www.frontiersin.org 12 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

TABLE 1 | Limitations on the number of LCA nodes a sub-function can

accommodate per core.

Sub-function N Axu Axc Maximum

LCA nodes

VMM - Initial Projection, Layer 1 32 16 Length(a)×2 8

VMM - Initial Projection, Layer 2 16 8 0 16

VMM - Initial Projection, Layer 3 4 4 0 64

Update τ21u 6 8 0 32

Update τ2u, τu, Paths’ 1st Cores 4 4 1 63

Update τ2u, τu, Paths’ 2nd Cores 4 6 2 42

Update τ2u, τu, Route Core 10 2 0 25

Soft Threshold 4 2 1 64

VMM - Inhibition, Layer 1 32 16 Length(a)×2 8

VMM - Inhibition, Layer 2 16 8 0 16

VMM - Inhibition, Layer 3 4 4 0 64

TABLE 2 | Power consumption of the LCA implemented on the TrueNorth chip.

Average total power (mW)

Dictionary size Operating at 0.8 V Operating at 1 V

12× 18 0.343 0.726

33× 50 0.623 1.326

66× 100 1.657 3.537

networks, the LCA architecture differs from that of deep and
convolutional neural networks for which the TrueNorth end-
to-end ecosystem typically targets, requiring a novel design
methodology to map the LCA to the TrueNorth.

As briefly mentioned in the introduction, the LCA has been
implemented on FPAAs (Shapero et al., 2012, 2013) to perform
sparse reconstruction using dictionaries of up to 12 inputs and
18 LCA nodes. The FPAA design consumes 3.02 mW of power
for a 12× 18 dictionary while our work consumes 0.343 mW for
the same sized dictionary (seeTable 2). However, for a theoretical
FPAA design with a 666 × 1000 dictionary, power consumption
is estimated 9.79 mW. Our design uses 1.657 mW for a 66 ×

100 dictionary. We can linearly scale the power consumption
to do a purely theoretical comparison to the FPAA results,
resulting in higher power for the LCA on TrueNorth than for the
FPAA design.

The time required to converge to the correct solution is
not ideal for applications requiring real-time or near real-
time calculations. This is simply a limitation of the TrueNorth
architecture for this application. Architectural improvements
on the TrueNorth system as well as implementation of the
algorithm in other neuromorphic architectures such as the
reconfigurable devices discussed in Cassidy et al. (2013a) or
BrainDrop Neckar et al. (2019) may enable orders of magnitude
improvements in speed over the one millisecond clock the
current TrueNorth architecture offers. The clock speed is a
consequence of the hardware’s inherent speed/power tradeoff and
the ability for parallel computations rather than serializing the

neuron state updates. Further improvements may also be made
by experimenting with different values of τ . In this work the
values were taken from Balavoine et al. (2012).

Given the constraints of the TrueNorth hardware and the
impact to computation time, one might consider instead utilizing
a system with fixed-point arithmetic. However, a recent paper
on hardware AI (Sanni and Andreou, 2019) provides insight
on the benefits of these neuromorphic architectures. An 8-
bit average neuromorphic, charge-based mixed-signal multiplier
designed, fabricated, and tested in 16nm FinFET technology
outperforms an 8-bit fixed point digital multiplier that is
synthesized using standard library cells in the same technology
in terms of energy efficiency. This suggests that as the field
of neuromorphic engineering matures, implementing neural
algorithms much like the LCA on neuromorphic platforms
using the design methodologies shown in this paper will create
meaningful efficiencies.

Dictionaries with different properties than those used in
the LCA system on the TrueNorth are useful for other signal
processing applications, therefore this paper provides a useful
template for implementing other algorithms on crossbar-based
hardware architectures. For example, in some sparse coding
literature the dictionary consists of elements that capture
common structures and patterns in the data (Olshausen, 2003),
much like the localized, oriented, and bandpass receptive fields
of the mammalian primary visual cortex (Field, 1994). These
fields can be accurately modeled by Gabor-like transforms (Field,
1987). For a dictionary to produce sparse representations that
overcome the issues of changes in position, size, and orientation,
an overcomplete set of vectors that consist of various dilations
and translations of such receptive fields are effective (Simoncelli
et al., 1992). These dictionaries take on a wider variety of values
that may not be within the {–1,0,1} framework as we use in
this work. The initial projection multiplication matrix values
will therefore take on larger values than 1 and the values of
the inhibition matrix will also grow larger and might even
require higher precision than our offered 9-bits signed. Using our
methodology, however, more neurons can be utilized to achieve
even higher precision if necessary. The number of neurons per
LCA node in each layer will increase and therefore the number
of cores required to compute the sparse approximation will
also increase.

The general techniques to map basic iterative linear algebra
and dynamical systems based algorithms within the constraints
of the TrueNorth can be used in a variety of other applications
as well. Recently, work has been developed to implement the
Neural Engineering Framework onto the TrueNorth architecture
(Fischl et al., 2018), offering an abstraction for users to perform
neural modeling on the hardware. The VMM was utilized
as well as other concepts required for this work, such as
positive and negative representations of a value, triggers, dynamic
memory, and resets as utilized in the MUX component of
this work. The VMM functionality is especially useful for
alternative applications do to the presented flexible design. For
example, if only positive multiplication results are required for
a given situation, many neurons and axons can be removed
from the design described here. If 4-bit arithmetic is sufficient

Frontiers in Neuroscience | www.frontiersin.org 13 July 2019 | Volume 13 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

for an application, the third layer of the presented VMM can
be entirely removed. One example that has used this design
on the TrueNorth with 4-bit unsigned arithmetic performs
Word2vec word similarities (Andreou et al., 2016; Mendat et al.,
2018). A 95,000 word dictionary is mapped to one TrueNorth
chip using a low-precision variant of the VMM, and words
that are similar to an input word are rapidly computed on
the TrueNorth.

To summarize, the paper’s main focus is the creation
of a scalable iterative algorithm (LCA) suitable for
crossbar array-based neuromorphic hardware devices.
In addition, methodologies are shown to achieve higher
precision calculations than those permitted by the inherent
limitations of the TrueNorth hardware through encoding
and decoding the signal using large time windows.
Techniques for implementing non-linear neuron thresholds
as well as to accurately map recurrent networks onto
the TrueNorth are detailed in this work. As the field of
neuromorphic engineering matures, the design methodology
detailed in this paper will create energy efficiencies
desirable to communities that require similar functionality
at low-power.

AUTHOR CONTRIBUTIONS

KF independently programmed all computational units with the
exception of the vector-matrix multiplication. DM wrote the
initial 8-bit unsigned VMM code and KF extended to 9-bit signed
VMM, suitable for matrices of any size. KF was supervised by DA
and advised by AA, CR, and JR. DM was supervised by AA. All
authors jointly did the conceptual work and wrote the paper.

FUNDING

This work was partially supported by the NSF grant
INSPIRE SMA 1248056 through the Telluride Workshop
on Neuromorphic Cognition Engineering, by the NSF
grant SCH-INT 1344772. DM was supported by the Johns
Hopkins University Applied Physics Laboratory Graduate
Student Fellowship.

ACKNOWLEDGMENTS

We thank Andrew Cassidy and the entire IBM TrueNorth team
for their support throughout this work.

REFERENCES

Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S. K., et al.

(2013). “Cognitive computing programming paradigm: a Corelet Language

for composing networks of neurosynaptic cores,” in Proceedings of the 2013

International Joint Conference on Neural Networks (IJCNN) (Dallas, TX), 1–10.

Andreou, A. G., Dykman, A. A., Fischl, K. D., Garreau, G., Mendat, D. R., Orchard,

G. M., et al. (2016). “Real-time sensory information processing using the

TrueNorth neurosynaptic system,” in Proceedings of the 2016 IEEE International

Symposium on Circuits and Systems (ISCAS) (Montreal, QC), 1–3.

Bahar, R. I., Hammerstrom, D. W., Harlow, J., Joyner W. H. Jr., Lau, C.,

Marculescu, D., et al. (2007). Architectures for silicon nanoelectronics and

beyond. IEEE Comput. 40, 25–33. doi: 10.1109/MC.2007.7

Balavoine, A., Romberg, J. K., and Rozell, C. J. (2012). Convergence and rate

analysis of neural networks for sparse approximation. IEEE Trans. Neural Netw.

Learn. Syst. 23, 1377–1389. doi: 10.1109/TNNLS.2012.2202400

Balavoine, A., Rozell, C. J., and Romberg, J. K. (2013a). “Convergence of a

neural network for sparse approximation using the nonsmooth Łojasiewicz

inequality,” in Neural Networks (IJCNN), The 2013 International Joint

Conference on (IEEE), 1–11.

Balavoine, A., Rozell, C. J., and Romberg, J. K. (2013b). Convergence speed

of a dynamical system for sparse recovery. IEEE Trans. Signal Process. 61,

4259–4269. doi: 10.1109/TSP.2013.2271482

Boahen, K. A. (2016). “A Neuromorph’s Prospectus,” in IEEE Computer Magazine,

1–19.

Cassidy, A. S., Alvarez-Icaza, R., Akopyan, F., Sawada, J., Arthur, J. V., Merolla,

P. A., et al. (2014). “Real-time scalable cortical computing at 46 giga-synaptic

OPS/watt with 100X speedup in time-to-solution and 100,000X reduction

in energy-to-solution,” in Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis (SC’14) (New

Orleans: IEEE Press), 27–37.

Cassidy, A. S., Georgiou, J., and Andreou, A. G. (2013a). Design of

silicon brains in the nano-CMOS era: spiking neurons, learning

synapses and neural architecture optimization. Neural Netw. 45, 4–26.

doi: 10.1016/j.neunet.2013.05.011

Cassidy, A. S., Merolla, P. A., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-

Icaza, R., et al. (2013b). “Cognitive computing building block: a versatile and

efficient digital neuron model for neurosynaptic cores,” in Proceedings of the

2013 International Joint Conference on Neural Networks (IJCNN) (Dallas, TX),

1–10.

Cauwenberghs, G. (2013). Reverse engineering the cognitive brain. Proc. Natl.

Acad. Sci. U.S.A. 110, 15512–15513. doi: 10.1073/pnas.1313114110

Cavin, R. (2015). Rebooting the IT Revolution: A Call to Action. Technical report.

Elad, M., Figueiredo, M. A. T., and Ma, Y. (2010). On the role of sparse

and redundant representations in image processing. Proc. IEEE 98, 972–982.

doi: 10.1007/978-1-4419-7011-4

Field, D. J. (1987). Relations between the statistics of natural images and the

response properties of cortical cells. J. Opt. Soc. Am. A Opt. Image Sci. 4,

2379–2394. doi: 10.1364/JOSAA.4.002379

Field, D. J. (1994). What is the goal of sensory coding? Neural Comput. 6, 559–601.

doi: 10.1162/neco.1994.6.4.559

Fischl, K. D., Stewart, T. C., Fair, K. L., and Andreou, A. G. (2018).

“Implementation of the neural engineering framework on the TrueNorth

neurosynaptic system,” in Proceedings 2018 IEEE Biomedical Circuits and

Systems Conference (Cleveland, OH), 587–590.

Mead, C. A. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Mendat, D. R., Cassidy, A. S., Zarrella, G., and Andreou, A. G. (2018). “Word2vec

word similarities on IBM’s TrueNorth neurosynaptic system,” in Proceedings

2018 IEEE Biomedical Circuits and Systems Conference (Cleveland, OH), 595–

598.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Neckar, A., Fok, S., Benjamin, B., Stewart, T., Voelker, A., Oza, N. N.,

et al. (2019). Braindrop: a mixed-signal neuromorphic architecture with a

dynamical systems-based programming model. Proc. IEEE 107, 144–164.

doi: 10.1109/JPROC.2018.2881432

Olshausen, B. A. (2003). Principles of Image Representation in Visual Cortex. The

Visual Neurosciences. Cambridge, MA: MIT Press.

Olshausen, B. A., and Field, D. J. (1996). Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature 381, 607–609.

doi: 10.1038/381607a0

Olshausen, B. A., and Field, D. J. (2004). Sparse coding of sensory inputs. Curr.

Opin. Neurobiol. 14, 481–487. doi: 10.1016/j.conb.2004.07.007

Frontiers in Neuroscience | www.frontiersin.org 14 July 2019 | Volume 13 | Article 754

https://doi.org/10.1109/MC.2007.7
https://doi.org/10.1109/TNNLS.2012.2202400
https://doi.org/10.1109/TSP.2013.2271482
https://doi.org/10.1016/j.neunet.2013.05.011
https://doi.org/10.1073/pnas.1313114110
https://doi.org/10.1007/978-1-4419-7011-4
https://doi.org/10.1364/JOSAA.4.002379
https://doi.org/10.1162/neco.1994.6.4.559
https://doi.org/10.1109/5.58356
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1038/381607a0
https://doi.org/10.1016/j.conb.2004.07.007
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fair et al. LCA on the TrueNorth Chip

Olshausen, B. A., and Rozell, C. J. (2017). Sparse codes from memristor grids. Nat.

Nanotechnol. 12, 722–723. doi: 10.1038/nnano.2017.112

Pineda, F., and Andreou, A. G. (1995). “An analog neural network inspired by

fractal block coding,” in Advances in Neural Information Processing Systems 7

(NIPS-1994) (Denver, CO), 795–802.

Preissl, R., Wong, T. M., Datta, P., Flickner, M., Singh, R., Esser, S. K., et al. (2012).

“Compass: a scalable simulator for an architecture for cognitive computing,”

in Proceedings of the 2012 International Conference for High Performance

Computing, Networking, Storage and Analysis (SC’12) (Salt Lake City: IEEE

Computer Society), 1–11.

Rozell, C. J., Johnson, D. H., Baraniuk, R. G., and Olshausen, B. A. (2008).

Sparse coding via thresholding and local competition in neural circuits. Neural

Comput. 20, 2526–2563. doi: 10.1162/neco.2008.03-07-486

Sanni, K. A., and Andreou, A. G. (2019). An 8-bit average, 6-bit minimum analog

multiplier core in 16nm FinFET CMOS for hardware AI inference. IEEE J.

Emerg. Sel. Top. Circuits Syst., 1–12.

Sawada, J., Akopyan, F., Cassidy, A. S., Taba, B., Debole, M. V., Datta, P., et al.

(2016). “Truenorth ecosystem for brain-inspired computing: scalable systems,

software, and applications,” in Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis (Salt Lake City:

IEEE Press), 12.

Shapero, S., Charles, A. S., Rozell, C. J., and Hasler, P. E. (2012). Low power sparse

approximation on reconfigurable analog hardware. IEEE J. Emerg. Sel. Top.

Circuits Syst. 2, 530–541. doi: 10.1109/JETCAS.2012.2214615

Shapero, S., Rozell, C., and Hasler, P. E. (2013). Configurable hardware integrate

and fire neurons for sparse approximation. Neural Netw. 45, 134–143.

doi: 10.1016/j.neunet.2013.03.012

Shapero, S., Zhu, M., Hasler, J., and Rozell, C. (2014). Optimal sparse

approximation with integrate and fire neurons. Int. J. Neural Syst. 24:1440001.

doi: 10.1142/S0129065714400012

Sheridan, P. M., Cai, F., Du, C., Ma, W., Zhang, Z., and Lu, W. D. (2017).

Sparse coding with memristor networks. Nat. Nanotechnol. 12, 784–789.

doi: 10.1038/nnano.2017.83

Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and Heeger, D. J. (1992).

Shiftable multiscale transforms. IEEE Trans. Inform. Theor. 38, 587–607.

doi: 10.1109/18.119725

Yang, A. Y., Zhou, Z., Balasubramanian, A. G., Sastry, S. S., and Ma, Y. (2013). Fast

L1-minimization algorithms for robust face recognition. IEEE Trans. Image

Process. 22, 3234–3246. doi: 10.1109/TIP.2013.2262292

Zibulevsky, M., and Elad, M. (2010). L1-L2 optimization in signal

and image processing. IEEE Signal Process. Magaz. 27, 76–88.

doi: 10.1109/MSP.2010.936023

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Fair, Mendat, Andreou, Rozell, Romberg and Anderson. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 July 2019 | Volume 13 | Article 754

https://doi.org/10.1038/nnano.2017.112
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1109/JETCAS.2012.2214615
https://doi.org/10.1016/j.neunet.2013.03.012
https://doi.org/10.1142/S0129065714400012
https://doi.org/10.1038/nnano.2017.83
https://doi.org/10.1109/18.119725
https://doi.org/10.1109/TIP.2013.2262292
https://doi.org/10.1109/MSP.2010.936023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Sparse Coding Using the Locally Competitive Algorithm on the TrueNorth Neurosynaptic System
	1. Introduction
	2. Discrete Time Representation of LCA Dynamics
	3. TrueNorth Architecture Overview
	4. Challenges in Mapping LCA on TrueNorth
	4.1. Encoding Increased Precision Values
	4.2. Representing Signed Values

	5. LCA processing units
	5.1. Vector-Matrix Multiplication With Increased Precision
	5.2. Non-linear Threshold
	5.3. On-chip Dynamic Memory

	6. Results
	6.1. Chip Utilization
	6.2. Power Consumption

	7. Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

