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Vascular cognitive impairment (VCI) is a clinical syndrome that encompasses all forms of
cognitive deficits caused by cerebrovascular disease, from mild cognitive impairment
to dementia. Vascular dementia, the second most common type of dementia after
Alzheimer’s disease (AD), accounts for approximately 20% of dementia patients.
Ferroptosis is a recently defined iron-dependent form of cell death, which is distinct
from apoptosis, necrosis, autophagy, and other forms of cell death. Emerging evidence
suggests that ferroptosis has significant implications in neurological diseases such as
stroke, traumatic brain injury, and AD. Additionally, ferroptosis inhibition has an obvious
neuroprotective effect and ameliorates cognitive impairment in various animal models.
Here, we summarize the underlying mechanisms of ferroptosis and review the close
relationship between ferroptosis and VCI.
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INTRODUCTION

Vascular cognitive impairment (VCI) was first presented by Bowler in 1995, and this term seeks
to identify cognitive impairment due to cerebrovascular disease at the very earliest stage and, by
identifying the etiology, enables the institution of appropriate preventive therapy (Bowler and
Hachinski, 1995). In recent years, VCI has been regarded as a more appropriate notion in describing
a broad spectrum of cognitive and behavioral changes ranging from mild cognitive impairment
(MCI) to dementia (Bowler, 2007; Frances et al., 2016). Indeed, VCI includes all the cognitive
disorders associated with cerebrovascular disease and risk factors (Moorhouse and Rockwood,
2008). Vascular dementia (VD) accounts for about one-fifth of all dementia types, it is the second
leading form of dementia next to AD and commonly coexists with AD (Iadecola, 2013; Price et al.,
2018; Venkat et al., 2018). As a result of cognitive function decline, especially attention, information
processing, and executive, this condition has become a heavy burden on individuals, families, and
healthcare systems (O’Brien and Thomas, 2015; Dichgans and Leys, 2017). However, although
great efforts have been made for many years, the pathologic mechanisms of VD are still poorly
understood (Girouard and Munter, 2018).

The brain is a metabolic organ of high energy demands but does not have much energy reserve;
it constitutes only 2% of total body mass but needs 15% of cardiac output and consumes 20% of the
body’s oxygen and 25% of total body glucose. In addition, the brain is rich in lipids with unsaturated
fatty acids, which are the key substrates for the production of lipid reactive oxygen species (ROS),
thus the brain is more susceptible to oxidative stress than other organs via the imbalance of redox
reaction (Dringen, 2000; Nagata et al., 2016; Cobley et al., 2018). The reduction of cerebral blood
flow (CBF) resulting from vascular pathologies is the key contributor to cerebral redox imbalance.
Meanwhile, chronic cerebral hypoperfusion (CCH) due to persistent decrease of CBF could result
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in cognitive impairments (Iadecola, 2013; Choi et al., 2016;
Back et al., 2017). Oxidative stress is one of the main theories
to explain the pathological mechanism of VCI (Du et al.,
2017). However, how oxidative stress causes neuronal loss and
subsequent neurodegeneration has not been fully elucidated.
Recently, ferroptosis, a novel form of cell death, has been known
to play an essential role in oxidative stress and neurological
diseases (Dixon et al., 2012). It has begun to attract increased
attention owing to its implication in several pathophysiological
contexts. Here, we review recent studies on ferroptosis and
discuss the close relationship between ferroptosis and VCI.

FERROPTOSIS

Ferroptosis is a newly defined iron-dependent form of cell death
which is morphologically, biochemically, and genetically distinct
from apoptosis, necrosis, autophagy, and other forms of cell
death. The symbol of ferroptosis is the accumulation of iron-
induced lipid peroxidation, the depletion of glutathione (GSH),
and inactivation of the phospholipid peroxidase glutathione
peroxidase 4 (GPX4); this unbalanced redox triggers cell death
(Yang W. S. et al., 2014; Stockwell et al., 2017; Figure 1).
Interestingly, a novel compound, erastin, was first identified
when the researchers screened antitumor agents. They found
that erastin induced non-apoptotic cell death in order to kill
engineered tumorigenic cells in 2003 (Dolma et al., 2003). They
subsequently further screened out two Ras-selective lethal small
molecular compounds (RSL3 and RSL5) that induced iron-
dependent oxidative cell death in 2008. In addition, the iron
chelator desferrioxamine (DFO) and the antioxidant (vitamin
E) could prevent this form of cell death, which did not display
apoptotic hallmarks (Yang and Stockwell, 2008). Consequently,
the novel non-apoptotic cell death was termed “ferroptosis” in

FIGURE 1 | Overview of ferroptosis; the three central pathways regulate
ferroptosis: iron, lipid, and glutathione metabolism, the synergistic effect of the
three is to maintain the redox equilibrium under normal conditions. One of
these metabolic disorders can lead to the accumulation of lipid ROS, then
trigger ferroptosis.

2012 by Dr. Brent R. Stockwell and his team (Dixon et al.,
2012; Alvarez et al., 2017). The morphological characteristic of
ferroptosis is cell swelling, which is distinct from cell shrinking
and blebbing during apoptosis. Ultrastructurally, mitochondria
become smaller, with increased mitochondrial membrane
density, reduced mitochondrial crista, and mitochondrial outer-
membrane rupture (Xie et al., 2016; Angeli et al., 2017; Yu et al.,
2017). Although the exact mechanism of ferroptosis is still poorly
understood, ferroptosis regulation is closely associated with a
variety of biological processes, mainly including iron, amino acid,
and lipid metabolism (Yang and Stockwell, 2016).

IRON METABOLISM IN FERROPTOSIS

Iron is an essential transition metal for normal cellular
function in mammals. It participates in several vital biological
processes, including ATP generation, oxygen transport, and DNA
synthesis. But excess intracellular iron can generate ROS via the
Fenton reaction, which causes lipid peroxidation and cell death
(Bogdan et al., 2016; Fanzani and Poli, 2017). Accumulation of
intracellular free iron is the key to the execution of ferroptosis,
and erastin/RSL3-induced ferroptosis can be inhibited by DFO,
the iron chelator and its analogs (Fearnhead et al., 2017). Iron
homeostasis is a complex process and relies on coordination
of multiple mechanisms including iron import, storage, export,
and utilization – therefore, a number of specialized transport
systems and membrane carriers are essential (Singh et al., 2014;
Figure 2). First of all, transferrin (Tf) and transferrin receptor1
(TfR1) are the main iron uptaking proteins, and cells take up
iron mainly through the Tf–TfR1 pathway. Most of the plasma
iron is bound tightly to Tf, which shields ferric iron (Fe3+)
from redox activity; subsequently, they integrate with TfR1 on
the cell surface, and the complex is taken up via endocytosis.

FIGURE 2 | Overview of iron homeostasis: iron import, storage, export,
utilization, and intracellular excess iron induce ferroptosis.
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Once inside the cell, ferric iron is released from Tf and free
ferric iron is reduced to ferrous iron (Fe2+) by ferric reductase
six-transmembrane epithelial antigen of prostate 3 (STEAP3)
in the acidic endosome. Ferrous iron is thereby transported
to the cytoplasm by divalent metal transporter 1 (DMT1) for
their metabolic needs. DMT1, a metal transporter, is principally
responsible for iron transport from the endosome (Ohgami et al.,
2005; Ji and Kosman, 2015; Bogdan et al., 2016). Eventually,
excess iron must be stored or exported across the plasma
membrane ferritin (FTH1 and FTL), the iron–storage protein
complex is mainly responsible for the sequestration of reactive
iron in order to maintain the equilibrium of labile iron pool
(LIP), thereby preventing the formation of ROS (MacKenzie
et al., 2008). And iron export is mediated by the membrane
protein ferroportin 1 (FPN1), which is the sole mammalian
exporter transporting iron out of the cytosol (Troadec et al., 2010;
Masaldan et al., 2019). In addition, recent studies have shown
that autophagy also contributes to ferroptosis. Nuclear receptor
coactivator 4 (NCOA4) is a selective cargo receptor, which
mediates the autophagic degradation of ferritin. It indicates
that NCOA4 binds to ferritin and delivers it to lysosomes for
degradation, the process is termed “ferritinophagy.” NCOA4-
mediated ferritinophagy increases intracellular iron level by
releasing ferritin iron (Mancias et al., 2014; Gao et al., 2016;
Santana-Codina and Mancias, 2018). NCOA4 deletion inhibited
ferroptosis by blocking ferritinophagy and ferritin degradation,
and NCOA4 over-expression increased sensitivity to ferroptosis;
hence, autophagy contributes to ferroptosis by degradation of
ferritin (Hou et al., 2016).

On the one hand, iron can catalyze the formation of free
radicals from ROS via the Fenton reaction, then they can damage
proteins, lipids, nucleic acids, and other cellular components,
leading to cellular injury or death (Imam et al., 2017; Yu et al.,
2017). On the other hand, iron is also an important component
of the catalytic subunit of lipoxygenase (LOX), which is necessary
for lipid peroxidation (Shintoku et al., 2017). Iron not only
produces ROS directly, but also participates in the synthesis of
iron-containing LOXs that oxidize polyunsaturated fatty acids
(PUFAs) to result in lipid peroxides (Lei et al., 2019). Intracellular
iron overload is the key to initiating ferroptosis. Although we
know the close relationship between iron and ferroptosis, the
specific molecular mechanism still needs further research.

LIPID METABOLISM IN FERROPTOSIS

The accumulation of lipid ROS is the key process in initiating
and executing ferroptosis, which is a complex process involving
a lot of lipid metabolism productions (Magtanong et al.,
2016; Figure 3). PUFAs, particularly arachidonic acid (AA)
and adrenic acid (AdA), are the main substrates of lipid
peroxidation for ferroptosis. They must be esterified with
membrane phospholipids [mainly phosphatidylethanolamine
(PE)] through two steps under the action of special enzymes
(Hao et al., 2018). Acyl-CoA synthetase long-chain family
member 4 (ACSL4), which is the catalytic enzyme for the
first step, firstly catalyzes free AA/AdA to bind CoA to form

AA/AdA–CoA derivatives, facilitating their esterification into
phospholipids (Golej et al., 2011; Kuch et al., 2014). Next,
lysophosphatidylcholine acyltransferase 3 (LPCAT3) catalyzes
the biosynthesis of AA/AdA–CoA and membrane PEs to form
AA/AdA-PE, which is an intermediate process to activate the
ferroptotic signals (Shindou and Shimizu, 2009). ACSL4 is a
member of a family of enzymes consisting of five isoforms
comprising ACSL1, ACSL3, ACSL4, ACSL5, and ACSL6, but
only ACSL4 specifically contributes to ferroptotic cell death and
determines ferroptosis sensitivity (Yuan et al., 2016). Recent
studies have revealed that inhibition of ACSL4 was effective
in protecting against RSL3-induced cell death, suggesting that
ACSL4 inhibition means a specific antiferroptotic pathway
(Doll et al., 2016). Indeed, disruption of ACSL4 and LPCAT3
function has been shown to prevent ferroptosis (Dixon et al.,
2015). Eventually, LOXs oxidate PE-AA/AdA to be PE-AA/AdA-
OOH, identified as the cell death signal of ferroptosis. Lipid
hydroperoxides were shown to be the proximate executors of
ferroptosis. The research indicated that it was PE-AA/AdA-OOH
rather than other types of phospholipids – OH (PL-OOH) –
that induced ferroptosis (Lei et al., 2019). Recent research has
revealed that LOXs, especially 15-LOX, have significant impacts
on ferroptosis sensitivity. LOX-catalyzed lipid hydroperoxide
generation in cellular membranes promoted ferroptosis, and
several LOX inhibitors are cytoprotective in cell and animal
models (Shintoku et al., 2017; Zilka et al., 2017; Shah et al.,
2018), and 12-LOX is indispensable for p53-mediated ferroptosis
(Chu et al., 2019). Accordingly, the lipid metabolism is tightly
associated with ferroptosis and provides a promising theoretical
pathway to prevent ferroptosis.

GLUTATHIONE METABOLISM IN
FERROPTOSIS

Glutathione peroxidase 4 is the unique antioxidant defense
enzyme which reduces the membrane lipid hydroperoxides to
lipid alcohols. Lipid hydroperoxides are detrimental products for
ROS, thereby GPX4 can inhibit toxic lipid peroxidation (Cardoso
et al., 2016; Cozza et al., 2017; Imai et al., 2017). Iron-dependent
lipid peroxidation is the key step to triggering ferroptosis, and
pharmaceutical inhibition and gene ablation of GPX4 function
both can result in the accumulation of lipid ROS. Accordingly,
GPX4 is the master regulator of ferroptosis (Friedmann Angeli
et al., 2014; Yang W. S. et al., 2014; Conrad and Friedmann
Angeli, 2015). However, GPX4 must use GSH as a cofactor
to reduce peroxides to their corresponding alcohols. GSH is
a small tripeptidyl molecule consisting of three amino acids,
which alternates reduced (GSH) with oxidized (GSSG) states,
thereby participating in redox biochemical reactions. GPX4 uses
two molecules of GSH as substrates and produces one molecule
of GSSG per cycle of catalysis, thus intracellular GSH levels
are crucial to the activity of GPX4. Direct inhibition of GSH
biosynthesis, or genetic manipulations, can trigger or sensitize to
ferroptosis (Cao et al., 2019; Forcina and Dixon, 2019).

Intracellular cysteine is one of the raw materials for GSH
synthesis. Most of the cysteine come from extracellular cystine via
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the cystine/glutamate antiporters (system xc-) which transport
extracellular cystine and intracellular glutamate in a 1:1 ratio,
then cystine is reduced to cysteine in cells. System xc- consists
of two subunits (the light chain xCT and the glycosylated heavy
chain 4F2hc) which are encoded by the SLC7A11 and SLC3A2
gene, respectively (Conrad and Sato, 2012; Dixon et al., 2014;
Hayano et al., 2016). And the small molecule erastin, a potent
inhibitor of the system xc-, can trigger endoplasmic reticulum
(ER) stress and ferroptosis through depletion of GSH and loss of
GPX4 activity (Dixon et al., 2014).

In addition to cysteine, glutamate and glycine are also
intermediates for the synthesis of GSH. Firstly, cysteine and
glutamate form the γ-glutamylcysteine (γGluCys) under the
catalysis of the γ-glutamylcysteine ligase (GCL), then γGluCys
continues to bind glycine to form GSH under the catalysis of
glutathione synthetase (GS). The complete process consumes
two molecules of ATP, with each step requiring one (Aoyama
and Nakaki, 2013, 2015). Excitotoxicity of glutamate is also
closely related to ferroptosis. Excessive extracellular glutamate
can block system xc–mediated cystine import and results in GSH
depletion and inactivation of GPX4 (Dixon, 2017). Iron chelation
ciclopirox (CPX) and free radical scavengers ferrostatin-1 (Fer-1),
two ferroptosis inhibitors, both can prevent cell death caused by
excitotoxicity due to high glutamate, suggesting that the two cell
death modes have a common mechanism. From the discussion
above, it is suggested that the GSH metabolic network has a
significant impact on ferroptosis (Figure 3).

LINKS BETWEEN FERROPTOSIS AND
VCI

At present, VCI is considered a progressive disease caused
by vascular diseases [e.g., cerebral small vessel disease (SVD)]
and vascular risk factors (e.g., hypertension, hyperlipidemia,
and diabetes), and SVD mainly caused cortical, subcortical,
and lacunar microinfarcts due to pathological changes of
perforating arteries and arterioles, capillaries, and venules. SVD

is widely referred to as the most common vascular cause
of VCI (Wardlaw et al., 2013; Kalaria, 2016, 2018). Indeed,
VCI is a clinical syndrome that encompasses all forms of
cognitive deficits, from MCI to dementia. VD, the second
most common type of dementia after Alzheimer’s disease
(AD), accounts for approximately 20% of dementia patients
(Sun, 2018). Vascular abnormality is the leading pathology of
VCI, which eventually causes cerebral hemodynamic alteration.
Diverse vascular pathologies lead to chronic and significant
decrease of CBF, including atherosclerosis, arteriolosclerosis,
infarcts, white matter (WM) changes, and microhemorrhages
(Calabrese et al., 2016; Yang T. et al., 2017). Thus, CCH caused
by continuously reducing CBF is the common pathomechanism
of VCI, which not only reduces the supply of oxygen and
nutrients, but also leads to the accumulation and deposition
of harmful molecules in the brain. The sustained low cerebral
blood supply caused impairment of structure and function of
the blood–brain barrier (BBB) and neuronal tissue loss and
finally manifests as a cognitive deficit (Dichgans and Leys, 2017;
Hort et al., 2019). So far, however, no effective treatments
have been applied to prevent the progression of the disease,
which has led to serious social burden (Kalaria, 2016; Venkat
et al., 2018). Iron accumulation and excess oxidative stress cause
cognitive impairment in aging and neurodegenerative diseases
such as AD, Parkinson disease (PD), and Huntington’s disease
(HD) (Ward et al., 2014). Iron-induced lipid peroxidation is the
main characteristic of ferroptosis, and the research shows that
ferroptosis plays a crucial role in neuronal loss of neurological
diseases (Weiland et al., 2018). Researchers have recently clarified
that neuronal ferroptosis is involved in ischemic stroke and
intracerebral hemorrhage, and inhibitors of ferroptosis can
reduce neuron degeneration and ameliorate neurologic deficits
induced by ischemic stroke and intracerebral hemorrhage (Tuo
et al., 2017; Karuppagounder et al., 2018; DeGregorio-Rocasolano
et al., 2019). Emerging studies have revealed a tight connection
between ferroptosis and VCI, suggesting a potential theoretical
approach to treat it. We will describe the possible mechanism of
ferroptosis in VCI.

FIGURE 3 | Overview of glutathione and lipid metabolism.
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IRON AND VCI

Aging is the main risk factor for dementia, and iron progressively
accumulates in the brain during aging. Neuronal iron deposits are
closely related to neurodegeneration and cognitive impairment,
but the mechanisms underlying these associations remain unclear
(Zecca et al., 2004). Recent studies have found that intracellular
iron retention and iron-dependent lipid ROS accumulation are
the key to trigger ferroptosis, which provides new therapeutic
approaches for multiple diseases (Dixon and Stockwell, 2014;
Xie et al., 2016). Intracellular iron homeostasis is a complex
program involving a series of molecules. DMT1 is the main iron
absorption transporter, and FPN1 is the only known protein
for iron exportation. The expression of DMT1 and FPN1 was
affected by inflammation and aging. Under the stimulation
of inflammatory factors (IL-6 and TNF-α), the expression of
DMT1 increased and the expression of FPN1 decreased, which
resulted in the increase of iron uptake and the decrease of
iron excretion in the central nervous cells, resulting in the
deposition of iron in the cells (Urrutia et al., 2013). Intracellular
excessive iron can induce a large amount of ROS through Fenton
reaction or Haber–Weiss reaction, initiating neuronal ferroptosis
and resulting in cognitive impairment (Gaasch et al., 2007; Ke
and Qian, 2007). Pro-inflammatory cytokines increase due to
microglias and astrocyte activation in ischemic stroke, leading
to abnormality of iron-related proteins (hepcidin), and brain
iron deposition occurs (Petrova et al., 2016). Bilateral common
carotid artery occlusion is the most widely used experimental
model of VD, and iron deposition leads to neuronal loss caused
by oxidative stress, which plays an important role in cognitive
impairment of CCH. The most serious neuronal death occurred
in the CA1 where the most iron deposits were observed (Li
et al., 2012; Du et al., 2017), brain iron dyshomeostasis and iron
deposition are closely related to cognitive impairment, and iron-
induced ferroptosis has been proved to play an important role
in neurodegenerative diseases such as AD, PD, and HD (Ward
et al., 2014; Ayton et al., 2017, 2019). The research showed that
abnormal iron deposition occurred in a wide range of cortical
areas in patients with subcortical ischemic VD, resulting in
neuronal damage, which was closely related to the severity of
cognitive impairment (Liu et al., 2015). The model of cerebral
ischemia–reperfusion injury confirms that proferroptotic iron
accumulation is a novel mechanism of injury in stroke, leading
to neuronal death. The application of ferroptosis inhibitor (Fer-
1, liproxstatin-1) significantly reduced the infarct volume and
prevented ongoing neuronal damage, and iron chelators (DFO, a
ferroptosis inhibitor) attenuate ischemic–reperfusion damage in
animal models (Tuo et al., 2017). It is indicated that iron-induced
ferroptosis is a potential mechanism of neuronal loss in VCI.

LIPID PEROXIDATIONS AND VCI

Oxidative stress resulted from hypoperfusion has been proved
to be one of the main pathogenic mechanisms causing VCI
(Jellinger, 2013; Zhang T. et al., 2017), and the study shows
that VD patients expressed significantly higher levels of lipid

peroxidation markers (MDA) than AD, which suggests that lipid
peroxidation has an important impact on the pathophysiology
of VD – the MDA level is a possible marker for VD
(Gustaw-Rothenberg et al., 2010). Lipid peroxidations and ROS
accumulation are the key procedures to induce ferroptosis
(Dixon and Stockwell, 2014). LOX can cause lipid peroxidation
by catalyzing polyunsaturated fatty acids in phospholipid
membrane, and inhibition of LOX can inhibit ferroptosis
(Kagan et al., 2017; Shah et al., 2018). After global and focal
cerebral ischemia, the widespread increase of 12/15-LOX in
brain tissue is an important cause of neuronal cell death and
nerve function damage, and inhibition of 12/15-LOX reduced
neuronal cell death and the degrees of cerebral edema and
improved neurological outcome (Jin et al., 2008; Pallast et al.,
2010; Yigitkanli et al., 2017). In addition, nicotinamide adenine
phosphate dinucleotide (NADPH) oxidase (NOX) also plays
an important role in lipid peroxidation. It is shown that the
expression of NOX1 in hippocampal neurons increases during
CCH, which leads to lipid peroxidation and oxidative stress. It
is an important cause of hippocampal neuronal degeneration
and cognitive impairment (Choi et al., 2014). Lipid peroxidation
caused by NOX is also one of the links of ferroptosis. Nox1
inhibitors showed a different effect in erastin-induced ferroptosis
of Calu-1 cells and HT-1080 cells, which is partially effective
in HT-1080 cells. It indicates that NOX contributes different
proportions to ferroptosis in different cell types (Dixon et al.,
2012; Xie et al., 2016). ACSL4 is responsible for the esterification
of CoA to free fatty acids in an ATP dependent manner, and
then AA- and AdA-containing PE species are the preferred
substrates for oxidation. ACSL4 thereby sensitizes to ferroptosis
by specifically esterifying AA and AdA into PE. Recent studies
show that thiazolidinedione [e.g., rosiglitazone (ROSI)], a drug
for the treatment of diabetes mellitus, can selectively inhibit the
activity of ACSL4 and then inhibit ferroptosis (Doll et al., 2016;
Angeli et al., 2017). Studies have shown that ACSL4 is widely
expressed in the brain tissue, especially in the CA1 region of the
hippocampus, and the expression of ACSL4 increases gradually
during cerebral ischemia (Cao et al., 2000; Gubern et al., 2013).
It has been proved that ROSI can reduce lipid peroxidation
and oxidative stress damage in hippocampal neurons during
CCH and protect brain function (Sayan-Ozacmak et al., 2012).
Multiple studies have shown that long-term administration of
pioglitazone can reduce the risk of dementia in patients with non-
insulin-dependent diabetics (Heneka et al., 2015; Lu et al., 2018).
These links suggest that ferroptosis is a possible mechanism of
neuronal loss in CCH, which leads to VCI.

GLUTATHIONE METABOLISM AND VCI

Thus far researchers have demonstrated that amino acid
metabolism is involved in ferroptosis. GPX4 is the sole enzyme
for scavenging lipid oxygen free radicals by reducing lipid
peroxides to non-toxic lipid alcohols (Lei et al., 2019). GPX4
is a central regulator of ferroptosis; once GPX4 is inactivated,
lipid peroxides gradually accumulate, which is identified as the
executive signal of ferroptosis (Yang W. S. et al., 2014). And GSH,
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an essential cofactor, is an important element for GPX4 activity.
GPX4 must use GSH as a substrate to eliminate intracellular
lipid ROS and maintain redox equilibrium. Thus, GSH depletion
disarranges the equilibrium of antioxidant defense and induces
ferroptotic cell death (Doll and Conrad, 2017). The system xc-
provides the substrate for the synthesis of GSH by transporting
cystine into the cell. When the function of system xc- or GPX4 is
impaired, lipid peroxide and its degradation products accumulate
and induce ferroptosis (Ingold et al., 2018). CCH could result
in excessive glutamate released by the depolarization of neurons
and occur excitotoxicity, and high levels of glutamate inhibit the
function of system xc-. And therefore glutamate excitotoxicity
is also a pathomechanism of ferroptosis, and iron chelation
prevented the excitotoxic cell death (Krzyzanowska et al., 2014;
Liu et al., 2016; Fricker et al., 2018).

The nuclear factor erythroid 2-related factor 2 (NRF2) is
a fundamental regulator of cell antioxidant defense system,
which modulates the expression of multiple antioxidant
response element-dependent genes including NADPH-quinone
oxidoreductase 1 (NQO1), heme oxygenase-1 (HMOX1), ferritin
heavy chain 1 (FTH1), FPN1, GSH, and GPX4 (Hybertson et al.,
2011; Ma, 2013; Kerins and Ooi, 2018). These downstream
genes’ expression of NRF2 plays an important role in the
ferroptosis signal pathway, and research has showed that the
expression level of NRF2 was directly related to the sensitivity
of ferroptosis. The increased expression of NRF2 inhibited
ferroptosis, and the decreased expression of NRF2 promoted
ferroptosis (Sun et al., 2016; Fan et al., 2017; Dodson et al., 2019).
Studies have shown that, on the one hand, NRF2 promotes
the expression of GSH and GPX4 to enhance the function
of antioxidant system, while on the other hand, NRF2 can
also reduce intracellular iron accumulation by promoting the
expression of ferritin and FPN1 to store and export free iron
simultaneously, thereby preventing ferroptosis (Yang X. et al.,
2017; Kasai et al., 2018). Many studies have attested to the
NRF2 regulatory network playing a fundamental role in different
cerebral ischemia rodent models. Although the expression of
NRF2 is controversial in different studies, the neuroprotective
effect of enhancing Nrf2/ARE activation has been proved in
various studies (Zhang R. et al., 2017; Liu et al., 2019). Our
previous research and other teams found that the increased

expression of NRF2 can ameliorate cognitive impairment in
CCH (Yang Y. et al., 2014; Qi et al., 2018; Mao et al., 2019).
We speculate that it may also be related to the suppression of
ferroptosis, and the GSH metabolic network is the bridge to link
ferroptosis and VCI.

SUMMARY AND OUTLOOK

With further research in the field of cell death, so far 12 regulated
cell deaths (RCDs) have been defined by the Nomenclature
Committee on Cell Death (NCCD) from different perspectives
(morphologically, biochemically, and functionally) (Galluzzi
et al., 2018; Tang et al., 2019). Ferroptosis is a non-apoptotic
form of RCD driven by the iron-dependent accumulation of
toxic lipid ROS, which involves many human diseases, especially
neurological diseases such as AD, PD, stroke, and intracerebral
hemorrhage (Stockwell et al., 2017). For now, researchers have
shown that ferroptosis contribute to neuronal loss of acute
brain injury, and inhibition of ferroptosis could reduce cell
death and ameliorate the neurological function in animal models
(Magtanong and Dixon, 2019). But ferroptosis still requires
further study in CCH, the main pathological mechanism of
VCI. Indeed, the characteristics of ferroptosis are consistent
with the pathophysiology of CCH. In summary, an improved
understanding of the ferroptosis mechanism and the role of
ferroptosis in CCH will create new opportunities for VCI
diagnosis and therapeutic intervention.
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