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Due to the nature of fMRI acquisition protocols, slices cannot be acquired
simultaneously, and as a result, are temporally misaligned from each other. To correct
from this misalignment, preprocessing pipelines often incorporate slice timing correction
(STC). However, evaluating the benefits of STC is challenging because it (1) is dependent
on slice acquisition parameters, (2) interacts with head movement in a non-linear fashion,
and (3) significantly changes with other preprocessing steps, fMRI experimental design,
and fMRI acquisition parameters. Presently, the interaction of STC with various scan
conditions has not been extensively examined. Here, we examine the effect of STC when
it is applied with various other preprocessing steps such as motion correction (MC),
motion parameter residualization (MPR), and spatial smoothing. Using 180 simulated
and 30 real fMRI data, we quantitatively demonstrate that the optimal order in which
STC should be applied depends on interleave parameters and motion level. We also
demonstrate the benefit STC on sub-second-TR scans and for functional connectivity
analysis. We conclude that STC is a critical part of the preprocessing pipeline that can
be extremely beneficial for fMRI processing. However, its effectiveness interacts with
other preprocessing steps and with other scan parameters and conditions which may
obscure its significant importance in the fMRI processing pipeline.

Keywords: slice timing correction, fMRI — functional magnetic resonance imaging, motion correction,
preprocessing algorithms, interleaved 2D multislice sequence

INTRODUCTION

Most functional magnetic resonance image (fMRI) scans are acquired using echo planar imaging
(EPI), which rapidly acquires single or multiple 2D slices and stacks them to create a 3D volume.
This process typically takes between 0.5 and 4 s (known as the repetition time, or TR), depending on
the fMRI pulse sequence, field of view (FOV), and number of acquired slices (Stehling et al., 1991).
Slices can be acquired sequentially or with interleave, in which a number of slices are skipped and
acquired later during the TR. Interleaving allows more time for the partially excited spins in the
adjacent slices to return to equilibrium, which attenuates the artifacts of radio frequency (RF) pulse
excitation leakage. Regardless of the manner in which slices are acquired, they cannot be acquired
instantaneously, and so the result is an accumulation of offset delays between the first slice and all
remaining slices. In order for an accurate time series analysis to be carried out on the fMRI data,
these temporal offsets between slices must be corrected for. Slice timing correction (STC) is the
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preprocessing step applied to correct for these slice-dependent
delays, achieved by shifting the time series of each slice to
temporally align all slices to a reference time-point.

In addition to STC, numerous preprocessing steps
are required to prepare fMRI data for statistical analysis.
Surprisingly, there exists no consensus on the order in which
these preprocessing steps should occur, and the interaction
of STC on motion parameter estimates has only recently
been investigated (Cox, 1996; Power et al., 2017). It has
been shown in previous studies that the order and the steps
included in the preprocessing pipeline significantly affect the
resulting statistical analysis (Zhang et al., 2009; Carp, 2012;
Churchill et al., 2012, 2015). One previous report examined
motion correction (MC), physiological noise correction, and
motion parameter residualization (MPR) (Churchill et al.,
2012), however, in this study, the effect of these steps was
only evaluated based on their inclusion or omission from a
fixed order in the pipeline, and STC was performed at the
beginning of every pipeline. Thus, the contribution of STC
on different steps in the pipeline remains unclear. To further
contribute to this area of research, we examine whether the
order of these steps will significantly impact resulting statistical
parametric maps.

In a previous study, we directly compared the performance
of different STC methods to each other (Parker et al., 2016).
In the current study, we aimed to examine the interaction
of these STC methods with other preprocessing steps. We
have identified five areas common in fMRI analysis where
the role of STC is largely uninvestigated: (1) The order of
STC and MC in the preprocessing pipeline without spatial
smoothing, (2) The order of STC and MC, and its interaction
with MPR, without spatial smoothing, (3) The interaction of
spatial smoothing and STC, (4) STC on data sampled with a
fast TR, and (5) STC on functional connectivity analysis using
independent component analysis (ICA). Using both real and
simulated data, we quantitatively examined the effect of STC on
data acquired with various levels of motion and slice acquisition
sequences. We hypothesized that different combinations of
motion and slice acquisition orders would alter the effectiveness
of different preprocessing pipelines. We also use different STC
techniques to see if the STC algorithm has any effect on
pipeline order. We use FSL and SPM’s slice timing routines,
where FSL implements a low-order Hanning windowed sinc
interpolation, while SPM uses a frequency-domain phase shift.
Finally, we apply a STC method developed by our group,
FilterShift (FS), which implements a moderate-order Kaiser-
windowed sinc function.

Pipeline Order Without Spatial
Smoothing
Some studies suggest that the optimal order of STC and
other preprocessing steps such as spatial realignment depends
on both the level of motion and the slice acquisition (Or
interleave) order (Sladky et al., 2011). Motion may exacerbate
the STC problem, introducing not only shifts in time but also
in space. The effects of motion will change based on the slice

acquisition orders. Different slice acquisition orders will result
in visually different volumes, even if they undergo identical
motion. This will lead to inaccurate and inconsistent motion
parameter estimates. In these instances, it has been shown that
STC before spatial realignment alters the motion parameter
estimates and result in less accurate spatial realignment (Power
et al., 2017). Likewise, as spatial realignment applies spatial
transformations to the data, a voxel’s time series after spatial
realignment may contain values interpolated from adjacent
slices which were sampled at different offsets. Thus, applying
a single time shift to a voxel containing data sampled with
different delays is intuitively flawed. Therefore, it is important to
investigate which order of the pipelines would be optimal in the
preprocessing pipeline.

Motion Parameter Residualization
Motion parameter residualization is the practice of including
motion parameters in the GLM as nuisance regressors used for
residualization which orthogonalizes the BOLD activity from the
motion parameters. Because the motion parameters are typically
estimated during the realignment step, the effectiveness of
motion parameter residualization may change depending on the
level of motion, the accuracy of the motion parameter estimation,
and the order in which STC and MC are performed. The
strategies for MPR vary greatly from study to study. Some groups
only include the six rotation and translation parameter estimates,
while others include any number of additional derivatives and
quadratics in an attempt to capture any non-linear motion related
signal fluctuations (Satterthwaite et al., 2013). There is still active
research regarding the best kinds of covariates to include in
the residualization, and the process is a common addition to
modern preprocessing pipelines (Ciric et al., 2017). Regardless
of the specific covariates used, the effectiveness of MPR relies
on accurate motion parameter estimates. Given the interaction
between subject motion and slice timing, it follows that the STC
and MC preprocessing steps will have an impact on the motion
estimates used for MPR, and indeed the MC itself, as it has been
shown in the field (Power et al., 2017). Thus we investigate the
effect of MPR on the effectiveness of STC in this paper.

Spatial Smoothing on STC
Spatial smoothing is another preprocessing step that interacts
with STC. Spatial smoothing has the effect of distributing a voxel’s
intensity to any surrounding voxels that fall within the smoothing
kernel, thus altering their time series. With a relatively small
smoothing kernel, this may impact slices differently, depending
on their delay and the type of interleave acquisition. Slices with
large delay will have the most error, and will be averaged with
adjacent slices with smaller delay. Depending on noise, motion,
and slice acquisition order, this can attenuate some of the error
in the large delay slice, and create a more accurate time series.
Conversely, slices with small delays and errors may be averaged
with adjacent slices with large delays and errors, reducing
their accuracy. Because spatial smoothing operates across slices
with different delays, it is important for us to investigate the
interaction of STC, a slice-specific process, and spatial smoothing,
a multi-slice process.
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STC on Short TRs
As new imaging techniques such as simultaneous multi-slice
acquisition (SMS) become more and more common, acquisition
times of whole volumes become faster (Barth et al., 2016). It
is generally considered that with such short TR, STC is an
unnecessary step with little value. This is based on the assumption
that the BOLD signal is generally quite slow, and so any signal
change due to temporal offsets is likely to also be small. However,
the GLM is extremely sensitive to small shifts in signals, and
to our knowledge no study has quantitatively demonstrated that
STC is futile for short TR acquisitions. With the development of
multiband EPI and improvements in the pulse sequence, whole
brain volumes can be acquired in just fractions of a second
(Feinberg et al., 2010). In our previous study, we showed on
simulated data that traditional STC techniques showed little to no
benefit with a fast TR, while our method still provided significant
improvement (Parker et al., 2016). In this paper, we extend that
analysis to real data acquired with a short TR. The Human
Connectome Project (HCP) is one such study that employs this
acquisition technique to achieve a TR of 0.72 s for task-based
and resting-state fMRI. The HCP publishes an extensive pre-
processing pipeline for all their data, which ignores STC due to
the high sampling at which the volumes are acquired (Glasser
et al., 2013). It is argued that the benefit from STC is insignificant
at higher sampling rates. Because we have found no thorough
investigations into this matter, it is important for us to examine
the effect of STC on short-TR data.

STC on Functional Connectivity Analysis
Functional connectivity (FC) analyses are becoming increasingly
popular in the current literature (Sala-Llonch et al., 2015). In
FC, it is not necessary to use an external regressor for a GLM
analysis. There are many methods to extract inherent FC, such
as seed based connectivity (Biswal et al., 1995a), ICA (Beckmann
and Smith, 2004), and even graph theory (Buckner et al., 2009;
Rubinov and Sporns, 2010). These methods rely only on the
intrinsic fluctuations in each voxel, and its similarity to other
voxels in the brain to extract functionally connected regions.
Previous work has already examined the interaction of STC with
resting state data connectivity, and have shown no significant
effect (Wu et al., 2011). However, this study employed a 6mm
spatial smoothing kernel to the data, which will greatly reduce
the effectiveness of STC. It’s also important to consider that
resting state fluctuations (in the default mode network, for
example) are very slow, low frequency signals (<0.1 Hz) (Biswal
et al., 1995b). It has already been shown that STC has little
effect for low-frequency signals, such as block design tasks
(Sladky et al., 2011), and we expect the same principle to carry
over to resting state fMRI (rsfMRI). Functional connectivity
analysis can be extracted from resting-state fMRI data as well
as task-based fMRI data (Biswal et al., 1995a). In fact, recently
task-based functional connectivity networks have gained much
more popularity in the field (Di et al., 2013; Krienen et al.,
2014; Stern et al., 2014). Our group recently demonstrated that
one of the well-recognized functional connectivity networks,
the default mode network, can be extracted from both task-
based and resting-state fMRI data (Razlighi, 2018). Regardless of

whether the scan is “task” or “resting,” the process of extracting
independent components remains identical, however, given the
relatively faster temporal characteristics of task-based BOLD
signals (compared to resting-state BOLD signals), we expect STC
to have a larger impact on FC when used on task-based fMRI.
In our analysis, we used ICA to extract functional components.
Because of the popularity of STC, and the missing investigation
into task-based FC, we examine the effect of STC on functional
connectivity analysis.

MATERIALS AND METHODS

Simulated Data
It is difficult to evaluate the performance of preprocessing
methods on real fMRI data because the true underlying BOLD
signal is always unknown. Because of this, we created simulated
datasets with a known, underlying BOLD signal for a quantitative
comparison. Data was simulated using the same procedure
described in Parker et al. (2016). Briefly, our simulated fMRI
scans used real subject brain morphology by temporally averaging
all volumes from a motion corrected real subject fMRI scan.
We used the same subject’s structural segmentation from
FreeSurfer (Fischl et al., 2002, 2004), and inter-modal rigid-
body registration with FSL (Greve and Fischl, 2009) to obtain
anatomical ROI masks in the fMRI space. We simulated neuronal
activity consisting of sequences of 20 boxcar pulses with jittered
onsets and randomly generated durations for each ROI. These
stimuli were convolved with the canonical HRF to generate the
hemodynamic response. Both HRF and neuronal stimuli were
sampled at high frequency to facilitate in simulating motion and
slice sampling. Cardiac and respiratory artifacts were simulated
by adding a single sinusoid at f c = 1.23 Hz for cardiac and another
sinusoid at f r = 0.25 Hz for respiratory noise. The magnitude
of the cardiac artifacts is modulated based on the power of the
cardiac artifact found in a real fMRI dataset. To do this, the
Circle of Willis was manually identified, where the cardiac signal
dominates the fMRI time-series. Next, the frequency range of the
aliased cardiac signal is detected from the signal at the Circle of
Willis. Then, the power spectrum of every voxel was examined in
the detected frequency range, and the amplitude of the simulated
physiological artifact is scaled with the power computed from
the detected frequency range. Finally, a low thermal noise level
was added to the simulation, consisting of white noise that
made up 5% of the signal’s energy. The hemodynamic signal
was scaled so that the standard deviation equals 4% of the mean
signal’s magnitude, comparable to a robust signal in the visual
cortex. This scaled signal was added to the mean value image.
Because we know exactly where the signal is located, we can
compare voxels directly from these regions without the need for
spatial normalization.

We simultaneously simulated the effect of head motion and
slice timing as well as their interaction. To do this, we use motion
parameters estimated from real subject scans. We up-sampled
these motion parameters from real subject movement inside
the scanner (which includes rotations and translations along all
three axes) by the number of slices in the simulated scans, using
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spline interpolation. For instance, if there were 40 slices in each
volume, we up-sampled the motion parameters by 40 times the
original fMRI sampling frequency (1/TR). We then transformed
the brain volume 40 times according to the upsampled motion
parameters between each pair of consecutively acquired fMRI
volumes. This gave us the position of the brain volume at the
instance of each slice acquisition. Then we sampled the slice from
the transformed volumes according to the timing of each slice.
The high temporal-resolution BOLD signal present in each voxel
was also sampled according to the timing of each slice, which
simulated slice timing, creating a lag or delay in sampling between
slices. A more detailed description about this simulation can be
found in Parker et al. (2016).

We generated 20 simulated scans from a single subject’s
morphology. Each subject was given a unique BOLD time series
for every region of the brain. For each time series, a simulated
scan was created with three levels of motion: high, medium, and
low. The motion levels were classified by a set of real subjects’
mean frame-wise displacement (mFWD) inside the scanner
(Low: mFWD < 0.1 mm, med: 0.25mm < mFWD < 0.4 mm,
high: 0.6 mm < mFWD < 0.7 mm) (Power et al., 2012).
Simulated data with each motion level was then sampled with
the three interleave schema; sequential (Interleave 1), even
odd (Interleave 2), and every 6th (Interleave 6). Thus, each
subject’s fMRI scan was simulated a total of nine times, each
with unique interleave and motion parameters. Synthesized
fMRI scans consisted of 10 min of scanning with an in-plane
acquisition matrix of 112 × 112, and 37 slices. The voxel size
was set to 2 mm × 2 mm × 3 mm. The TR was equal to 2 s
for all experiments. Thus, with twenty BOLD time series each
simulated under nine different conditions, we created 180 unique
simulated fMRI scans.

Real Data
We chose a task with high temporal sensitivity and a
robust response for this study. Thirty right-handed healthy
subjects (17/13 young/old; proportion female/male: 0.53/0.61,
age mean ± std: 25.5/64.9 ± 2.4/2.2 years) were presented
with event related visual (flashing checker boards) stimuli with
random onset and duration while undergoing fMRI. To ensure
attention to the stimuli, subjects responded with a button
press at the conclusion of each visual stimulus. Functional
images were acquired using a 3.0 Tesla Achieva Philips scanner
with a field echo echo-planar imaging (FE-EPI) sequence
[TE/TR = 20 ms/2000 ms; flip angle = 72◦; 112× 112 matrix size;
in-plane voxel size = 2.0 mm× 2.0 mm; slice thickness = 3.0 mm
(no gap); 41 transverse slices per volume, 6:1 Philips interleaved,
in ascending order]. Participants were scanned for 5.5 min,
with at least 37 events of visual and auditory stimuli. Subjects
were stratified based on their mFWD over the entire scan
period. Ten low motion (mFWD < 0.14 mm), ten medium
motion (0.14 mm ≤ mFWD < 0.2mm), and ten high motion
(mFWD ≥ 0.2 mm) subjects were selected for each group. We
used this data for both GLM analysis and the model-free ICA
analysis commonly used in FC analysis of fMRI data.

In addition, we used the “100-unrelated” dataset from
the Human Connectome Project (HCP), which consisted

of 100 healthy and young participants (age range = 22–
35 years, m/f = 52/48) to evaluate the benefit of STC on
data with short TR and multiband acquisition (Van Essen
et al., 2013). HCP data were acquired on a customized
Siemens 3T Skyra scanner with a multiband EPI sequence
[TE/TR = 33.1ms/720 ms; flip angle = 52◦; FOV = 208× 180 mm;
voxel size = 2.0 × 2.0 × 2.0 mm; 72 axial slices; multiband
factor = 8]. We used the N-back working memory scan, and
modeled all correct responses as an event-related regressor.

fMRI Data Statistical Analysis
Assessing the effectiveness of STC methods is extremely
challenging due to its interaction with motion (Kim et al., 1999),
and the fact that its improvement is slice-dependent. The benefit
of STC could appear absent if the majority of activation falls
on a slice with low temporal delay due to the fact that very
little temporal shifting is encountered in these slices. This is
analogous to examining the effect of motion correction on data
with extremely low motion. In most typical STC techniques,
one slice is chosen as the “reference slice,” and all other slices
are shifted temporally to match the time at which the reference
slice was acquired. The effect we see due to STC is directly
proportional to the size of this temporal shift. In fact, if the
activation falls on the reference slice, then no shifting occurs, and
we will see absolutely no difference between STC and uncorrected
data. This could be mistaken as evidence that STC may not be
required in the preprocessing pipeline. Furthermore, depending
on an individual’s brain size, position and head orientation
in scanner, the same brain region may fall on different slices
with different acquisition delays from subject to subject. This
makes it extremely difficult to compare STC methods on a given
region across subjects, as shown in our previous publication
(Parker et al., 2016). Therefore, it is important to evaluate the
effectiveness of STC on slices with the maximal temporal delay
across subjects. For all experiments in this study, we choose
the first slice acquired at the beginning of the TR as our
reference slice. Therefore, a “large delay slice” refers to a slice
acquired toward the end of the TR, while a “small delay slice”
refers to a slice acquired toward the beginning of the TR. This
classification obviously depends on which slice is used for the
reference slice.

Assuming all subjects are scanned with identical scan
parameters, the easiest way to evaluate STC is to identify
one high-delay slice in native space that intersects a region
of activation in each subject. Higher-level cognitive tasks and
contrast maps can sometimes result in only small regions
of activation which vary spatially from subject to subject,
making these kinds of studies inappropriate for investigating
STC. Instead, a task with a well-known, robust, and spatially
large activation should be used to ensure that every subject
has some activation on a chosen high-delay slice. In our
evaluation, we generated simulated data with the same subject
brain morphology to control for brain shape differences. For
real data, we used only the voxels in subjects’ native space
that are located in slices with moderate offset delay and have
significant activation for an attended flashing checkerboard
visual sensory task.
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Both simulated and real data underwent various preprocessing
pipelines consisting of the following modules in different orders:
rigid body spatial realignment (motion correction or MC)
was applied with FSL (mcflirt, Jenkinson et al., 2002) using
rigid-body registration of all volumes to the middle one. STC
(temporal realignment) was performed using our in-house
method FS, as well as the FSL and SPM default techniques.
All STC methods temporally aligned the data to the first
slice, acquired at the beginning of the TR. FS is described in
our previous publication and summarized here (Parker et al.,
2016). Our method relies on the Nyquist–Shannon sampling
theorem, which states that a signal sampled at twice its Nyquist
frequency can be optimally reconstructed by zero-padding and
low pass filtering. Using this, as well as an understanding of
digital filtering and the properties of our BOLD signal, we
optimized the STC algorithm by upsampling the data, moderately
increasing the filter order and addressing initialization artifacts
with a circular padding scheme. Finally, an optimal window
function is selected for our low pass filter (LPF) – a Kaiser
windowed sinc, for its tradeoff between a stable pass band,
steep transition width, and suppression of the stop band. The
cutoff frequency is adjusted to remove high-frequency noise
above 0.21 Hz, which is the highest frequency present in the
canonical HRF. The upsampled data is then resampled at a
desired offset, to correct for the slice timing artifact. As we
have shown in our previous work (Parker et al., 2016), every
interpolation scheme can be represented and implemented as
low-pass filtering with a specific kernel. This might raise the
question, why the proposed FS method (which is essentially
another low-pass filter) outperforms the interpolation-based
methods that were being used in FSL and SPM. While this
has not been discussed extensively in the fMRI field, we need
to emphasize that the filter type, order, cut-off frequency,
window type, transition to pass-band ratio, zero-padding scheme,
and most importantly its implementation are all extremely
important factors to be considered in any digital filter design,
and could substantially affect the performance of the filter. In
that sense, one might consider FS theoretically as a modified
implementation of the low-pass filter that is often used in fMRI
pre-processing pipeline.

We also created a “gold standard” method to compare STC
techniques by constructing a slice-dependent shifted regressor
for each slice. These shifted regressors account for the slice
dependent acquisition offset delay. This method only applied
a LPF to the data, as most STC techniques inherently have a
small amount of low pass filtering. For a reliable comparison,
the same filter parameters used in our FS method were used
for the Shifted Regressor (SR) technique. In theory, this method
should produce the best results, if no 3D processing algorithm
(e.g., 3D smoothing, or 3D spatial transformation) has been
applied in the pre-processing, as those methods combine data
from different slices with different offset delays, which would alter
the signals of each voxel.

In order to focus purely on the effect of different STC
methods, only the specified preprocessing steps are applied to
the data. We developed a standard generalized linear model
(GLM) in Python and used it to model observed fMRI data
Y at each voxel as a linear combination of regressors X which

were created by convolving the double gamma HRF with the
stimulus timing function. We used a standard GLM model
shown below:

Y = X · β+ e

where β coefficients were obtained using the ordinary least square
estimate and given by,

β = (XTX)−1XTY

Standard GLM statistical inference was performed to obtain the
t-statistics and significance level of activation for each voxel
independently. In our previous publication, we compared the
t-statistics from the GLM directly. In this paper, we compare the
standardized beta value, described as:

βs = β
σx

σy

Where σx is the standard deviation of the regressor X, σy is
the standard deviation of the time series Y. If there is only
one regressor in the matrix X, then this value is mathematically
equivalent to the Pearson correlation coefficient of the regressor
with the time series. The correlation provides a more intuitive
measure that is normalized, and there for more comparable
across different analyses. We assume that a pipeline is better if
it is able to construct a time series that is more correlated to
the regressor. While there are many methods for fMRI quality
assessment, the Pearson correlation coefficient is a good choice
for extracting the relationship between two variables (Tegeler
et al., 1999; Miller et al., 2002; Wagner et al., 2005; Caceres
et al., 2009). We then convert the correlation to a z score using
Fisher’s-z transform for statistical comparison. We refer to this
as the voxel’s z-score, and it is used as the basis of comparison
throughout the paper.

Voxel Selection
Only voxels in a slice with high acquisition delay in either real or
simulated data were considered for this selection. For real data,
we selected slice 17, (1.46 s delay from the beginning of the TR),
and for simulated data we selected slice 18 (1.78 s delay from the
beginning of the TR). Previous studies have demonstrated that
the benefit of STC is directly proportional to the temporal offset
from the selected reference slice, and have shown that parameter
estimates have reduced variance from slice to slice, and remain
unbiased after STC (Sladky et al., 2011). In a previous publication,
we have shown that the difference between STC and uncorrected
data is minimal in slices with low delay (Parker et al., 2016). This
paper is primarily concerned with the effects of STC on fMRI
data in different preprocessing pipelines. In order to evaluate this,
we must examine voxels that are affected by the STC process.
Just as the effects of MC can only be seen on volumes with
motion present, the effects of STC can only be seen on slices with
temporal delay. So the evaluation of the STC methods and their
interaction with other processing steps would be meaningless
if it is done on slices with minimal or no time delay, just as
evaluation motion correction technique on scans without motion
would give invalid results. Because of this, we focused only on
high delay slices to examine the effect of STC and its interaction
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with preprocessing steps where it’s most detectable, rather than
comparing the effect of STC across all slices.

We selected the left superior frontal (LSF) region as our region
of interest (ROI) for simulated data since the superior frontal
region is one of the few regions that spans over 20 slices, thus
including slices with various acquisition delays. Therefore, we
can guarantee that some part of the region will fall in a high-
delay slice regardless of motion and subject morphology. It also
spans from the center of the brain to the frontal region, which
will capture many different kinds of motion artifacts, as the same
motion may produce different, even opposite signal changes in
different regions of the brain (Power et al., 2012). Only voxels
in the LSF ROI were used in all simulated data analysis, and the
known underlying BOLD signal assigned to the LSF ROI was used
as our regressor.

For real data, we created an ROI for each subject that included
voxels where we expected significant visual activation. This
ROI was created by transferring a group level activation mask
for the visual stimulus back into each subject’s native space.
This group level activation mask was created by running a full
default FSL first level analysis, which consists of the following
steps: (a) spatial realignment, (b) STC, (c) 3D smoothing with
FWHM = 5 mm, (d) intensity normalization (e) temporal
filtering (125 s cutoff) (f) GLM with prewhitening, and a
second level analysis including: (a) spatial normalization, (b) full
Bayesian linear model (Beckmann et al., 2003; Woolrich et al.,
2004), and (c) cluster-wise multiple comparison correction (z
threshold 2.3, cluster significance threshold p = 0.05). Only voxels
in the activated regions were used in our real data analysis. Region
masks for real and simulated data can be seen in Figure 1. The
large ROI from the group level is only used to confine voxel
selection to an area that is neurophysiologically task-relevant, to
avoid false positives. For instance, we want to prevent selecting
a false-positive voxel in the motor cortex for visual stimulation.
One could just replace these ROIs with an anatomical mask of the
visual cortex without having a significant alteration on the results.
For real data, the average size of this region across all subject’s
native space was 8704.3 voxels (104.6 cm3), with a standard
deviation of 974.6 voxels. When confined to a slice of high delay,
the average size of this mask was 514.0 voxels (6.2 cm3), with a
standard deviation of 83.4 voxels. Despite the fact that this ROI
was identified using a pipeline that performs MC before STC,
the spatial smoothing used in the group level analysis makes the
resulting mask large enough so that it will not bias the results
to favor MC before STC pipelines. The large ROI is necessary,
as individual differences in head position and brain function do
not guarantee that all subjects will have significant activity in a
single anatomical region if it’s too small. While it’s possible that
this ROI may cover different anatomical regions over different
subjects, the purpose of the group level analysis was to identify
regions functionally and neuro-physiologically associated with
the task. Since the function of the brain is what is associated
with the BOLD signal, this allows us to identify the regions that
are most likely to have the same underlying BOLD signal. This
region spans over multiple slices, giving us a good chance at
identifying significant voxels within the functional region, on a
slice of high temporal delay.

FIGURE 1 | Visualization of spatial ROI’s used in analysis. Spatial maps for
ROI’s used in (A) simulated data, which was identical for each simulated
subject, and (B) Real data, in which the ROI varied slightly from subject to
subject due to individual subject morphometry.

Voxel selection was done exclusively from within the
generated ROI mask and selected slice with high temporal
acquisition delay. We used the SR technique to obtain the
significantly activated voxels within the ROI without applying
any spatial smoothing. In addition, the SR method does not
require an extra STC step, thus making the choice of STC
before or after re-alignment irrelevant. For any given subject,
20 voxels that had the highest t-statistics from the SR pipeline
were identified. The z-score of the regressor to the time series
of these 20 voxels were used to compare all STC methods and
scan parameters. We then use a one tail pair-wise t-test on these
values to compare the effectiveness of each pipeline. While we are
using 30 fMRI scans from real and 20 from simulated data, each
scan provided us with 20 voxels, each of which provides a unique
fMRI measurement from different location in the brain. In other
words, at each voxel location, we can establish an independent
but similar comparison between the STC methods. Because of
this, we consider each voxel a degree of freedom, giving us 199
DoF for real data (10 subjects for each motion level), and 399
for simulated data. The SR method theoretically does the best
job identifying the regions that truly match the expected signal.
By using the voxels with the highest statistics from the gold
standard method, we identify the 20 voxels we are most certain
are true positives, thus minimizing the possibility of type I error
confounding our analysis, and allowing us to focus mostly on the
effects of interpolation error from STC. It is important to note
that these are not necessarily the 20 highest voxels for the other
STC methods. Furthermore, from subject to subject, the location
of these voxels is not constrained, as not every subject will exhibit
the strongest response in the same location. Within each subject,
we are comparing the same group of voxels across all different
STC methods, so it is appropriate to use a repeated measures
t-test to see if the preprocessing pipeline had any significant effect
on the GLM, as done previously in the literature (Sladky et al.,
2011). Our processing pipeline is illustrated in Figure 2.

The low number of voxels used in the comparison was
chosen because certain real subjects only had 20 significant voxels
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FIGURE 2 | A flowchart of the processing pipeline for real data. (A) A default group level GLM is run on all subjects to obtain a region of activation, which is binarized
into a mask and transformed back into each subject’s native space. This mask is used as an ROI to examine t-statistics from five different processing pipelines: (B)
No STC, but the data is temporally lowpass filtered, and slice-dependent regressors shifted to account for the acquisition offset are used. (C) Our in house FS STC
method is used. (D) FSL STC is used. (E) SPM STC is used. (F) No STC is used, and regressors are not shifted to account for slice offset. The statistics from
pipeline b are used to identify 20 voxels with the highest t-statistics in the ROI. The standardized beta values from these 20 voxels are then extracted from the other
pipelines, and the values are compared in a pairwise t-test.

present both in the region of interest, and also in the high-
delay slice. The reason this number is low is because we do not
perform spatial smoothing, which greatly increases the number
of significant voxels, at the cost of a lower maximum t-value.
In order to perform a repeated measures t-test, we need to
compare values from the same voxels across multiple datasets. To
ensure that the voxels we were comparing were in fact statistically
significant in every comparison, we use the highest 20 voxels.

Pipeline Order Without Smoothing
We created four different preprocessing pipelines to study
the interaction of motion and the order of preprocessing
steps. For simulated data, each slice acquisition order and
motion level was processed with the following pipelines: (1)
STC after motion correction (“After MC”). (2) STC before
motion correction (“Before MC”). (3) STC only. (4) Motion
correction only. (5) No correction. In this experiment, motion
correction was carried out with FSL’s mcflirt spatial realignment
tool using rigid body registration to the middle volume.
For real data, subjects were divided into low, medium, and
high motion groups, and the same five pipelines were run
on each subject. For both simulated and real data, the top
20 voxels selected for statistical analysis in the respective
ROI were identified using the “unsmoothed/SR” pipeline as
the reference image. The LPF for the SR technique was
applied before MC. For simulated data, we also extracted the
HRF from these voxels using basic matrix deconvolution and
compared it to the true HRF used to generate the simulation.
We also computed the dice overlap of the location of each
method’s top 20 voxels, compared to the top 20 voxels found
using the SR method.

Prewhitening is an important step in the preprocessing
pipeline. To assess the interaction between prewhitening and
STC, we re-ran the real subject pipeline-order analysis with
AFNI’s prewhitening routine, which is a voxelwise auto-
regressive-moving-average ARMA(1,1) model, and compared the
results to the non-prewhitened data. The interaction with STC
has already been studied, and was found to be limited (Olszowy
et al., 2019). To verify these results, we assessed this interaction
with STC, both with and without MC.

We also use a common reliability measure to see if STC, and
pipeline order, have any effect on the reliability of the data. For
this experiment, we use the real, low-motion subjects to minimize
confounds and focus on the effect of STC on reliability. We split
each subject’s time series into two halves, and recomputed the
GLM on each half with the appropriate segment of the regressor.
A brain mask, created using FSL’s BET, is used to extract the
beta values from the brain for each half of the time series.
The correlation between the beta values from each half is then
calculated. High correlation indicates good similarity between the
analyses run on each half of the scan.

Motion Parameter Residualization
We also examined the effect of pipeline order while including
realignment parameter estimates as nuisance regressors, also
known as MPR. Six motion parameters are estimated during
the rigid body realignment stage described earlier, and included
as nuisance regressors along with their temporal derivatives
(rotation and translation for the x, y, and z axis) (Power
et al., 2014). These parameters were acquired from FSL’s mcflirt
spatial realignment tool, using rigid body registration to the
middle volume. In cases with “No MC,” motion parameters were
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estimated after STC, but no realignment was done. Depending
on the level of motion, more accurate motion parameters may be
extracted before or after STC. This was run on a subset of 5 low,
medium, and high motion subjects for both real and simulated
data. As in the previous section, we used the “unsmoothed/SR”
pipeline as the reference image for statistical analysis.

Spatial Smoothing on STC
Slice timing correction is particularly sensitive to any sort
of image processing/analysis that spans over multiple slices,
the most common of such processes is 3D spatial smoothing.
Smoothing is generally done to enhance the robustness of the
statistical analysis results and reduce false positive rates (Mikl
et al., 2008). Our goal in this experiment is to investigate the
effect of 3D smoothing on the effectiveness of STC. Four different
Gaussian non-linear smoothing kernels with FWHM = 3.5,
5, 6.5, and 8 mm were used to smooth simulated and real
data using FSL’s smoothing method. Smoothing was applied by
spatially convolving each 3D volume in the time-series with
the appropriate 3D Gaussian kernel. For real data, the effect of
smoothing was examined on high, medium, and low motion
scans. For simulated data, low motion scans were used, and the
effect of smoothing was examined for sequential, interleave 2,
and interleave 6 acquisition methods. Each fMRI scan was first
motion corrected and slice timing corrected before the various
smoothing kernels were applied. We compared the performance
of each STC method across the different smoothing kernels,
where higher z-scores are considered better performance. For
each motion/interleave case for real/simulated data respectively,
the corresponding “unsmoothed/SR” image was used as the
reference image for voxel selection.

STC on Short TRs
To examine the benefit of STC on real data with high temporal
resolution, we modified the HCP volumetric preprocessing
pipeline described in Glasser et al. (2013) to output the results
in native space, and removed any spatial smoothing to avoid
the complications involved in assessing STC benefit, as described
above. We refer to this custom pipeline as the “modified
HCP pipeline.” We selected the N-back working memory task,
described elsewhere (Barch et al., 2013), as our experimental data.
As in the previous experiments, a default FSL first and second
level analysis was run to obtain a group level activation mask
of an event-related regressor modeling activation from all 2-
back correct events. A python-based GLM was then run on each
subject’s native space data with (a) the modified HCP pipeline
with the gold standard SR, (b) the modified HCP pipeline with
added FS STC, and (c) the modified HCP pipeline with no STC.
We used the gold standard SR results as our reference image for
statistical analysis.

Effect of STC on Functional Connectivity
Analysis
To examine the effect of STC on the extraction of functionally
connected regions, we ran FSL’s MELODIC ICA analysis
tool. MELODIC uses probabilistic ICA to extract spatially

independent components along with their time series. MELODIC
attempts to extract an optimal number of spatial/temporal
components, so that when recombined they approximate
the original data as closely as possible without overfitting
(Smith et al., 2004).

For simulated data, we used low motion subjects with no
added noise to attempt to minimize any confounds present in
the analysis. We select data with a TR of 2 and interleave 6,
which matches the parameters of our real data, for a more
accurate comparison. Only STC was performed on the data, and
no additional processing was done prior to running MELODIC
ICA extraction. We manually identified a single IC which has
the maximum spatial overlap with the task-related co-activation
pattern found with the GLM in Section “Pipeline Order Without
Smoothing,” and ran FSL’s dual regression to assess the statistical
fit of this IC’s time series on the voxels present in the spatial
IC (Beckmann et al., 2009). This provided us with z-statistics
describing the significance of the IC’s time series for any given
voxel. For this experiment, the z-statistics come directly from the
statistical parametric map, rather than the z-score of a correlation
as in the other analyses. Because there is no gold standard for
ICA, we cannot use the same methods for comparing 20 voxels as
described before. Instead, we simply extract significant z statistics
generated from the dual regression that fall within a given ROI
from both high and low delay slices. For real data, this ROI is
the group level task activation map described earlier, and for
simulated data this ROI is the LSF anatomical region where the
signal was simulated in. We then examined the z-statistics within
the mask separately for each slice, and together as a whole. We
hypothesize that the uncorrected data will have lower z-statistics
in high-delay slices, while STC data will have uniform z-statistic
values over slices of all delays.

RESULTS

Pipeline Order Without Spatial
Smoothing
Table 1 shows the mean z-scores extracted from the spatial
realignment/STC order experiment for simulated data described
in Section “Voxel Selection.” These values are plotted in
Supplementary Figure S1. The voxels with the top 20 t-statistics
from the SR method are identified, and the z-scores are compared
across different motion levels, interleave types, and STC methods.
Within each method, the z-scores are extracted from three
different pipelines: STC “before MC,” STC “after MC,” and only
STC (“no MC”). The “Uncorrected” condition refers to scans with
no STC, and only “MC” or “No MC,” where “No MC” refers to an
unprocessed scan.

From this table, we see that the results vary based on
the level of motion, the slice acquisition orders, and the
methods of STC. Significant differences are indicated with a
“ ∗” for p < 0.01, and a “ ‡ ” for p < 0.001. All t-tests were
calculated with respect to the STC “Before MC” case within each
method/motion/interleave block, which is highlighted in gray,
and the pipeline with the highest average z-score value is bolded
within each STC/Interleave/Motion category. For FS, STC “After
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TABLE 1 | Effect of the order in which STC and MC are applied in the preprocessing pipeline in simulated data.

Sequential Interleave 2 Interleave 6

Low motion Medium motion High motion Low motion Medium motion High motion Low motion Medium motion High motion

FilterShift

Before MC 1.50 ± 0.24 0.62 ± 0.15 0.39 ± 0.14 1.50 ± 0.24 0.62 ± 0.15 0.39 ± 0.15 1.51 ± 0.24 0.62 ± 0.15 0.39 ± 0.14

After MC 1.57 ± 0.27‡ 0.64 ± 0.19 0.61 ± 0.17‡ 1.56 ± 0.26‡ 0.63 ± 0.18 0.56 ± 0.16‡ 1.55 ± 0.26‡ 0.63 ± 0.19 0.56 ± 0.17‡

No MC 1.20 ± 0.26‡ 0.38 ± 0.17‡ 0.15 ± 0.14 1.20 ± 0.26‡ 0.38 ± 0.17‡ 0.16 ± 0.14‡ 1.21 ± 0.26‡ 0.38 ± 0.17‡ 0.16 ± 0.13‡

FSL

Before MC 1.52 ± 0.24 0.64 ± 0.19 0.57 ± 0.20 1.23 ± 0.14 0.60 ± 0.16 0.55 ± 0.18 1.06 ± 0.11 0.59 ± 0.15 0.54 ± 0.17

After MC 1.52 ± 0.24 0.64 ± 0.18 0.60 ± 0.17 1.24 ± 0.15∗ 0.60 ± 0.16 0.54 ± 0.15 1.04 ± 0.11‡ 0.58 ± 0.14 0.51 ± 0.14

No MC 1.18 ± 0.24‡ 0.38 ± 0.17‡ 0.15 ± 0.14‡ 1.03 ± 0.17‡ 0.37 ± 0.16‡ 0.16 ± 0.14‡ 0.92 ± 0.14‡ 0.36 ± 0.15‡ 0.16 ± 0.13‡

SPM

Before MC 1.18 ± 0.13 0.60 ± 0.16 0.53 ± 0.18 1.11 ± 0.12 0.58 ± 0.15 0.54 ± 0.17 1.05 ± 0.11 0.58 ± 0.15 0.53 ± 0.17

After MC 1.17 ± 0.13 0.60 ± 0.15 0.56 ± 0.15 1.11 ± 0.12 0.58 ± 0.14 0.52 ± 0.14 1.03 ± 0.11‡ 0.57 ± 0.14∗ 0.51 ± 0.14

No MC 0.98 ± 0.16‡ 0.36 ± 0.16‡ 0.14 ± 0.14‡ 0.95 ± 0.15‡ 0.36 ± 0.15‡ 0.15 ± 0.13‡ 0.91 ± 0.13‡ 0.36 ± 0.15‡ 0.16 ± 0.13‡

Uncorrected

MC 0.95 ± 0.08 0.54 ± 0.12 0.52 ± 0.13 0.85 ± 0.08 0.51 ± 0.12 0.50 ± 0.12 0.77 ± 0.07 0.47 ± 0.11 0.47 ± 0.12

No MC 0.84 ± 0.11‡ 0.34 ± 0.14‡ 0.14 ± 0.14‡ 0.76 ± 0.10‡ 0.32 ± 0.13‡ 0.15 ± 0.13‡ 0.70 ± 0.09‡ 0.31 ± 0.12‡ 0.15 ± 0.12‡

Mean z-score of top 20 voxels identified in the Shifted Regressor “Before MC” case, extracted across various preprocessing pipelines for five simulated subjects. For the Shifted Regressor data, “Before MC” refers
to when the low pass filter was applied to the data in the preprocessing pipeline. Pairwise t-tests were used to determine significant differences between pipelines for a given STC technique, relative to the reference
case highlighted in gray (STC before MC). Significant differences are indicated with a “ ∗” for p < 0.01, and a “ ‡” p < 0.001. Bold numbers indicate the highest mean z-score of the three pipelines for a given interleave,
motion level, and STC technique. Highlighted rows indicate the data used as reference in the t-test.
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FIGURE 3 | The effect of STC on the accuracy of BOLD response. Normalized
HRF’s extracted from the top 20 voxels identified using the shifted regressor
method for low, medium, and high motion in simulated data. HRF’s were
extracted using FIR deconvolution for each STC method (dashed lines). The
reference HRF used in the simulation is plotted as a solid blue line. For each
motion level and STC method, HRF’s are combined across all pipeline orders.

MC” significantly outperformed “before MC” across all interleave
values for both low and high motion (p < 0.001), but not for
medium motion, where there were no significant differences for
the order of STC and MC. In all cases, both “After MC” and
“before MC” outperformed “No MC.”

For FSL, pipeline order had no effect in sequential data. For
interleave 2, “After MC” is significantly higher than “before MC”
for low motion data (p < 0.01), but not for medium and high
motion subjects. For interleave 6, we now see that “before MC”
performs significantly better than “After MC” for low motion
subjects (p < 0.001). For medium and high motion subjects,
“before MC” does have a higher mean z-score than “After MC,”
but it is not statistically significant (p > 0.01).

For the SPM corrected data, we see many similar trends.
Pipeline order is largely irrelevant for both sequential and
interleave 2 acquired data, with no significant differences between
“After MC’ and “Before MC.” For interleave 6, we see that

“Before MC” performs significantly better than “After MC” for
low motion (p < 0.001), and for medium motion (p < 0.01), but
not for high motion. Finally, for uncorrected data, “MC” always
performed significantly better than “No MC” for all data sets
(p < 0.001).

Interestingly, the effects of STC and spatial realignment seem
to add non-linearly. For example, in the medium motion case
with interleave 6, the application of MC to the data without STC
raises the average z-score from 0.31 to 0.47 (52% increase). The
addition of FSL’s STC without MC raises the z-score from 0.31
to 0.36 (16% increase). However, the addition of both MC and
FSL’s STC raises the z-score from 0.31 to 0.58 (87% increase).
This is greater than the summation of just MC or just STC. This
highlights the importance of applying both STC and MC to fMRI
data in the pre-processing stream.

To examine the effect of STC on estimated BOLD response
parameters, the HRF was extracted using FIR deconvolution
(Glover, 1999) from the 20 voxels identified in the previous
analysis for simulated data, using the “STC after MC” pipeline,
as it performed best for simulated data. A more accurate
HRF indicates that the time series better matches the expected
stimulus response. We computed the sum of squared error (SSE)
between the extracted HRF and the true underlying HRF, both
normalized. The HRF was normalized because each voxel was
assigned a BOLD signal that was 4% of the mean intensity
of that voxel. Thus, for every voxel, the magnitude of the
extracted HRF should be different, meaning that absolute error
does not fully describe the goodness of fit, as the size of the
original signal must be accounted for. The extracted HRFs can
be seen in Figure 3. For each STC method, the HRFs from
all pipelines are included in the plots. It can be seen that the
error of the estimates increases as motion increases. The SSE
are visualized separately using a box-plot in Figure 4 for each
of the STC techniques. For low motion, FS has a mean SSE
of 0.15, while FSL, SPM, and uncorrected data have a mean
of 0.24, 0.29, and 0.39 respectively. The error increases for
medium and high motion, reaching a mean of 0.62 for FS,
0.67 for FSL, 0.72 for SPM, and 0.73 for uncorrected data in
the high motion case. As shown, increasing the level of head
motion increases the SSE and reduces the difference between
the utilized STC techniques. Note, the line in the boxplot
indicates the median.

Figure 5 shows a violin plot of real data and the effect of
STC/MC order. For low motion, the only significant difference
was found with the FS STC method, where STC after MC created
significantly lower z-scores than STC before MC (p < 0.001),
and STC only (p < 0.01). For all other STC methods in low
motion subjects, there were no significant differences between
any other pipelines, even for uncorrected data, which compares
MC in the absence of STC. For medium motion, pipeline order
had a significant impact for all STC techniques. For FS, FSL, and
SPM, STC and MC together in any order performed significantly
better than No MC (p < 0.001), and STC before MC performed
worse than STC after MC (p < 0.01 for FS and SPM, p < 0.001
for FSL). In the medium motion case, MC significantly improved
uncorrected data (p < 0.001). For high motion subjects, there
is again no significant difference between pipelines applying
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FIGURE 4 | Quantification of BOLD HRF extraction error. SSE of normalized
HRF’s deconvolved from STC data, compared to the canonical HRF used in
the simulation for low, medium, and high motion. For each motion level and
STC method, HRF SSE’s are combined across all pipeline orders.

STC before or after MC. However, the presence of MC again
improves z-scores significantly across all methods (p < 0.001).
For uncorrected data, MC again proved significantly beneficial
(p < 0.01). Generally, for subjects with high and low motion,
the order of the preprocessing pipeline seem to have no effect,
while for the medium motion cases, MC before STC shows small
but statistically significant improvement over STC before MC
for FSL and SPM. Real data also highlights the importance of
performing both MC and STC. For medium and high motion
subjects, STC and MC performed together in any order (“Before
MC” and “After MC” columns) always results in higher statistics
than just STC alone (“No MC” column, p < 0.001).

In order to further probe these results, we calculated the dice
overlap of the top 20 voxels from each method in the high delay
slice, compared to the top 20 voxels identified using the SR
method. This was done for real and simulated data, and for each
different pre-processing pipeline. Figure 6 shows the resulting
Dice overlap coefficient of simulated data, and Figure 7 shows the
same for real data. As shown, applying MC after STC (the “Before
MC” column) typically lowers the dice overlap of the highest
voxels relative to those of the “gold standard” method, which
worsens as motion increases. In real data, we see a similar trend,
with slightly lower dice overlap when MC is applied after STC. FS

method has a lower dice overlap than other STC methods in real
data for medium and high motion cases when MC is not applied.

To compare the interaction of STC and PW, we examine the
z-scores of the pipeline with STC only, with and without PW.
For low motion subjects, prewhitening did not have a significant
effect on the z-scores for STC data (p > 0.05). The t-statistic maps
from the prewhitened data had a mean correlation coefficient
of 0.90 with the t-statistics maps from the non-prewhitened
data across all subjects, while beta maps had a mean correlation
coefficient of 0.83. All z-score averages from the prewhitened
data were within 0.04 units of the corresponding value in the
non-prewhitened data. This agrees with the literature in the
field, that has found only small interactions between STC and
prewhitening (Olszowy et al., 2019). Increasing the motion level,
or including MC into the pipeline introduced more differences
in z-scores between prewhitened and non-prewhitened data,
indicating a possible interaction with prewhitening and motion.
This relationship is beyond the scope of this manuscript, and can
be addressed in future work.

To examine the effect of STC on reliability, the correlations of
the low motion subjects’ beta maps are shown in Supplementary
Figure S2. When examining the reliability, we found no
significant differences between pipeline orders within each STC
method with a two sample t-test (p > 0.1). We also ran a repeated
measures t-test on the uncorrected data, and the STC only data
for each method, which also showed no significant differences
(p > 0.1). This shows that STC does not lower the reliability
of the fMRI data.

Motion Parameter Residualization
Residualizing motion parameters affected the results from the
section “Pipeline Order Without Spatial Smoothing,” as shown in
Table 2. Table 2 shows the summarized statistics for simulated
data, and these results are plotted in Supplementary Figure
S3. It is clear from Table 2 that the order of STC and MC
are greatly affected by MPR. For all STC methods, across all
levels of motion and all interleave methods, STC after MC
provided the best z-scores (p < 0.001). For uncorrected data,
MC only proved significantly better than no MC for low
motion sequential data (p < 0.01), and high motion data for all
interleaves (p < 0.01).

For real data, the effect of including motion parameters was
small, and seemed to change based on motion level. These
values are plotted in Supplementary Figure S4. For low and
medium motion, MPR reduced the average z-scores across all
methods by 0.03 and 0.04 respectively. For high motion, the
average z-scores decreased by only 0.003. For low motion, the
effect of combining STC and MC is enhanced, as STC “Before
MC” is now significantly better than “No MC” for FS, FSL,
and SPM (p < 0.001). For SPM, STC “After MC” also became
significantly different from no MC (p < 0.01). For medium
motion, the significant differences in pipeline order disappear for
FSL and SPM. For high motion, the same significant differences
present in the data without MPR were also found in this data
set. Additionally, for FS, the pipeline order now significantly
effected z-scores, with STC after MC resulting in higher
z-scores (p < 0.01).
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FIGURE 5 | Effect of the order in which STC and MC are applied in the preprocessing pipeline in real data. z-scores from the top 20 voxels from a visual ROI of 30
real subjects’ time series using different preprocessing pipelines, with no smoothing. FS, FSL, and SPM slice timing correction were applied before motion
correction, after motion correction, or without any motion correction. For the “Uncorrected” case, only motion correction was applied in the preprocessing pipeline.
‘<’ and ‘>’ Symbols indicate which mean is greater for cases that are not easily distinguishable.

FIGURE 6 | The similarity of the selected voxels in our evaluations of simulated data. Dice overlap in simulated data of top 20 voxels for each STC in various
pipelines, compared to the top 20 voxels of the shifted regressor method within that pipeline. Uncorrected data in the “No MC” column refers to data that has had
no MC or STC.
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FIGURE 7 | The similarity of the selected voxels in our evaluations of real data, Dice overlap in real data of top 20 voxels for each STC in various pipelines, compared
to the top 20 voxels of the shifted regressor method within that pipeline. Uncorrected data in the “No MC” column refers to data that has had no MC or STC.

Spatial Smoothing on STC
We compared the effect of spatial smoothing on STC using
both real and simulated data. Figure 8 shows the results
across simulated subjects with low motion for various types
of interleave acquisition. For simulated data, increasing the
kernel size reduces the mean z-scores monotonically as kernel
size increases for all STC data under all interleave scenarios.
For all interleave parameters and STC methods, each level of
smoothing was significantly different from the following level
(p < 0.001). Interestingly, mean z-scores from uncorrected data
only decreased monotonically for sequential acquisition and
interleave 2 acquisition. For uncorrected data with interleave 6,
the mean z-score is 19% higher than the unsmoothed case at
FWHB, and 6% higher than the unsmoothed case at FWHM
of 5 mm. Beyond 5 mm, the smoothed uncorrected data no
longer performs better than the unsmoothed data, dropping
monotonically as the FWHM increases. It is also important to
note the effect of smoothing on the SR method. For interleave
2 and 6, the average z-score for SR was lower than the average
z-score for FS in all smoothed datasets. This effect is amplified
as kernel size increases, and as interleave parameter increases.
In other words, SR method can only be considered as a gold
standard technique when there is no spatial smoothing applied,
and any smoothing with kernel size larger than 3.5 mm will
deteriorate its performance to the level where other methods
could outperform it.

For real data, the effect of spatial smoothing on the time
series z-scores are shown in Figure 9. For low motion, FS, FSL,
and SPM do not significantly change from the unsmoothed
case compared to any other kernel size. The only significant
differences between consecutive smoothing kernels are found
between 6 and 8 mm for FS, FSL, and SPM. The SR method,

on the other hand, has significantly lower z-scores between
smoothing kernels 3.5 and 5 mm (p < 0.01). The mean z-scores
continue to decrease significantly with kernel size 6.5 and 8 mm
(p < 0.001). For uncorrected data, we see the same phenomenon
from the simulated data, where the smoothed z-scores are
significantly larger as the kernel size increases from 3.5 to 5 mm
(p < 0.01), from 5 to 6.5 mm (p < 0.001), and from 6.5 to
8 mm (p < 0.001). This increase in z-score of the uncorrected
data was expected, since smoothing blends the high delay voxels
with low delay ones, which essentially performs similar to linear
interpolation. For medium and high motion subjects, we see the
same general decreasing trend in z-scores as larger smoothing
kernels are applied to STC data. We no longer see the same
initial increase in z-score in the uncorrected data. For all STC
methods, the unsmoothed data has significantly higher z-scores
than the smoothed data for kernel sizes greater than or equal
to 5 mm (p < 0.001). For the SR method, this difference
becomes significant at even just 3.5 mm (p < 0.01). For low
and medium motion cases, the average z-score for SR data
smoothed with an 8 mm kernel is even lower than any other
STC method, and in fact even lower than uncorrected data in the
medium motion case.

STC on Short TRs
We compared the z-score in the native space generated
from HCP data processed with three different pipelines
with no spatial smoothing. We have shown previously on
simulated data that short TR data benefits greatly from
the ideal LPF we use in FS. When performed on HCP
data, we found our STC method significantly increased the
mean z-score in the top 20 voxels by 13% (p < 0.001),
shown in Figure 10. The SR method was further able to
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TABLE 2 | Effect of the order in which STC and MC are applied in the preprocessing pipeline in simulated data, with MPR.

Sequential Interleave 2 Interleave 6

Low motion Medium motion High motion Low motion Medium motion High motion Low motion Medium motion High motion

FilterShift

Before MC 1.00 ± 0.44 0.39 ± 0.25 0.14 ± 0.09 0.94 ± 0.41 0.39 ± 0.26 0.14 ± 0.09 0.78 ± 0.31 0.35 ± 0.22 0.13 ± 0.09

After MC 1.33 ± 0.47‡ 0.65 ± 0.37‡ 0.50 ± 0.18‡ 1.25 ± 0.47‡ 0.63 ± 0.36‡ 0.48 ± 0.17‡ 0.97 ± 0.30‡ 0.56 ± 0.28‡ 0.43 ± 0.15‡

No MC 1.01 ± 0.44∗ 0.39 ± 0.25 0.14 ± 0.11 0.95 ± 0.41∗ 0.39 ± 0.26 0.13 ± 0.11 0.78 ± 0.31 0.36 ± 0.22 0.12 ± 0.10

FSL

Before MC 1.00 ± 0.43 0.39 ± 0.24 0.15 ± 0.10 0.87 ± 0.34 0.38 ± 0.22 0.14 ± 0.09 0.79 ± 0.29 0.35 ± 0.18 0.14 ± 0.09

After MC 1.31 ± 0.46‡ 0.65 ± 0.35‡ 0.50 ± 0.18‡ 1.08 ± 0.33‡ 0.58 ± 0.25‡ 0.47 ± 0.16‡ 0.94 ± 0.25‡ 0.53 ± 0.19‡ 0.43 ± 0.14‡

No MC 1.01 ± 0.44 0.39 ± 0.25 0.14 ± 0.11 0.87 ± 0.34 0.38 ± 0.21 0.14 ± 0.11 0.79 ± 0.29 0.36 ± 0.18 0.14 ± 0.10

SPM

Before MC 0.84 ± 0.32 0.35 ± 0.19 0.14 ± 0.09 0.81 ± 0.30 0.37 ± 0.21 0.14 ± 0.09 0.78 ± 0.29 0.35 ± 0.18 0.14 ± 0.09

After MC 1.03 ± 0.30‡ 0.56 ± 0.24‡ 0.47 ± 0.16‡ 0.97 ± 0.27‡ 0.54 ± 0.21‡ 0.45 ± 0.15‡ 0.93 ± 0.24‡ 0.52 ± 0.19‡ 0.43 ± 0.14‡

No MC 0.75 ± 0.46∗ 0.35 ± 0.19 0.14 ± 0.11 0.81 ± 0.30 0.36 ± 0.19 0.14 ± 0.10 0.78 ± 0.28 0.35 ± 0.18 0.13 ± 0.10

Uncorrected

MC 0.74 ± 0.27 0.33 ± 0.16 0.14 ± 0.09 0.65 ± 0.23 0.31 ± 0.16 0.14 ± 0.08 0.59 ± 0.20 0.29 ± 0.14 0.13 ± 0.08

No MC 0.63 ± 0.38‡ 0.33 ± 0.16 0.13 ± 0.10 0.65 ± 0.23 0.31 ± 0.16 0.12 ± 0.09∗ 0.59 ± 0.20 0.29 ± 0.14∗ 0.11 ± 0.09‡

Mean z-score of top 20 voxels identified in the Shifted Regressor “Before MC” case, extracted across various preprocessing pipelines for five simulated subjects with motion parameters included as nuisance regressors
in the GLM. For the Shifted Regressor data, “Before MC” refers to when the low pass filter was applied to the data in the preprocessing pipeline. Pairwise t-tests were used to determine significant differences between
pipelines for a given STC technique, relative to the reference case highlighted in gray (STC before MC). Significant differences are indicated with a “ ∗” for p < 0.01, and a “ ‡” p < 0.001. Bold numbers indicate the
highest mean z-score of the three pipelines for a given interleave, motion level, and STC technique. Highlighted rows indicate the data used as reference in the t-test.
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FIGURE 8 | The effect of spatial smoothing on simulated data with STC. Violin plots show the resulting z-scores from the voxels with the top 20 t-statistics for 20
simulated data sets processed with smoothing kernels of 0, 3.5, 5, 6.5, and 8 mm. We examined the effect of smoothing for sequential acquisition, even-odd
(interleave 2) and every 6th (interleave 6) acquisition (rows). For each interleave/smoothing condition, statistics were compared across 5 STC conditions: Shifted
Regressor, FS, FSL, and SPM STC methods were examined, as well as uncorrected data. For each interleave, the voxels with the top 20 t-statistics were identified
from the unsmoothed Shifted Regressor case. The z-score of these 20 voxels are plotted for all other STC methods and all other smoothing conditions. The effect of
smoothing is seen as a lowering of the mean z-scores, as well as reducing the variance across STC methods due to the distribution of slice-dependent errors. For
interleaved data, the Shifted Regressor method, which is supposed to be a gold standard, performs worse than our proposed FS method due to these distributed
errors.

FIGURE 9 | The effect of spatial smoothing on real data with STC. Violin plots show the resulting z-scores from the voxels with the top 20 t-statistics for 30 real data
sets (10 low motion, 10 medium motion, 10 high motion) processed with smoothing kernels of 0, 3.5, 5, 6.5, and 8 mm. We examined the effect of smoothing for
low, medium, and high motion levels (rows). For each motion/smoothing condition, statistics were compared across 5 STC conditions: Shifted Regressor, FS, FSL,
and SPM STC methods were examined, as well as uncorrected data. For each motion level, the voxels with the top 20 t-statistics were identified from the
unsmoothed Shifted Regressor case. The z-score of these 20 voxels are plotted for all other STC methods and all other smoothing conditions. The effect of
smoothing is seen as a lowering of the mean z-scores, as well as reducing the variance across STC methods due to the distribution of slice-dependent errors. In real
data, the “Gold standard” (Shifted Regressor) is outperformed by all other STC methods when large smoothing kernels are used. ‘<’ and ‘>’ Symbols indicate which
mean is greater for cases that are not easily distinguishable.
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FIGURE 10 | The Benefit of STC on short-TR data. Z-scores from voxels with
the top 20 t-statistics for 100 HCP unrelated subjects. Violin plots show the
combined z-scores of all 100 subjects from the 20 voxels with the highest
t-values in the Shifted Regressor case when processed with the default
volumetric HCP pipeline, with our proposed FS method, and with the Shifted
Regressor. This shows the clear benefit of applying STC to short TR (0.72 s),
multiband data.

FIGURE 11 | STC on the ability to extract functionally connected regions in
simulated data. For each simulated subject, a task IC was extracted with
MELODIC, and the IC’s time series was regressed onto the subject’s data
using FSL’s dual regression. Z statistics from a low and high delay slice were
extracted for every subject and plotted here. For uncorrected data, the
extracted IC performs as well as STC data in the low delay slice, but poorly
explains the variance in the high delay slice, resulting in a lower z-statistic. For
STC data, the average z-statistics are comparable for both high and low delay
slices.

increase the z-score by 37% from the HCP default pipeline,
further highlighting the sensitivity of low TR data to small
temporal shifts.

STC on Functional Connectivity Analysis
For simulated data, we extract and plot significant z statistics
from a slice with higher temporal delay, and a slice with low
temporal delay (slice 20 and 23) for all simulated subjects in
Figure 11. For the low delay slice, we see that all STC methods
perform similarly, and the extracted z-statistics are relatively the
same. For the high delay slice, we see that the uncorrected data
has lower z-stats than the low delay slice. However, STC improves
the statistics for the high delay slice in all cases. This can be
seen in Figure 12, where ICA dual regression is run on both
uncorrected data, shown in A, and STC data shown in B, with
the resulting z-statistics shown for six consecutive slices. The
IC for the LSF region covers the same spatial region in both
analysis, however, after performing dual regression, we see that
for uncorrected data, the time series of the IC only strongly
predicts the fMRI signal in some of the slices, while for the
STC data, the z-statisitcs remain high across all slices. Across all
subjects and slices, STC was able to improve the z-statistics of the
high delay slice.

For real data, we repeated the analysis done for simulated
data, and extracted z-statistics for two slices with low and
high delay from all subjects (Slice 15 and 18), and plotted
the distributions in Figure 13. As seen in this figure, the
differences between slices have largely vanished, across all
subjects and slices, z-statisitcs increased greatly with FS by 27%
compared to FSL, 18% compared to SPM, and 30% compared to
uncorrected data.

DISCUSSION

Our previous work has demonstrated the benefit of STC on
fMRI data in both real and simulated data which had already
been shown in the literature (Henson et al., 1999; Calhoun
et al., 2000; Vogt et al., 2009; Sladky et al., 2011). However,
because the slice-timing problem is fundamentally intertwined
with many confounding factors such as involuntary head motion
during scanning, spatial realignment, 3D smoothing, and spatial
normalization, it has as yet been difficult to determine whether
STC would provide any benefit to the analysis. In the current
study, we rigorously examined the impact of these major
confounding factors on the effectiveness of STC. We showed
that even though the effectiveness of STC changes depending
on the preprocessing pipeline, it still remains beneficial to be
included as a preprocessing step. While focusing on 20 highly
significant voxels does limit our conclusions about STC to only
true positives, previous studies have shown that STC does not
adversely affect parameter estimate bias, and in fact was shown
to suppress bias, so we do not anticipate the need to evaluate
STC on voxels outside our ROIs (Sladky et al., 2011). Although
we cannot determine from this study if the conclusions reached
here generalize over the whole brain, we have isolated the voxels
most affected by STC, and so if an effect is not found here, it
is unlikely to be found anywhere else. Other studies on STC
have shown the benefit of STC in regions distributed across the
brain (Henson et al., 1999; Calhoun et al., 2000; Sladky et al.,
2011), and so it is likely the observations made here will apply

Frontiers in Neuroscience | www.frontiersin.org 16 August 2019 | Volume 13 | Article 821

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00821 August 19, 2019 Time: 19:18 # 17

Parker and Razlighi Slice Timing in fMRI Pipelines

FIGURE 12 | Spatial map of functionally connected regions with and without STC on simulated data. The left Superior Frontal region is extracted using ICA on both
STC data and uncorrected data. The ICA from each dataset is then regressed back on the original data for (A) uncorrected and (B) FSL STC data. In the left-most
slices, regression z-statistics are higher in the uncorrected data, however, overall the STC data best describes the variance in the entire region, as seen by the drop
in z-statistics in slices 3–5 in uncorrected data, while the STC data’s z-statistics remain high across all slices.

FIGURE 13 | STC on the ability to extract functionally connected regions in
real data. For each real subject, a task IC was extracted with MELODIC, and
the IC’s time series was regressed onto the subject’s data using FSL’s dual
regression. Z statistics from a low and high delay slice were extracted for low
motion subjects and plotted here. For uncorrected data, the extracted IC
performs as well as STC data in the low delay slice, but poorly explains the
variance in the high delay slice, resulting in a lower z-statistic. For STC data,
the average z-statistics are comparable for both high and low delay slices.

to at least the entire region of activation, if not the whole brain,
though the magnitude of the effect will change with the temporal
delay of the slice.

There are additional STC methods not examined in this
paper. Some studies attempt to combine both MC and STC
using 4D interpolation to account for temporal and spatial
misalignment in one step (Roche, 2011). This approach takes into
account both the position of the head in space as well as the
timing of each slice. Other methods have proposed slice-by-slice
realignment and resampling to a standard template (Bannister
et al., 2007). This method tracks which slices contribute to each
voxel, and interpolation is carried out using the known slice
acquisition times. While these methods seem to be addressing
the issue of interaction between STC and MC, it is crucial
to emphasize that the EPI sequence in which fMRI data are

acquired is a steady-state acquisition and any disruption in its
equilibrium (i.e., over/under excitation due to motion) will be
broadcasted to other slices and volumes and it will take multiple
acquisitions until it reaches to its steady state again (Power et al.,
2015). Any fMRI volume acquired during this period will be
contaminated which essentially deteriorates the effectiveness of
any simultaneous STC and MC.

Pipeline Order Without Spatial
Smoothing
We analyzed the interaction of STC, MC, and their order in
the pre-processing pipeline on different levels of motion. In
simulated data, the significance of pipeline order seemed to be
more effected by the interleave parameter rather than motion
level. Real data seemed to indicate that there was no difference in
the order for low and high motion cases, however, it’s beneficial
to apply motion correction first for the medium motion case
for FSL and SPM. Previous work has also found differences
in pipeline performance for subjects with different levels of
motion (Churchill et al., 2012). As our real data has an interleave
parameter of 6, these findings are not replicated in the simulated
data, which showed no significant differences between pipeline
order. The discrepancies between the real and simulated results
may be from the fact that all simulated data used the same
subject morphology. Because of this, there is no inter-subject
variability across the simulated brains. This essentially makes the
comparison one-to one, whereas for real data it is impossible to
get to such correspondence in the selected voxels for comparison.
Another factor that could contribute to these differences is an
incomplete simulation of motion on our part, as motion has
been known to create non-linear artifacts in the scanner that
are difficult to characterize, but become non-linearly larger with
greater head motion (Power et al., 2012). We also don’t include
spin history effects or B0 inhomogeneity in our simulation, both
of which have motion interactions (Drobnjak et al., 2006). Our
simulation captured rigid body motion as well as temporal shifts
due to slice acquisition. The fact that our simulated results are
so different from our real results simply means that there are
more artifacts caused by motion than just moving-head artifacts,
simulated here, and the interaction of motion and slice timing
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may be more complicated than simply linearly adding the effects
of both. While this is in some ways a limitation, it also gives us
insight to the effectiveness of some pre-processing methods. For
example, because motion parameter regression works so well for
our simulated data, it is possible that this technique is good at
removing variance caused by partial volume effects induced by
motion. More research should be done in future to investigate
this possibility.

In real data, motion artifacts work in two ways to
contaminated fMRI signal: it introduces fluctuations in the signal
that would both increase the variance, as well as decrease the
z-score of the time series from the task-timing, weakening the
beta estimate. This may also explain why it is only better to
apply motion correction first in medium motion cases for our
real data. For low motion, there is very little correction to be
made, and so the actual application of MC has only a small
effect on the data, and therefore has an insignificant effect on the
z-scores. For high motion, the non-linear artifacts from motion
may be large enough that traditional rigid body realignment is
unable to correct for them. This would mean that regardless of
when MC or STC is applied, there are large errors in the data
that remain uncorrected, keeping the z-scores low. For medium
motion, the motion may be large enough to benefit from rigid
body realignment, while small enough to not induce significant
non-linear artifacts, which would result in the maximum benefit
of its application. Regardless of the amount of motion, our results
suggest that it is always beneficial to apply both STC and spatial
realignment. The benefit of applying them both, in any order, is
much greater than the benefit of applying only one. Even for low
motion subjects, the average z-scores from data with both MC
and STC were greater than those from just MC alone.

In general, these results highlight how dependent STC and
MC are on each other. In Simulated data, only performing STC
was better than only performing MC for low motion subjects,
however, in high-motion simulated data we find just the opposite
is true, hinting that motion destroys the ability of STC to
temporally realign the BOLD signals. One possibility could be
that brain regions may shift from one slice to another due to
motion. Because each slice is sampled at a different offset, even
after spatial realignment, the time series will be made up of
temporally non-uniform samples, which current STC routines
cannot correct for.

While this doesn’t untangle the complicated interactions
between STC and motion, it does provide a quantitative measure
to aid in pre-processing techniques. Recently, new preprocessing
techniques have attempted to reconcile these interactions (Jones
et al., 2008; Beall and Lowe, 2014). Jones et al. (2008) uses
a method that involves quantifying which native space slice
each voxel came from in the registered standard space volume.
By taking into account the true sampling delay of each voxel,
an accurate voxel-wise estimate of physiological noise can be
created to account for such delays. By using a similar technique
to identify the true time of acquisition of any given voxel
in a registered volume, it may be possible to reduce the
slice timing/motion interaction to a non-uniform sampling and
reconstruction problem. Future work could involve examining
the efficacy of such a model.

The dice overlap for simulated data shown in Figure 6
indicates that as motion increases, the order in which STC and
MC are applied becomes more important with regard to the voxel
overlap. This can be seen by comparing the “Before MC” to the
“After MC” columns. The more similar these columns are, the
less important pipeline order is for spatial overlap. MC before
STC has a higher dice overlap than when STC is applied first.
One possible reason for this is because the SR has no STC, and
the shifts are accounted for in the regression itself. This could be
seen as “MC before STC,” since the timing is accounted for after
MC. Assuming that the SR method does successfully identify the
voxels with the highest signal, we can infer that higher overlap
with this method is related to a better pipeline. Interestingly,
uncorrected data seems to be able to maintain the location of the
top 20 voxels even in high motion, however from Table 1, we
know that the z-score of these voxels are significantly reduced.
For real data shown in Figure 7, we see that our method becomes
more reliant on MC for a high spatial overlap as the motion level
increases (“No MC” columns compared to any other column).
In real data, we see that the effect of the order of STC and MC
is smaller. We also see a significant drop in dice overlap when
MC is not applied. This further highlights the importance of
performing both STC and MC. Further, STC seems to benefit
voxel overlap more than MC. The effect of No MC can be seen
by comparing the “Uncorrected” bar to any other bar in the
“No MC” column. Only MC is applied to “uncorrected data”
in the “Before MC” case, so the effect of MC can be seen by
comparing the “Uncorrected” bar in the “No MC” column with
the “uncorrected” bar in the “Before MC” column. “No MC”
means no MC has been applied, and so for uncorrected data,
neither STC nor MC is performed in this category.

Prewhitening had no significant effect on STC in real data.
In addition, our results are in line with the existing literature.
It has been demonstrated in Olszowy et al. (2019) that STC has
only a small impact on autocorrelation, and did not significantly
influence the results when combined with PW. Combining PW
and MC did effect the results, and this result was modulated by
motion. It has been shown previously that motion correction
can induce temporal correlations between voxels (Power et al.,
2012). It’s possible that these motion artifacts are also inducing
autocorrelation within a voxel. Understanding this phenomenon
would be valuable to the field, and is left as an area of
future research.

The reliability measures should not be taken as evidence that
there are no differences between pipelines. The BOLD signal only
makes up about 5% of the variance in fMRI. For a given task, the
vast majority of the voxels are only noise, and have no relevant
signal in their time series. Applying a time shift on these noisy
voxels will have no effect on the reliability. Of the voxels that
are activated, only those that fall on high delay slices will see
significant changes due to STC. Because of this, the reliability
measure will be made up of mostly voxels that have little to no
change due to slice timing correction, with only a small portion
seeing any real difference. This is why we wouldn’t expect to see a
difference in the reliability measure, and it is for this reason that
we focused our analysis on voxels with high t-values in high-delay
slices for all investigations in the paper.
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Motion Parameter Residualization
Motion parameter residualization lowered the z-score slightly
in most cases for both real and simulated data, though the
effects were larger for simulated data. This indicates that the
presence of motion parameter estimates in the GLM likely
interfere with accurate beta estimation. This can be caused by
colinearity between the motion parameters and the regressor
being used in the analysis. When using MPR, in simulated
data, STC before MC was extremely detrimental to the beta
value estimation. This could be because STC effects the accurate
estimation of motion parameters (Power et al., 2017). It is
possible that the results for STC before MC would improve if
the parameters are estimated first, and MC itself is performed
after STC. There are many cases where “No MC” performs almost
as well as other pipelines, again highlighting the fact that our
simulated data does not add non-linear motion artifacts to the
data, therefore linear regression of motion parameters should be
sufficient for removing most of the variance. It’s also important
to note that our analysis was performed on highly significant
voxels, which tend to fall inside the ROI, rather than along
the edges. It’s likely that motion has a larger effect on voxels
along the edges of activation, as they will be more susceptible
to sampling a new brain region with no task-related signal when
the subject moves.

For real data, the low motion subjects saw a decrease in
statistics with the addition of motion parameter regression,
indicating that the added regressors either failed to model the
low motion artifacts, or there simply wasn’t enough motion-
induced variance to make up for the loss in degrees of
freedom. If the motion in the scan is simply too low for
an accurate estimate, the realignment parameters would be
essentially noise. Real data with MPR and no STC performed
significantly worse than all methods with STC for medium and
high motion. It’s possible that the motion parameters themselves
are sensitive to time shifts.

Our results agree with Churchill et al., who found that MPR
was generally unhelpful, and in fact harmful for low motion
subjects, in the sense that it lowered their chosen measurement
of quality in that paper (Churchill et al., 2012). However, it is
difficult to compare our motion levels with this study, as FWD
is not used in their study, and “high motion” is based only on the
extracted yaw parameters.

Spatial Smoothing on STC
For spatial smoothing, the achieved STC gain became very
small with a large kernel size (>6.5 mm). For real data,
differences between STC methods disappeared with a 5 mm
smoothing kernel, and at 8 mm STC data is indistinguishable
from uncorrected data for low and medium motion subjects.
It has been shown that the optimal FWHM varies between
6 and 12 mm, depending on the experimental tasks and the
statistics of interest (Mikl et al., 2008). It is important to
note that at this level removing the STC step might slightly
improve or worsen the results, depending on the location of
a given ROI, as shown by the z-score of the “uncorrected”
column of the low motion subjects. This is rather counter-
intuitive and might be considered as evidence that STC is

not beneficial at all. However, recent studies such as the HCP
has also taken a critical look at smoothing and its effects on
neuroimaging data, and has greatly restricted the size of the
kernel, as well as the extent of the areas used in smoothing
(Glasser et al., 2013), which may be enough to retain the
benefits of STC.

As in the real data, mean z-score from simulated uncorrected
data only decreased monotonically for sequential acquisition and
interleave 2 acquisitions. For interleave 6 acquisition, the initial
improvement seen in the 3.5, 5, and 6.5 mm kernels are caused
by the phenomenon described in the “Introduction,” where time
series from adjacent slices with less delay actually improve the
statistics of the high delay slice. Initially, this benefits the z-score,
shown in the 3.5 mm kernel case, as it averages the data with
voxels in adjacent slices. These voxels are still in the LSF region,
but with lower temporal delay. This initial increase is reduced
as the kernel size continues to grow, because the LSF region is
just a narrow (less than 5 mm) cortical region, which cannot
extend beyond two voxels in the x/y plane. Increasing the kernel
size beyond 3.5 mm will cause the blending of the voxels outside
the LSF that have completely different underlying BOLD signal,
which essentially corrupts the time series, reducing the z-score.
These results do not suggest that spatial smoothing should not
be performed, but rather they show how smoothing interacts
with, and may obscure, the effects of precise preprocessing
steps such as STC.

Finally, it is important to note the failure of slice-based
regressors (SR) method, as the gold standard, in the presence
of smoothed data. This method performs worse than FS in
simulated data with interleave 2 and interleave 6 with the 8 mm
kernel, and for real data it performs worse than all other STC
methods for all motion levels with the 8mm kernel. This is due to
the fact that in our gold standard, the regressors are accounting
for a slice dependent delay. Spatial smoothing averages a slice
with time series from the surrounding slices that fall within the
kernel. Each adjacent slice was sampled with a different temporal
delay. Smoothing this time series with data from surrounding
slices acquired at different offsets greatly contaminates the fMRI
signal, and eliminates any benefit gained by using slice-specific
regressors. Additionally, in our gold standard pipeline, the data
was filtered with the same low-pass filter as used in the FS method
without performing any temporal shifting on the data. If this
filtering was not performed, the SR method would likely be even
worse than FSL and SPM’s STC techniques (which only apply very
slight low-pass filtering, inherent to their interpolation kernels).
This suggests that slice-based regressions should not be used with
data that has undergone spatial smoothing.

STC on Short TRs
Both our simulated and real data are based on event-related
design, which requires fast (<5 s) and random stimuli duration.
Block-designed experiments, on the other hand, have much
longer (>10 s) stimulus duration, thus making it less susceptible
to the acquisition offset delay. It has already been shown in
the literature that block design accompanied with moderate 3D
smoothing may not benefit substantially from STC (Sladky et al.,
2011). Therefore, we decided not to repeat that experiment again
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in this work. Nevertheless, extremely high TRs (TR > 5 s) without
STC could not be tolerated even for block related designs. On
the other hand, it is generally assumed that sub-second TR data
will not benefit from STC. We have shown with our results that
FS STC does improve z-score, even on multi-band data. The
increased number of time points only makes the regressors more
sensitive to temporal shifts and interpolation errors. Because our
method performs a more accurate reconstruction than traditional
STC techniques, we are able to significantly improve the z-score
in these high frequency data sets. Furthermore, a short TR may
reduce aliasing of physiological noise into the frequency range
of the BOLD signal. Our STC method can potentially filter out
more of the high frequency noise, and retain only the range of
frequencies in which the BOLD signal is biologically plausible.
This significantly improves z-score beyond what traditional
STC is capable of.

Effect of STC on Functional Connectivity
Analysis
We have shown that FC network extraction can benefit from
STC. In simulated data, we clearly show the problem faced when
extracting task based networks from data without STC. The
difference in z-statistics between slices with large temporal offsets
is observable in the uncorrected data, but is completely corrected
for in STC data. This is shown quantitatively in Figure 11
and qualitatively in Figure 12. From these figures, we can see
that the extracted IC’s time series “locked” strongly with slices
of a certain temporal delay. Even a voxel in the same region
with the same time course, but sampled at an offset, will be
assigned a weaker weight to that IC. That IC’s time series will
also account for less variance in the dual regression, resulting in
lower z-statistics. The reason we don’t see the difference between
high and low delay slices in real uncorrected data is partly due to
inter-subject variability in region activation. Additionally, there’s
no guarantee that MELODIC will always extract an IC with a time
series aligned to the low-delay slices. If the variability between
subjects is enough to randomly distribute the slices with which
the IC correlates more strongly to (High delay slices or low
delay slices), then we would expect the group level difference to
become smaller and smaller as we add subjects to the analysis. For
example, one subject’s IC might be more correlated with a high
delay slice, while the other subject’s IC might be more correlated
with a low delay slice. These differences would average out, and
we wouldn’t see the dramatic delay effect that we do in simulated
data. It’s true that there is also no guarantee that MELODIC
would consistently prefer low-delay slices for simulated data,
however, given the identical morphology, activation region, and
low motion, we effectively minimized all non-signal related
sources of variance, so we would expect similar results.

Despite these potential confounds, we are still able to show
that STC, specifically FS, increases the statistical fit of the IC’s
extracted time series to the data in both real and simulated
subjects. By removing sources of variance such as temporal
offsets, voxels are more strongly correlated with each other,
resulting in a better network extraction, as well as a more accurate
estimate of the network’s time series.

CONCLUSION

In an effort to critically examine the effects of STC in the context
of a standard preprocessing pipeline, we have performed a
series of experiments in which we manipulate the preprocessing
pipeline on data with various levels of motion and with various
slice acquisition orders. While no clear rule for the order of
pre-processing steps emerged, we were able to reinforce the
importance of both STC and MC. Here, we summarize the key
findings from our experiments: For all levels of motion and for
all slice acquisition orders, STC and MC together significantly
improved z-scores in both real and simulated data. MPR altered
nearly all simulated cases, as well as all medium and high motion
cases for real subjects. For real data, MC before STC was always
the optimal pipeline when using MPR, likely due to the fact
that a more accurate motion estimate can be obtained if MC
is performed first (Power et al., 2017). However, this nuisance
regression proved detrimental for all z-scores across all scan
conditions. We found that on multiband data with extremely
short TRs, STC significantly improved results. Importantly, we
found that STC of any kind never lowered the resulting z-scores.
The only case that showed minimal improvement from STC
was data filtered with large smoothing kernels. However, in
studies using smaller smoothing kernels, such as in surface based
analysis, STC will only become more beneficial as the smoothing
kernels shrink. Finally, we found that STC improves the
coherence across slices of FC networks extracted from task-based
fMRI data using ICA. STC improved the fit of the IC to the time
series’ of voxels in the IC, especially those in high delay slices.

This paper provided an in-depth look at many common
situations in which STC may be implemented. We have shown
that in all such cases, STC is a valuable addition to the
preprocessing pipeline.
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