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Trait and State-Dependent Risk
Attitude of Monkeys Measured in
a Single-Option Response Task
Atsushi Fujimoto*† and Takafumi Minamimoto*

Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba, Japan

Humans and animals show diverse preferences for risks (“trait-like” risk attitude) and
shift their preference depending on the state or current needs (“state-dependent” risk
attitude). For a better understanding of the neural mechanisms underlying risk-sensitive
decisions, useful animal models have been required. Here we examined the risk attitude
of three male monkeys in a single-option response task, in which an instrumental lever-
release was required to obtain a chance of reward. In each trial, reward condition,
either deterministic (100% of 1, 2, 3, and 4 drops of juice) or probabilistic (25, 50,
75, and 100% of 4-drop juice) was randomly selected and assigned by a unique visual
cue, allowing the monkeys to evaluate the forthcoming reward. The subjective value
of the reward was inferred from their performance. Model-based analysis incorporating
known economic models revealed non-linear probability distortion in monkeys; unlike
previous studies, they showed a simple convex or concave probability distortion curve.
The direction of risk preference was consistent between early and late phases of the
testing period, suggesting that our observation reflected the trait-like risk attitude of
monkeys, at least under the current experimental setting. Regardless of the baseline
risk preference, all monkeys showed an enhancement of risk preference in a session
according to the satiation level (i.e., state-dependent risk attitude). Our results suggest
that, without choice or cognitive demand, monkeys show naturalistic risk attitude –
diverse and flexible like humans. Our novel approach may provide a useful animal
model of risk-sensitive decisions, facilitating the investigation of the neural mechanisms
of decision-making under risk.

Keywords: risk attitude, subjective value, decision-making, monkeys, economic models

INTRODUCTION

In an uncertain environment, one’s preference toward risk biases one’s decisions. Imagine that your
friend encouraged you to buy an unlisted stock of a business venture. If you are a conservative
person, you may pass on the opportunity to avoid the risk (i.e., risk-averse). However, if you are an
adventurous person, you may buy the stock regardless of the risk (i.e., risk-prone). As such, inherent
individual risk preference is diverse and determines the basic tendency to take (or not to take) a
risky option (“trait-like” risk attitude) (Weber et al., 2002; Huettel et al., 2006; Tobler et al., 2008).
In addition, the risk attitude is changeable depending on internal contexts; if you need to make
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money right away, you may buy the risky stock irrespective of
your character (“state-dependent” risk attitude) (Caraco et al.,
1980; Stephens and Krebs, 1986; McNamara and Houston, 1992).

Past studies measured the risk preference of human subjects
in economic tasks, in which subjects repeatedly made choices
between a risky option and a safe option, and mathematical
models have been proposed to capture the choice decisions of
subjects. The most influential model, prospect theory, assumes
a distortion of probabilities and provides better explanation
of the non-normative choice pattern of human subjects than
the expected utility theory does (Kahneman, 1979; Tversky
and Kahneman, 1992; Prelec, 1998; Gonzalez and Wu, 1999).
Calculation of the subjective value based on distorted probability
is conceptually analogous to the assumption of the finance theory
that calculates the subjective value with the mean–variance
model (Markowitz, 1952; Levy and Markowitz, 1979; Tobler
et al., 2009). These studies revealed various risk preferences
of human subjects, and further facilitated research to find the
neural correlates of trait-like risk attitude by coupling with brain
imaging techniques (Tom et al., 2007; Takahashi et al., 2010;
Gilaie-Dotan et al., 2014). Such an economic approach has also
been applied to some animal studies using a liquid reward as an
alternative of a monetary reward, and they consistently reported
non-linear probability distortion of monkeys just like humans
(Stauffer et al., 2015; Chen and Stuphorn, 2018).

Although economic approaches began to elucidate the
mechanisms of risk-sensitive decisions across species, direct
application of economic tasks to animals may pose limitations;
for example, the cognitive capacity (e.g., working memory) of
animals is not comparable to that of humans, but is largely
limited to adaptation to their ecological niche (Krebs et al.,
1977; Stevens et al., 2005; Elmore et al., 2011). Such disparity
may enforce extra task-demands on animals even in physically
identical task settings (Pearson et al., 2010; Blanchard et al.,
2013). Another problem is that making repeated choices among
available options is an unfamiliar setting for animals considering
their feeding ecology, in which they typically make a cost–
benefit decision on a single prey (i.e., non-choice decisions)
(Krebs et al., 1977; Kacelnik et al., 2011; Hayden and Walton,
2014). As recently suggested, such non-choice decisions recruit
distinct brain circuits to that for two-option choices (Kolling
et al., 2012; Shenhav et al., 2016). Moreover, some studies
using human subjects emphasized that humans showed distorted
risk preference in the task without choice (Tobler et al., 2008;
Levy et al., 2011). Hence, from an ethological perspective, it is
worthwhile to test the risk preference of monkeys in a non-choice
decision paradigm.

In this study, we aimed to assess the naturalistic risk attitude of
monkeys by minimizing undesirable task demands. We adopted
a non-choice, instrumental lever-release task, in which a visual
cue revealed the size and probability of forthcoming reward
condition as being either deterministic or probabilistic. The basic
setting of this task was shown to be useful for inferring monkeys’
evaluation of a certain reward value (e.g., reward size) based
on their performance (Minamimoto et al., 2009). The inference
has been formulated and applied in many studies (Bouret
and Richmond, 2015; Eldridge et al., 2016; Nagai et al., 2016;

Fujimoto et al., 2019), and can be extended to temporal
discounting and workload discounting using the same basic task
structure (Minamimoto et al., 2009, 2012). Here, we implemented
well-known economic models to assess the trait-like and state-
dependent risk attitude of monkeys in a quantitative manner
(Stauffer et al., 2015; Chen and Stuphorn, 2018). Our results may
fill the gap between human and monkey studies using economic
tasks, thus providing a useful animal model to investigate the
neural basis of risk-sensitive decision-making.

MATERIALS AND METHODS

Subjects
Three male macaque monkeys (Macaca mulatta, monkeys ST and
KY, 5.3 kg and 6.8 kg; Macaca fuscata, monkey HI, 7.6 kg) were
used. All experimental procedures were approved by the Animal
Care and Use Committee of the National Institutes for Quantum
and Radiological Science and Technology and were in accordance
with the guidelines published in the NIH Guide for the Care and
Use of Laboratory Animals.

Behavioral Task
The monkeys squatted on a primate chair inside a dark, sound-
attenuated, and electrically shielded room. A touch-sensitive
lever was mounted on the chair. Visual stimuli were displayed
on a computer video monitor in front of the animal. Behavioral
control and data acquisition were performed using a real-time
experimentation system (REX) (Hays et al., 1982). Presentation
software was used to display visual stimuli (Neurobehavioral
Systems Inc., Berkeley, CA, United States).

The monkeys performed the single-option response task
(Figure 1A). In each trial, the monkey had the same requirement
to obtain liquid rewards. A trial began when a monkey gripped
a lever. A visual cue and a red spot appeared sequentially, with
a 0.4 s interval, at the center of the monitor. After a variable
interval (0.5–1.5 s), the central spot turned to green (“go” signal),
and the monkey had to release the lever within the reaction
time (RT) window (0.2–1.0 s). If the monkey released the lever
correctly, the spot turned to blue (0.2–0.4 s), and then a reward
was delivered in accordance with the visual cue. The next trial
began following an inter-trial interval (ITI, 1.5 s). When trials
were performed incorrectly, they were terminated immediately
(all visual stimuli disappeared), and the next trial began with the
same reward condition following the ITI. There were two types of
errors: premature lever releases (lever releases before or no later
than 0.2 s after the appearance of the go signal, named “early
errors”) and failures to release the lever within 1.0 s after the
appearance of the go signal (named “late errors”).

The combination of reward size and its probability was
informed by the visual cue (grayscale images) at the beginning
of each trial; four cues were used for the deterministic trials and
the other four for the probabilistic trials (Figure 1B). In the
deterministic trials, the size of the reward (1, 2, 3, or 4 drops)
was chosen randomly, and the reward probability was fixed at
100%. In the probabilistic trials, the size of the reward was fixed
at 4 drops and the probability of the reward (25, 50, 75, or 100%)
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FIGURE 1 | Single-option response task. (A) Sequence of a trial. (B) Cue sets. Left: cue stimuli that predict deterministic reward delivery (deterministic trials). Right:
cue stimuli that predict probabilistic reward delivery (probabilistic trials). (C) An example of trial series. Deterministic and probabilistic trials were intermingled in a
session.

was chosen randomly. Thus, the expected value was matched
across the two conditions. The training schedule was as follows.
Prior to the experiment with the single-option response task,
all monkeys had been trained to perform color discrimination
trials in a cued multi-trial reward schedule task for >1 month.
Next, the monkeys were trained in the deterministic trials for
3 weeks, and subsequently in the probabilistic trials for 3 weeks,
respectively (“separate” phase). Finally, the monkeys were tested
under the condition in which deterministic and probabilistic
trials were intermingled, and the test ran for >6 weeks (“mixed”
phase; Figure 1C). The data obtained during the mixed phase
(43, 53, and 41 sessions for monkeys ST, KY, and HI, respectively)
were analyzed in the current study. The number of trials in a
session was 1,338 ± 79 trials for monkey ST, 1,206 ± 300 trials
for monkey KY, and 1,384 ± 109 trials for monkey HI, and the
amount of reward intake in a session was 325± 20 ml for monkey
ST, 286 ± 75 ml for monkey KY, and 327 ± 38 ml for monkey
HI (mean± SD).

Experimental Design and Statistical
Analysis
All statistical analyses and model fitting were performed using
R statistical software. We analyzed the error rate and RT. The
error rate was calculated by dividing the total number of errors
(the sum of early and later errors) by the total number of trials
in a session. We reported the average error rate across sessions
and the standard error of the mean (SEM). RT was defined as the
duration from a “go” signal to the time point of lever release in
a correct trial.

As previously shown, the error rate in the same paradigm with
deterministic reward has an inverse relationship to the subjective
value (inverse function, Minamimoto et al., 2009). To infer the

subjective reward value in each monkey, we used a modified
version of the inverse function:

E =
c

V + b
(1)

where E and V represented the error rate and the subjective value,
while c and b were free parameters that represented the reward
sensitivity of monkeys. We confirmed that this model fitted well
with the error rates in deterministic trials of the training session,
where (V) corresponded to the reward size (1, 2, 3, and 4 drops;
R2 > 0.86). We extended this model to infer the subjective reward
value of probabilistic trials using three models: GW, Prelec, and
mean–variance models (see below). For each monkey, parameters
c and b were first determined using the best-fit of the inverse
function (Eq. 1) to the error rate in the deterministic trials. These
parameters were then applied to Eq. (1), which integrated one of
the three subjective value models as V and then was fitted to the
error rates in the probabilistic trials.

GW Model
According to Gonzalez and Wu (1999), probability weighting
function, w(p), was formulated as below:

w(p) =
δpγ

δpγ + (1− p)γ
(2)

where p represents the probability of winning a reward (25, 50,
75, and 100%), and γ and δ are free parameters that control
the curvature and elevation of the function, respectively. This
model yields non-linear probability weighting function, although
it allows monotonic increase/decrease of probability weighting
when γ = 1. Subjective value V was then calculated by multiplying
the reward magnitude m (4 drops) and subjective probability
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w(p) in accordance with the prospect theory (Kahneman, 1979;
Tversky and Kahneman, 1992).

V = m× w(p) (3)

Prelec Model
According to Prelec (1998), the probability weighting function
was formulated as below:

w(p) = e(−β(− ln(p))α) (4)

where α and β are free parameters that control the curvature
and elevation of the function, respectively. For the one-parameter
Prelec model, β is fixed at 1; this function yields an inverted
S-shape in α > 1, while it yields S-shape in α < 1, with inflection
point (p = w(p)) around p = 1/e. We defined the subjective values
with Eqs (3) and (4).

Mean–Variance Model
According to financial theory, the subjective value is determined
by combining the expected value (EV) and variance risk (Var)
(Markowitz, 1952; Levy and Markowitz, 1979). First, EV and Var
are calculated as follows:

EV = m× p (5)

Var = ((m− EV)× p)2 + ((0− EV)× (1− p))2 (6)

Then, the subjective value is defined as:

V = EV+ Var× ε (7)

where ε is a free parameter that describes a bonus by
the variance risk.

The model fittings were performed using the “optim”
function implemented in R software. Standard error of estimated
parameter was calculated by means of the Hessian matrix at the
function. The goodness of fit was assessed with the R2 value
and Akaike Information Criteria (AIC) (Akaike, 1973), which is
calculated as follows:

AIC = −2 log L+ 2k (8)

where L is the maximum likelihood of the model and k is the
number of free parameters in the model. Smaller AIC values
indicated a better model fit to the data. A likelihood ratio test was
used to compare GW models. The p-value was obtained by the
parametric bootstrapping method (n = 10,000).

The effect of the satiation level on risk attitude was assessed
using a measure of accumulated reward level (Minamimoto et al.,
2009). Satiation level (S) was defined as the normalized liquid
intake that is the ratio between the amount of total reward
delivered up to time t, Rcum(t), and the total amount of reward
delivered in the entire session, RcumMax:

S =
Rcum(t)

RcumMax
(9)

The effect of the history of previous reward was also assessed
by logistic regression analysis:

P = β1R+ β2S+ β3PR+ e (10)

where P is the performance (i.e., correct or error), R is the reward
size, S is the satiation level, PR is the reward size in the previous
trial, β are the regression coefficients, and e is a constant.

RESULTS

Risk Preference in Three Monkeys
The error rate and RT were the two main behavioral measures
of the monkeys’ valuation of the current task; the more reward
value is expected, the less the subjects make errors and the
faster they respond (Minamimoto et al., 2009; Nagai et al.,
2016; Fujimoto et al., 2019). We first compared the overall
error rate and RT between deterministic (1, 2, or 3 drops) and
probabilistic trials (25, 50, or 75%) in each session separately.
For this analysis, we excluded the trials of which the expected
value was 4 drops (and the probability was 100%) to focus
on the effect of risk. Although expected values were equivalent
between the two trial types, motivation of monkey ST appeared
to be higher in probabilistic trials; the overall error rate in
the deterministic trials was significantly higher than that in the
probabilistic trials (n = 43, p < 0.01, rank-sum test; Figure 2A,
left), and RT in the deterministic trials was significantly longer
than in the probabilistic trials (n = 43, p < 0.01, rank-sum test,
Figure 2B, left). These results indicated a risk-prone tendency of
this monkey, which was consistent across sessions. Monkey KY
also showed a risk-prone tendency; the error rate and RT were
significantly larger and longer in the deterministic trials (error
rate, n = 53, p = 0.049; RT, n = 53, p < 0.01; Figures 2A,B,
middle column). Monkey HI, on the other hand, displayed the
opposite pattern; the error rate and RT tended to be larger and
longer in the probabilistic trials (error rate, n = 41, p = 0.54; RT,
n = 41, p < 0.01; Figures 2A,B, right column), indicating a risk-
averse tendency of this monkey. These results demonstrate that
our task allowed us to characterize the individual risk preference
of monkeys as a consistent behavioral bias across sessions, which
was not uniform across the monkeys examined.

As we reported previously, the error rate in the deterministic
trials varied depending on the reward size, with higher error rates
for smaller reward (Figure 3, plots in red), the relation of which
was well explained by an inverse function (Eq. 1, R2 > 0.80)
(Minamimoto et al., 2009; Nagai et al., 2016). The error rate
in the probabilistic trials also reflected the expected value of
reward; however, they were lower (monkeys ST and KY) or
higher (monkey HI) than those in deterministic trials for the
corresponding expected value (Figure 3, plots in blue). Three-
way ANOVA (expected value: 1, 2, 3, and 4 drops × trial type:
deterministic or probabilistic × Monkey) revealed a significant
main effect of the expected value [F(1,1088) = 39.6, p < 0.01]
and a significant interaction of the trial type and monkey
[F(1,1088) = 4.9, p = 0.027], suggesting the effects of reward
expectation and individual risk preference on the subjective
valuation of probabilistic rewards.

Simulations With Parsimonious Models
To describe the relationship between error rate and reward
probability, we used a modified version of the inverse function
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FIGURE 2 | Risk-induced behavioral bias. (A) Error rate of each session. Error rates in probabilistic trials (abscissa) and in deterministic trials (ordinate) in each
session are plotted for monkeys ST (left), KY (center), and HI (right). The plots in the blue shaded areas indicate risk-prone sessions. Histograms on the right shoulder
of panels show the distribution of the distance between each plot and the identity line. Red lines indicate the average of the distance. Asterisks indicate significant
difference from zero (∗∗p < 0.01, ∗p < 0.05, rank-sum test). (B) Reaction time (RT) of each session. Schemas of the figures are the same as in A.

with the subjective value of probabilistic reward (i.e., subjective-
value model). To estimate the subjective valuation of monkeys,
we employed the probability-weighting function developed by

FIGURE 3 | Change of error rate by reward-expected value and risk. Error
rates (mean ± SEM) in deterministic (red) and probabilistic trials (blue) are
plotted as a function of expected values for monkey ST (left), KY (center), and
HI (right). The best-fit inverse function (red) is superimposed on the plots (ST:
c = 7.3, b = –1.8; KY: c = 26.9, b = 2.3, HI: c = 41.9, b = 5.6) with the
goodness of fit (R2) on each panel.

Gonzalez and Wu (1999) (“GW model,” Eq. 2), a prospect-
theory model that is widely used to describe non-linear
probability distortion measured in economic tasks. Because both
probabilistic and deterministic trials were tested in the same
sessions, we used the same monkey-specific parameters c and b in
the inverse functions to explain the error rates in two trial types
(see the section “Materials and Methods”).

The GW model implements two free parameters: γ and δ,
control curvature and elevation of function, respectively. First,
we simulated how each parameter modifies the probability-
weighting function and the error rate by using parsimonious
models (“partial GW models”), which incorporate one free
parameter. When γ in the GW model was fixed [GW (δ| γ = 1)],
the probability-weighting function became concave when δ > 1,
while it became convex when δ < 1 (Figure 4A). The error rate
in the probabilistic trials then simply rose or fell compared to
that in the deterministic trials (Figure 4B). When δ in the GW
model was fixed [GW (γ| δ = 1)], on the other hand, the function
became S-shaped when γ > 1, while it became inverted S-shaped
when γ < 1 (Figure 4C). Under this condition, the error rates in
the two trial types crossed each other; when γ < 1, for instance,
the error rate in 25% trials was lower than in 1-drop trials and
that in 75% trials was higher than in 3-drop trials (Figure 4D).
Because the data demonstrated simple reduction (monkeys ST
and KY) or elevation (monkey HI) of error rate by imposing
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FIGURE 4 | Simulation of error rates in probabilistic trials. (A) Simulated probability-weighting function with partial GW model with fixed γ. Colors indicate the value of
parameter δ used for the simulation. (B) Simulated error rate in the probabilistic trials with partial GW model (γ = 1) for monkey ST (left), KY (center), and HI (right). As
a reference, a best-fit inverse function to error rate in deterministic trials (dashed gray curve) is shown for each monkey. (C,D) Simulated probability-weighting
function (C) and error rate in the probabilistic trials (D) with partial GW model with fixed δ (δ = 1). Colors indicate the value of parameter γ used for the simulation.
Schemas of the figures are the same as in A and B.

risk (Figure 3), the simulation suggests that the partial GW
model with fixed γ [GW (δ| γ = 1)] may explain the probability
distortion of monkeys.

Modeling Individual Risk Preference
Reflecting Trait-Like Risk Attitude
The subjective-value model implementing the GW model [GW
(γ, δ)] well explained the error rate in the probabilistic trials
for all monkeys (R2 > 0.75, Figure 5A). As predicted in
the simulation, the best-fit probability-weighting function with
the GW model showed a simple convex or concave pattern
(Figure 5B), demonstrating overweighting of reward probability
(monkeys ST and KY) and underweighting of reward probability
(monkey HI) in subjective valuation of the probabilistic reward.
This result suggests risk-prone tendency of monkeys ST and
KY and risk-averse tendency of monkey HI, as demonstrated in
Figure 2. Then, to validate the parsimonious model, we tested
whether the partial GW model with fixed γ [GW (δ| γ = 1),
Figure 4A] also fits the data. As expected, the subjective-value
model implementing the partial GW model with fixed γ well
described the error rate in the probabilistic trials for all monkeys

(R2 > 0.74, Figure 5C). The best-fit probability-weighting
function and estimated parameter δ (Figure 5D) was comparable
to those estimated by the full GW model. In contrast, the partial
GW model with fixed δ or the simple GW model with fixed γ and
δ did not provide good fits to the error rate in the probabilistic
trials [GW (γ| δ = 1) and GW (γ = 1, δ = 1), Table 1]. The partial
GW model, GW (δ| γ = 1), explained the data significantly better
than the simple GW model in all monkeys (p < 0.05, likelihood
ratio test), suggesting that unfixed parameter δ is essential and
sufficient for explaining the individual risk preference of monkeys
measured in the single-option response task. We also tested
whether the subjective-value model (the inverse function fusing
the partial GW model with fixed γ), which incorporated three free
parameters c, b, and δ, fits the error rate in both trial types. The
model again fitted well with the data for all monkeys (R2 > 0.81),
suggesting the robustness of the modified inverse function in
the current task.

As shown in Figure 2, the risk in reward outcome biased
error rate and RT in the same direction, and the direction of
bias was roughly consistent during the testing period. Given
that what we modeled reflected the trait-like risk attitude of
monkeys, the direction of risk preference (i.e., risk-prone or
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FIGURE 5 | Validation of the full and partial GW models. (A,C) Error rate and best-fit function of subjective-value models in the deterministic trials (red) and in the
probabilistic trials (blue) for monkeys ST (left), KY (center), and HI (right). Red curve shows the best-fit inverse function for each monkey. Blue curve shows the best-fit
function of the subjective-value model with the GW model [GW (δ, γ)] (A) or with the partial GW model with fixed γ [GW (δ | γ = 1)] (C). (B,D) Best-fit
probability-weighting function for each monkey. Probability-weighting function is calculated in the GW model (B) or in the partial GW model with fixed γ (D), and
value of estimated parameter δ is shown in each panel. Dashed line indicates the identity line where subjective probability and reward probability are indifferent.

risk-averse), in other words, a convex or concave probability
weighting pattern, should be stable over a longer time period. To
confirm the stability of individual risk preference, we separately
calculated δ in the partial GW model for the early (e.g., #1–20
sessions) and late testing sessions (e.g., #21–40 sessions) for each
monkey. As expected, risk preference was consistent over the

TABLE 1 | Comparison of GW models.

Model Estimated parameters AIC

Monkey Monkey

ST KY HI ST KY HI

GW (γ, δ) 1.3, 3.4 0.89, 2.5 1.7, 0.33 −2.5∗ 12.4 12.4

GW (δ | γ = 1) 2.5 2.7 0.37 0.98∗ 10.5∗ 11.8∗

GW (γ | δ = 1) 0.36 0.49 2.69 16.3 16.6 13.8

GW (γ = 1, δ = 1) 19.9 16.2 13.4

∗The significant better fits than GW (γ = 1, δ = 1) (p < 0.05; likelihood ratio test).

sessions; monkeys ST and KY showed high δ (>1) either in early
or late sessions (ST early: 2.8 ± 1.0, ST late: 2.3 ± 0.6; KY early:
1.3 ± 0.8, KY late: 3.2 ± 0.9, mean ± SEM), while monkey HI
consistently showed low δ (<1) between the two periods (early:
0.25 ± 0.43, late: 0.51 ± 0.14). These results suggested that we
modeled the trait-like risk attitude of the monkeys.

Convex/Concave Probability Distortion
Was Not Model-Specific
The error rate was also well explained by other subjective-
value models that incorporated the Prelec model (Eq. 4,
R2 > 0.77, Figure 6A) or mean–variance model (Eq. 7,
R2 > 0.71, Figure 6C), which also assume non-linear probability
distortion (Markowitz, 1952; Levy and Markowitz, 1979; Prelec,
1998). The best-fit probability-weighting function calculated
by the Prelec model (Figure 6B) or mean–variance model
(Figure 6D) showed the convex or concave pattern that was
comparable to that calculated by the full or partial GW model
(Figures 5B,D). Thus, the individual risk preference assessed in
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FIGURE 6 | Validation of Prelec model and mean–variance models. (A,C) Error rate and best-fit functions of subjective-value models for each monkey. Blue curve
shows best-fit function of the subjective-value model implementing the Prelec model (A) or the mean–variance model (C) (blue), respectively. Schemas of the figures
are the same as in Figures 5A,C. (B,D) Best-fit probability-weighting function calculated by the Prelec model (B) or by the mean–variance model (D). Schemas of
the figures are the same as in Figures 5B,D.

the single-option response task can be modeled reasonably well
by the economic models with a free parameter focusing on the
elevation. The goodness of fit (AIC) and parameters estimated are
summarized in Table 2.

Assessing State-Dependent Risk
Attitude Within a Session
In addition to trait-like risk attitude, physiological drive state
can influence risk attitudes; for example, thirsty monkeys became

TABLE 2 | Summary of goodness of fit and estimated parameters.

Model Estimated parameters AIC

Monkey Monkey

ST KY HI ST KY HI

GW (δ | γ = 1) 2.5 2.7 0.37 0.98 10.5 11.8

Prelec (β, α) 1.6, 0.47 1.1, 0.51 1.4, 2.3 −2.1 12.1 12.1

Mean variance (ε) 0.26 0.26 −0.26 −3.1 11.1 10.8

more risk averse (Yamada et al., 2013). To examine the effect of
satiation on risk attitude, we analyzed the error rate in the sub-
parts of a session according to reward accumulation (satiation
level: 0–0.5, 0.25–0.75, 0.5–1.0; see the section “Materials and
Methods”). We found that the difference in error rate between
deterministic and probabilistic trials varied depending on the
satiation level [one-way repeated measures ANOVAs, main effect
of satiation level, F(1,409) = 5.9, p = 0.015, Figures 7A–C]. The
satiation level also affected RT; the difference in RTs between the
two conditions increased according to satiation [main effect of
satiation level, F(1,409) = 17, p< 0.01].

The satiation effect on risk attitude was further assessed by
the modeling approach; we fitted the subjective-value model
implementing the partial GW model with fixed γ to the error
rate in the probabilistic trials and extracted the best-fit parameter
δ from the probability-weighting function for each sub-session
(Figures 7D–F). We found that parameter δ tended to increase
in the latter sub-sessions for all monkeys; the risk-proneness
of monkeys ST and KY was evident in the early period and
was enhanced thereafter, while monkey HI exhibited weaker
risk-averseness as the session progressed and became nearly
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FIGURE 7 | Satiation effect on risk attitude. (A–C) Difference in error rate by trial type. The error rate in the probabilistic trials was subtracted from that in the
deterministic trials for each sub-session (early, middle, late). Panels are for monkeys ST (A), KY (B), and HI (C). (D–F) Shifts of probability-weighting functions (Eq. 2)
according to satiation for each monkey. The best-fit function for the data of each sub-session (left: 0–0.5, center: 0.25–0.75, right: 0.5–1.0, satiation level) is
displayed. (G–I) Parameter δ is plotted for each sub-session and for each monkey. Colors are the same as in D–F.

risk-neutral in the last sub-session (Figures 7G–I). In contrast,
the direction of risk attitude was unchanged over a session; δ was
always >1 in monkeys ST and KY, whereas it was always <1 in
monkey HI. These results demonstrated a state-dependent risk
attitude in monkeys; that is, the risk preference gets stronger
according to satiation.

Partial Effects of Reward History on
Performance
In our task design, the subjective value of probabilistic reward was
associated with the cue but was independent from trial sequence

or history. However, monkeys could take local contextual reward
information into account for the reward expectation that may
influence the performance (i.e., correct or error). In other words,
the differences in error rate between the deterministic and
probabilistic trials could arise from the effect of reward history.
If so, the effect should be parallel with the risk preferences of
the three monkeys. To address this possibility, we performed
logistic regression analysis with three regressors: expected value
(1, 2, 3, or 4 drops), satiation level (0–1), and previous reward
(0, 1, 2, 3, or 4 drops). Expected value and satiation level
significantly contributed to the performance for all monkeys
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FIGURE 8 | Effect of expected value, satiation, and reward history on performance. Results of logistic regression for monkey ST (left), KY (center), and HI (right). Bars
indicate the correlation coefficient (normalized beta) of expected value (white), satiation level (gray), and previous reward (black), respectively. Asterisks indicate
statistically significant difference from zero (∗∗p < 0.05, ∗p < 0.10 with Bonferroni correction).

(p < 0.05 with Bonferroni correction; Figure 8). The previous
reward, on the other hand, affected only the performance of
monkey KY (p < 0.01), but not the other two (p > 0.10,
Figure 8). This pattern of individual differences was unrelated
to that of risk preference or state-dependent change among the
three monkeys. Thus, the effect of reward history was apparently
limited and did not correlate with individual risk attitude in our
experimental condition.

DISCUSSION

In the present study, monkeys’ risk attitude was assessed by a
single-option response task, in which the subjective value of a
probabilistic reward was inferred from their performance. To
the best of our knowledge, this is the first study to examine risk
preference of monkeys in a non-choice paradigm. Model-based
analysis revealed non-linear probability distortion and diverse
risk preference among three monkeys. The subjective probability
weighting of monkeys was well explained by economic models
and showed a simple convex/concave pattern over testing
sessions. Regardless of baseline risk preference, all monkeys
showed an increase in risk preference as satiation increased
in a session. The current results thus highlighted the trait-
like and state-dependent risk attitude of monkeys in non-
choice decisions.

Past studies demonstrated that monkeys show non-linear
probability distortion using economic tasks (Stauffer et al.,
2015; Chen and Stuphorn, 2018). The present study replicated
this in the single-option response task that imposed no
choice demand. The basic structure of the current task was
shown to be useful to infer the valuation of monkeys when
reward size or cost was varied (Minamimoto et al., 2009,
2012; Bouret and Richmond, 2015; Eldridge et al., 2016;
Nagai et al., 2016; Fujimoto et al., 2019). By implementing
known economic models, the present study extended this basic

model to infer the subjective reward value of probabilistic
reward. Our monkeys demonstrated a diverse preference for
the risk; two monkeys showed risk-prone, and one showed
risk-averse. This seems to reflect the trait-like risk attitude of
monkeys because their risk preferences were consistent across
sessions. Their performance in probabilistic trials was well
demonstrated by a subjective-value model incorporating a non-
linear probability weighting function (Markowitz, 1952; Levy
and Markowitz, 1979; Prelec, 1998; Gonzalez and Wu, 1999),
and thus the results were largely consistent with the above
literature despite differences in task structures and measures of
subjective valuations. Our results also suggest that economic
models are generalizable for describing the probability distortion
in non-choice, ecological decisions (Hayden and Walton, 2014;
Pearson et al., 2014).

Unlike the previous studies, our monkeys showed a simple
convex or concave probability distortion, and that pattern
was well explained by a parsimonious GW model in which
one free parameter concerning the elevation of function was
adopted. On the above studies using economic tasks, all monkeys
tested showed inverted S-shaped probability distortion (i.e., risk-
seeking for low probability and risk-aversion for high probability)
and was well-explained by Prelec’s function with α < 1, while
the same model failed to explain the monkeys’ performance
in the current study. Such a stereotypical pattern observed in
the previous studies may arise from excessive task demand in
economic tasks; the cognitive load due to choice demand could
diminish sensitivity to the difference in the reward probability
and result in the inverted S-shape probability distortion. Indeed,
recent studies showed that manipulation in task structure (e.g.,
trial sequence) of economic tasks affected monkeys’ inverted
S-shape probability distortion, potentially due to contamination
of reward history (Farashahi et al., 2018; Ferrari-Toniolo et al.,
2019). Importantly, the effect of reward history was limited in
our paradigm, and hence did not account for the observed
individual risk preference. Therefore, the discrepancy could be
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attributed solely to the task design concerning the ecological
decision situation.

As a genetic kinship, humans and monkeys share a large
number of cognitive traits. However, because monkeys learn the
option value through their experience, a task structure per se
would largely influence their task performance and therefore
hamper a straightforward interpretation by investigators (Real,
1991). For example, Blanchard et al. (2013) demonstrated that
monkeys did not care about the length of the delay period
after reward delivery, and that had led to misunderstanding by
preceding researchers about the temporal-discounting ability of
monkeys. Similarly, economic tasks could contain undesirable
confoundings, such as working memory, inhibitory control, and
value comparison, which may affect decision strategy and obscure
natural behavioral traits (Stephens and Krebs, 1986; Elmore et al.,
2011; Blanchard et al., 2014; Hayden and Walton, 2014). The
current study eliminated such undesirable confounding effects by
adopting a non-choice decision in the task. In fact, our monkeys
quickly learned to perform the single-option response task
(<1 month), while it usually takes several months for monkeys to
learn to perform two-option choices. Unlike using choice tasks,
diverse individual differences in trait-like risk attitudes were seen
in our monkeys, as observed in human studies (Tom et al.,
2007; Tobler et al., 2008; Takahashi et al., 2010; Gilaie-Dotan
et al., 2014), and therefore the current task may provide a better
opportunity to assess the naturalistic risk attitude of monkeys.

Adapting risk attitude based on current needs is vital for
maximizing fitness in an uncertain environment (Stephens and
Krebs, 1986). Human studies showed that subjects flexibly
modulate risk attitude based on required points or “wealth
level” even during a single experimental session (Symmonds
et al., 2011; Kolling et al., 2014; Fujimoto and Takahashi,
2016; Juechems et al., 2017). Yamada et al. (2013) directly
demonstrated the relationship between risk preference and
satiety by monitoring the blood osmolality level within a session
in macaque monkeys, which is a physiological form of “wealth
level.” Consistently, our monkeys showed enhancement of risk-
prone tendency (ST and KY) or suppression of risk-aversion (HI)
according to reward accumulation, and our model-based analysis
successfully described the satiation effect. Of note, the increase of
risk preference reflects state-dependent risk attitude, because it
occurred irrespective of baseline risk preference. This change of
risk preference within a session is not attributable to the reward
history effect, which was limited in the monkeys. Importantly,
human studies suggested that state-dependent modulation of risk
attitude was not accounted for by change of the physiological
state itself either (Symmonds et al., 2011; Kolling et al., 2014;
Fujimoto and Takahashi, 2016). Hence, the current approach
successfully quantified the trait-like and state-dependent risk
attitude of monkeys within one task, suggesting a useful model
of risk-sensitive decision for translational research.

What causes the inconsistent risk preference across animals
still remains unclear. Probably the most well-known factors that
lead to differences in risk attitude in humans are gender and age
(Walker et al., 2017). However, they are unlikely to have a role
in the current study because we solely used adult male monkeys.
Another possible cause is social rank (Davis et al., 2009), but

the contribution of this factor is unknown because we have
not tested the social relationship of our monkeys. Future study
should validate the exact cause of individual risk preference by
employing a larger cohort of animals.

Past studies reported that the trait risk attitude correlated
with individual differences in monoamine systems (Berridge and
Waterhouse, 2003; Roiser et al., 2009; Takahashi et al., 2010),
brain structures (Gilaie-Dotan et al., 2014; Leong et al., 2016),
and activity patterns (Kuhnen and Knutson, 2005; Huettel et al.,
2006; Preuschoff et al., 2008; Levy et al., 2010) of human subjects.
However, the neural substrates of individual risk preference in
monkeys are largely unknown. Our behavioral assessment, which
successfully demonstrated diverse risk attitude in monkeys with
single free parameter (δ), may provide an excellent opportunity
to explore the neural basis of individual risk preference, as the
animal model allows us to measure neural activities directly, and
to use neural modulation techniques (cf., Nagai et al., 2016). One
of the potential applications is the study of gambling disorder
(GD), which is considered to be a dysfunction of risk-sensitive
decision (Hodgins et al., 2011; American Psychiatric Association
[APA], 2013). Indeed, we recently showed that GD patients
had deficits not only in trait-like risk attitude but also in state-
dependent risk attitude (Fujimoto et al., 2017). Therefore, future
study should identify the neural substrates of both trait-like and
state-dependent risk attitude in monkeys, providing therapeutic
targets for GD patients.

One of the limitations of the current study was the small
sample size. We thus could not address the mechanism behind
individual differences in risk attitude. Another limitation was that
we used only one reward size for probabilistic trials (4 drops);
modifying the range of reward size may influence monkeys’
risk attitude. Further validation with a larger cohort and/or
broader reward environments will be needed to generalize
our findings and identify other factors that influence the risk
attitude of monkeys.

In conclusion, our approach based on economics and
behavioral ecology illustrates the trait-like and state-dependent
risk attitude of monkeys. Because our model-based analysis
employed well-known functions from past human studies, the
current animal model may accelerate translational research
to determine neural mechanisms underlying risk-sensitive
decision-making.
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