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Correlation between functional Magnetic Resonance Imaging (fMRI) and electroencephalogram
(EEG) concurrently recorded at rest has been studied extensively with the purpose of locating
sources of EEG alpha waves (8–12Hz) in earlier years (Goldman et al., 2002; Moosmann et al.,
2003; Feige et al., 2005) but for understanding the neurophysiological correlates of resting-state
fMRI (rsfMRI) signals more recently (Mantini et al., 2007; Liu et al., 2012). In this opinion paper,
we will first review two lines of research on rsfMRI-EEG correlations and neural correlates of the
global rsfMRI signal. We will then present our major hypothesis regarding the role of an arousal
event in the fMRI-EEG correlation based on evidence for these studies. Lastly, we will discuss the
potential impacts of future research on the validation of our hypothesis or similar topics.

Despite some minor deviations (Laufs et al., 2003), the EEG alpha-band power was consistently
found to have strong, widespread negative correlations with fMRI signals at the sensory/motor
areas but positive correlations with more circumscribed regions at the anterior and medial parts
of the thalamus (Goldman et al., 2002; Moosmann et al., 2003; Feige et al., 2005; Liu et al.,
2012). A similar spatial pattern of correlations was also found between rsfMRI and EEG vigilance
index (Falahpour et al., 2018) that is defined as the ratio of alpha to delta-theta (1–7Hz) powers,
suggesting the observed fMRI-EEG correlations are likely related to vigilance fluctuation. Other
than the direct correlations, the cross-modality fMRI-EEG relationship is also indicated by the
dependency of rsfMRI connectivity on bandlimited EEG powers. At the subject level, the global
rsfMRI signal, i.e., the whole-brain average, and spatially non-specific connectivity of individuals
are negatively correlated with their EEG vigilance index (Wong et al., 2013). On a finer timescale,
dynamic resting-state connectivity (over time windows of 1–2min) between the default mode
network (DMN) and dorsal attentional network (DAN) was found dependent on the EEG alpha
power, with stronger anti-correlation (corresponding to a smaller global signal) appearing with
higher EEG alpha power (Tagliazucchi et al., 2012; Chang et al., 2013). Thus, the global rsfMRI
signal, as well as spatially non-specific connectivity it induces, appears to be stronger for individuals
(or time windows) with lower EEG alpha power and/or vigilance. These findings are consistent with
a series of studies showing that the global rsfMRI signal and/or non-specific rsfMRI connectivity
is stronger at light sleep stages (Fukunaga et al., 2006), after sleep deprivation (Yeo et al., 2015),
or after taking hypnotic drugs (Kiviniemi et al., 2005; Licata et al., 2013), but can be effectively
reduced with caffeine administration (Wong et al., 2013). Therefore, the key to the puzzle lies in
understanding the neural basis of the global rsfMRI signal.

The search for the neural basis of the global rsfMRI signal has recently made significant progress
with the help of intra-cranial electrophysiological recordings from monkeys. A stereotypical event
with a characteristic time-frequency pattern was identified in the global signal of large-scale
electrocorticography (ECoG) recordings from monkeys (Liu et al., 2015). This sequential spectral
transition (SST) event lasting 10–20 s starts with an abrupt reduction in the middle-frequency
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alpha-beta (8–30Hz) activity, which is followed by an increase
of the low-frequency delta-theta power (< 8Hz) and a
burst of high-frequency broadband gamma activity (>30Hz)
(Figure 1A). The middle-to-low frequency power transition at
the SST event may indicate a transient modulation in brain
arousal level (Steriade, 2006; Harris and Thiele, 2011). Consistent
with this notion, the SST events are strong and occur most
frequently during light sleep and drowsy states, much less under
a sleep-conducive eyes-closed condition, and almost absent
under a more alert eyes-open condition (Liu et al., 2015). This
brain state dependency is very similar to the global rsfMRI
component (Fukunaga et al., 2006; Jao et al., 2013; Wong et al.,
2013), suggesting a close relationship between the two. With
concurrent fMRI-electrophysiology recordings from another
group of monkeys, the SST event was found to be indeed
one-to-one coupled with widespread rsfMRI changes that are
shown as a single large peak in the global rsfMRI signal (Liu
et al., 2018) (Figures 1B,C). Two other observations further
support the correspondence between the SST event and global
rsfMRI peak. First, the global rsfMRI peak shows larger signal
increases at the sensory/motor regions, including the auditory,
somatosensory, motor, and visual cortices (Liu et al., 2018), and
this sensory-dominant pattern is similar to the spatial profile
of gamma-power increase at SST (Liu et al., 2015). Secondly,
the widespread fMRI signal increases at the global peaks are
actually associated with fMRI signal decreases at very specific
subcortical regions, including the nucleus basalis of the basal
forebrain and the dorsal midline thalamus (DMT) known to be
involved in arousal regulation (Liu et al., 2018). This finding
is consistent with the middle-to-low frequency transition at the
SST indicative of arousal modulations. These studies provide
neurophysiological understanding not only for the global rsfMRI
signal but also for its close relationship with brain arousal states
(Kiviniemi et al., 2005; Fukunaga et al., 2006; Horovitz et al., 2009;
Tagliazucchi and Laufs, 2014; Yeo et al., 2015).

Combining evidence from these two lines of research, we
propose our hypothesis that the fMRI-EEG correlations observed
in human literature results mainly from transient arousal
modulations manifested as SST events. We formulated this
hypothesis based on the following evidence. First, the power
modulations at SST events and associated fMRI signal changes
are much larger than those in other time periods (Liu et al., 2015)
and the fMRI-EEG correlation they cause is thus expected to
be stronger than other sources of arousal irrelevance. Secondly,
the fMRI-EEG correlation shows a spatial pattern consistent
with those of SST-related modulations. The fMRI correlations
to the EEG alpha power (or EEG vigilance index) (Feige
et al., 2005; Liu et al., 2012; Falahpour et al., 2018) display
a sensory-dominant pattern that resembles both the spatial
profile of the SST gamma-power increase (Liu et al., 2015) and
the fMRI co-activation pattern at the large global peaks (Liu
et al., 2018). The negative correlation is expected given that
the reduction of alpha power at the SST is associated with
sensory-dominant fMRI signal increases. More importantly, the
widespread negative fMRI-EEG correlations are accompanied
by focal positive correlations at the DMT. Correspondingly,
the fMRI co-activations at the global peaks are associated with

opposite changes, i.e., de-activations, at exactly the same thalamic
region (Figures 1D,F) (Liu et al., 2012, 2018). Thirdly, the
fMRI-EEG correlations also show similar temporal dynamics
as the SST-associated fMRI changes. The positive fMRI-EEG
correlations found at the thalamus reach their peak with a delay
of ∼2.5 s between the two modalities, which is 2–3 s shorter
than the typical hemodynamic delay that was found true for the
negative fMRI-EEG correlations at the sensory/motor regions.
Close inspection of region-specific fMRI dynamics at the large
global peaks revealed a similar pattern of temporal delays:
fMRI deactivation at DMT precedes the widespread fMRI co-
activations, particularly those at the sensory/motor regions, by
2–3 s (Figures 1E,G) (Feige et al., 2005; Liu et al., 2018). Last
but not least, the dependency of the fMRI-EEG correlations
on brain arousal state can be well-explained by the SST events
of transient arousal modulations. The fMRI-EEG correlations
become significantly weaker not only from the sleep-conducive
eyes-closed condition to alert eyes-open condition but also after
caffeine administration (Falahpour et al., 2018). The occurrence
of SST events during drowsy states could be the underlying
reason for this state dependency.

The validation of this hypothesis and future research on
this topic may have potential implications for the following
aspects. First, the validation of this hypothesis will provide a
more mechanistic understanding of empirical observation of
fMRI-EEG correlations. It is worth noting that the validation
of this hypothesis with simultaneous fMRI-EEG in human may
face additional challenges, including the insensitivity of scalp
EEG to gamma-band activity and the difficulty in controlling
brain arousal state. Therefore, algorithms for detecting SST
with frequency features below 30Hz and procedures for
promoting sleepiness of subjects could be important strategies
for overcoming these obstacles. Moreover, the EEG source
localization (Liu et al., 2017) may potentially enable a spatial
comparison of two modalities at SST events and further
confirm their correspondence spatially. Secondly, the validation
of the hypothesis and related research may also advance our
understanding of rsfMRI connectivity and its dependency on
EEG activity. The widespread fMRI increase associated with
SST events could result in widespread increases of rsfMRI
connectivity, which could be larger for sensory/motor networks
due to its sensory-dominant pattern. The thalamocortical
connectivity can be modulated in a complex way given the
opposite fMRI changes in cortical and thalamic regions seen
at the global peaks, and the use of controversial global signal
regression step would further complicate the scenario (Fox
et al., 2009; Murphy et al., 2009; Gotts et al., 2013). Despite
these complications, the SST-associated fMRI changes would
likely introduce strong modulations in rsfMRI connectivity and
associate them with EEG changes. This could be the reason for
the dependency of non-specific rsfMRI connectivity on band-
limited EEG power, either at the subject level (Wong et al.,
2013) or across time windows of 1–2min (Chang et al., 2013)
that are much longer than the SST time span of 10–20 s.
The introduction of correlation-based connectivity measures
significantly complicates the fMRI-EEG relationship, and the
key to solving this problem may be to focus on temporal
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FIGURE 1 | SST events and its parallelism with global fMRI peaks in monkeys, and the correspondence between the global fMRI co-activations and fMRI-EEG

correlations in human. (A) The SST event observed from monkey ECoG data (Liu et al., 2015). (B) The correspondence between the SST events (upper panel) in the

local field potentials (LFPs) mean spectrogram and the large fMRI global signal peaks (lower panel) (Liu et al., 2018). (C) The SST pattern emerges when averaging the

mean LFP spectrogram segments at large global fMRI peaks (locations aligning with red circles in B) (Liu et al., 2018). (D) Significant fMRI co-activations (orange) and

de-activations (cyan) at the large global peaks (averaged over 2,134 peaks in total), which have been shown to be coupled with the SST events in electrophysiological

data (Liu et al., 2018). The axial slice is shown at Z = 7mm in the MNI space. (E) The fMRI de-activations at the dorsal midline thalamus actually reach its peak

(negative) 2–3 s before that of the fMRI co-activations at widespread cortical regions, particularly the sensory/motor cortex. (F) The fMRI correlations to the

alpha-band EEG power show strong negative correlations at the sensory/motor regions but positive correlations at the midline thalamus. The slice is shown at Z =

8mm in the MNI space (Liu et al., 2012). (G) The cross-correlations between the fMRI and EEG signals as a function of their time lags. The peak negative correlation

(orange dash line, approximated according to values at lags) at the visual cortex, i.e., the Brodmann area 17, and the peak positive correlation (cyan dash line) at the

thalamus are found at different time lags, suggesting the fMRI changes at these regions are delayed by a few seconds (Feige et al., 2005).

events driving all these correlations (Liu and Duyn, 2013;
Liu et al., 2013; Matsui et al., 2019), such as the SST event.
Thirdly, the involvement of transient arousal events in the
fMRI-EEG correlation may also provide a new perspective for
understanding rsfMRI correlations with other non-neuronal
signals, which has been a hot topic of rsfMRI research (Chang
et al., 2016b). Strong correlations have been reported between
rsfMRI signals and othermeasurements, such as cardiac (Shmueli
et al., 2007) and respiratory (Birn et al., 2006) signals and
head motions (Power et al., 2012; Van Dijk et al., 2012),
which have been interpreted as non-neuronal contributions
to rsfMRI. However, given the known links between arousal
modulations and physiological changes (Luft and Bhattacharya,
2015; Penzel et al., 2016) and head motions (Van den Berg,
2006), we ought to re-think whether the rsfMRI correlations with
the non-neuronal noise may also arise from transient arousal
modulations, such as the SST event. This notion is consistent with
a recent finding that the presence of physio-rsfMRI correlation
is actually dependent on the EEG alpha power (Yuan et al.,
2013). Additionally, a clear understanding of SST-associated
fMRI changes may help to improve fMRI-based arousal measure,
which is expected to have many potential applications. A
template-matching algorithm has been proposed to measure

brain arousal by comparing instantaneous fMRI co-activations
with the fMRI correlation map of EEG vigilance, which shows
a sensory-dominant cortical pattern and anti-phase change at
the thalamus (Chang et al., 2016a; Falahpour et al., 2018). This
fMRI-based arousal measure could be further improved with a
detailed understanding of the spatiotemporal dynamics of SST-
associated fMRI changes. An accurate estimation of brain arousal
with rsfMRI is expected to have many potential applications,
especially given the availability of rsfMRI data. For example,
many psychiatric and neurodegenerative diseases, including
Alzheimer’s disease and Parkinson’s disease, are known to concur
with disrupted sleep and circadian rhythms (Wulff et al., 2010),
and the widely available rsfMRI in these patient populations
would immediately enable studies of arousal state changes in
these diseases.

In summary, we argued, based on existing evidence, that
a recently discovered neurophysiological event of arousal
modulation may account for a significant portion of fMRI-
EEG relationship, shown both as their direct correlations and
the dependency of rsfMRI connectivity on EEG powers. Future
studies should seek to test the validity of this hypothesis, which
is important for understanding the neural origin of fMRI-
EEG correlation, for interpreting rsfMRI connectivity and its
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dependency on EEG, for understanding rsfMRI correlations with
other non-neuronal signals, and also for improving the fMRI-
based arousal measure.
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