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Resting state functional magnetic resonance imaging (rs-fMRI) has become an
indispensable tool in neuroscience research. Despite this, rs-fMRI signals are easily
contaminated by artifacts arising from movement of the head during data collection.
The artifacts can be problematic even for motions on the millimeter scale, with complex
spatiotemporal properties that can lead to substantial errors in functional connectivity
estimates. Effective correction methods must be employed, therefore, to distinguish
true functional networks from motion-related noise. Research over the last three
decades has produced numerous correction methods, many of which must be applied
in combination to achieve satisfactory data quality. Subject instruction, training, and
mild restraints are helpful at the outset, but usually insufficient. Improvements come
from applying multiple motion correction algorithms retrospectively after rs-fMRI data
are collected, although residual artifacts can still remain in cases of elevated motion,
which are especially prevalent in patient populations. Although not commonly adopted
at present, “real-time” correction methods are emerging that can be combined with
retrospective methods and that promise better correction and increased rs-fMRI signal
sensitivity. While the search for the ideal motion correction protocol continues, rs-fMRI
research will benefit from good disclosure practices, such as: (1) reporting motion-
related quality control metrics to provide better comparison between studies; and (2)
including motion covariates in group-level analyses to limit the extent of motion-related
confounds when studying group differences.

Keywords: resting state fMRI, noise, motion artifacts, motion compensation, image processing

INTRODUCTION

Since the first report of temporal correlations between spontaneous blood oxygenation level-
dependent (BOLD) signals in the bilateral motor cortices (Biswal et al., 1995), “resting-state”
functional magnetic resonance imaging (rs-fMRI) has become an important tool to probe
functionally connected networks throughout the brain (Smith et al., 2013b). The rs-fMRI method
continues to advance the scientific understanding of brain development, aging, and disease (Woods
et al., 1998; Fair et al., 2008; Supekar et al., 2009; Bettus et al., 2010; Qin et al., 2012; Lin et al.,
2018), among other application areas, and affords a number of advantages over the original task-
based fMRI approach for recording brain activity. For example, multiple resting-state networks
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can be revealed from a single rs-fMRI study without the need
to administer one or more prescribed behavioral tasks, typically
by measuring BOLD signal correlations relative to a “seed”
region of interest, or by using multivariate component models
to identify networks based on statistical criteria. The absence of
the task(s) also removes the need for fMRI-compatible devices
to present sensory stimuli and record behavioral responses,
along with the device-related software and computer control.
Thus, the relatively straightforward acquisition of the data,
coupled with the wealth of information that is obtained, have
spurred adoption of the rs-fMRI method for research purposes.
This is especially the case for clinical neuroimaging research
involving patient populations, in which the workflow of the fMRI
experiment must be efficient and task performance may not be
possible or is confounded by impairments related to the brain
disease under study.

Although rs-fMRI is an effective tool for studying the brain
function of healthy and patient populations, the measured
BOLD signal fluctuations are caused not only by neuronal
activity, but also by multiple other confounding factors. These
include physiological effects (e.g., respiration and cardiac
pulsatility) and various imperfections in MRI system hardware
(e.g., heating of the imaging gradients during experiments).
Of all the confounding factors, however, the effects of head
motion are especially complex and troublesome. The small
amplitude of BOLD signals – typically a few percent or
less – ensures that millimeter-scale head motions may be
problematic even after various correction algorithms are applied
to fMRI data. In the case of task-based fMRI, head motion
can be temporally correlated with task performance and under
many circumstances, the resulting “motion artifacts” cannot
be distinguished from brain activity. The interpretation of the
fMRI data becomes compromised as a result (Johnstone et al.,
2006). Although prescribed behavioral tasks are not a part
of rs-fMRI, head motion still is problematic and may even
be exacerbated when imaging individuals while they are at
rest (Engelhardt et al., 2017; Huijbers et al., 2017). Numerous
effects of head motion have been reported in the rs-fMRI
literature. For example, sub-millimeter motions have been shown
to distort functional connectivity estimates from approaches
that include seed correlation analyses, graph theoretic network
modularity, dual regression independent component analysis
(ICA), and power spectrum methods (Power et al., 2012;
Satterthwaite et al., 2012; van Dijk et al., 2012). Depending
on the amplitude and spatio-temporal characteristics of the
head motion, estimates of functional connectivity can be
increased, decreased, or even driven to zero (Power et al.,
2014). Characteristic “distance” and “orientation” dependencies
of the errors have been reported in correlation-based estimates,
with decreased long-distance connectivity and increased local
connectivity (Power et al., 2012; van Dijk et al., 2012); and
increased lateral connectivity at the expense of connectivity in
the inferior–superior and anterior–posterior directions (Power
et al., 2012). The effects are especially problematic in between-
group studies of brain development and of neurological
diseases, as the groups may differ significantly in their levels
of head motion (Seto et al., 2001; Mowinckel et al., 2012;

Satterthwaite et al., 2012; Haller et al., 2014). In these cases,
it may be very difficult to decouple hypothesized effects
(Courchesne and Pierce, 2005; Andrews-Hanna et al., 2007), from
motion-related differences with the greatest effects of motion
often observed in groups with the greatest brain impairment
(Wylie et al., 2014).

Given these reports and the need to generate data with
improved quality in the long term, this focused review discusses
how head motion affects rs-fMRI data, and summarizes the
existing and emerging strategies for motion correction. The
pertinent characteristics of human head motion are first
discussed, followed by the physical principles that cause head
motion to introduce signal confounds in rs-fMRI data. The
second half of the review discusses the strengths and weaknesses
of various retrospective motion correction strategies, and the
potential benefit that “real-time” correction techniques can
provide in the future.

This focused review is not exhaustive in terms of the references
that are included. Interested readers are encouraged to seek out
other discourses that provide more in-depth discussion of topics
that are covered here (e.g., Power et al., 2015; Esteban et al.,
2019). In addition, for balance and brevity, the review focuses on
the main concepts behind various motion correction strategies
without explicitly mentioning and defining all their acronyms.
The acronyms are available in the references that are cited.

HEAD MOTION: CHARACTERISTICS

As a reasonable starting point, the head may be considered as
a rigid body that can move in space. Three dimensional (3D)
rigid body motion is usually parameterized by six degrees of
freedom (DOF), for example described in Cartesian coordinates
as translations in x- (left/right), y- (anterior/posterior), and
z-axes (inferior/superior), and rotations about the x-axis (pitch),
y-axis (yaw), and z-axis (roll). Each of the six parameters will
vary as a function of time as the head moves dynamically during
an rs-fMRI experiment (a time series data collection of images
of the brain volume, acquired with BOLD signal contrast). In
reality, the brain is not perfectly rigid, given the biomechanical
properties of its constituent tissues and the pulsatile flow of blood
within it (Dagli et al., 1999). Nevertheless, given the dynamics
of the motions involved and the millimeter spatial resolution
that is presently available on most MRI systems operating at
1.5 and 3.0 T, the rigid body approximation is very reasonable.
The rapid imaging protocols that are used in rs-fMRI [typically
echo planar imaging (EPI) or spiral k-space readouts] also ensure
that motion is effectively “frozen” during the time needed to
encode the spatial information for each image slice (∼50 ms
or less) in a typical two-dimensional (2D) multi-slice imaging
protocol. Although each slice samples the head motion at a
slightly different point in time, this issue is usually dealt with
effectively by temporal interpolation of slices to a single time
point (Parker et al., 2017).

Although head motion often varies considerably from subject
to subject, multiple studies have revealed that certain general
characteristics are common. In healthy individuals, for example,
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translations in the inferior/superior direction together with
a “nodding” rotational motion are often evident, possibly
with superposition of more rapid oscillatory motion from the
respiratory cycle (Seto et al., 2001). This pattern of motion
arises because a pivot point occurs at the back of the head
or the base of the neck while the subject lies supine in
the magnet bore, with relatively constrained motion in the
other directions. This common pattern has implications for the
extent of motion in different brain regions: anterior frontal
and orbitofrontal areas are likely to be more affected than
posterior areas such as the primary visual cortex. Furthermore,
this motion is not well represented by fluctuations in just one
DOF in Cartesian coordinates – instead, coupled translation
and rotation signals are observed that may be difficult to
resolve unambiguously.

Another characteristic feature of head motion is that the
temporal patterns of movement and associated artifacts do not
display band-limited frequency content. As such, frequency
filtering commonly applied in rs-fMRI to isolate the frequency
range of interest (∼0.01–0.1 Hz) may be ineffective for motion
correction, and can even smear motion contamination across
the entire dataset if not applied carefully (Carp, 2013). Low-
frequency, autocorrelated trends are readily apparent in rs-fMRI
data due to motion, and work initially focused on developing
methods other than frequency filters to remove these artifacts
while retaining the true fMRI signal content (Woods et al.,
1998; Lund et al., 2006). More recent work has focused on the
need for specialized methods to account for transient motions
(Satterthwaite et al., 2013), for example due to involuntary
twitches or tics, which also occur at non-trivial levels.

There is also evidence that head motion can differ across
various populations of subjects. Task-based fMRI studies show
that patient populations, older adults, and pediatric subjects
exhibit larger motions compared to young healthy adults (Seto
et al., 2001; Yuan et al., 2009; Haller et al., 2014; Graham
et al., 2016; Huijbers et al., 2017). For example, patients with
stroke, Alzheimer’s Disease, bipolar disorder and schizophrenia
move more compared to age-matched healthy subjects (Seto
et al., 2001; Haller et al., 2014; Huijbers et al., 2017). Similarly,
young children and older adults show larger motions when
compared to young adults (Seto et al., 2001; Yuan et al., 2009).
Elderly subjects show more random head motions whereas
young adults move more slowly and rhythmically (Graham
et al., 2016). Sex-related differences have also been observed,
with girls showing less tendency to move than boys during
three of four language tasks in a task-based fMRI study
(Yuan et al., 2009). Finally, less engaging task paradigms and
rs-fMRI protocols may also lead to levels of head motion
that are higher than those observed in task-related fMRI
measurements (Huijbers et al., 2017) although more research
would be useful in this area. As the amount of rs-fMRI data
increases and becomes more freely accessible throughout the
human brain mapping community, the opportunity should be
taken to evaluate the head motion characteristics in studies
with large sample size and different subject populations, as
this may help to inform motion correction and data analysis
methods in the future.

HEAD MOTION ARTIFACTS

The consequences of head motion on rs-fMRI data can be
very complex. Rather than producing a single type of image
artifact, multiple types are possible with very different physical
mechanisms. A list of the possibilities is given below. This list is
not exhaustive, and some of the possibilities are more commonly
appreciated than others.

Partial Volume Effects
Functional MRI data are almost always acquired within the static
coordinate frame of the MRI system, assuming that each voxel
represents the signal content of the same brain structure for the
entire duration of the time series data collection. However, head
motion causes the proportion of various brain tissue types in a
voxel to fluctuate over this duration, each with slightly different
MRI signal contrast properties (Stanisz et al., 2005). This is
commonly referred to as the “partial volume effect” (Hajnal et al.,
1994) and is most problematic for voxels in the vicinity of tissue
boundaries where large signal differences occur [e.g., between
gray matter (GM) and white matter (WM), and especially
between GM and cerebrospinal fluid (CSF)]. The partial volume
artifact characteristically appears as spurious correlated signal
fluctuations that rim the surface of the brain, or that occur along
the interhemispheric fissure. It is increasingly realized that as
fMRI protocols are developed with greater spatial resolution, for
example using ultra-high field systems at 7 T or beyond, the
reduction of voxel size will cause the partial volume effect to
increase (Zaitsev et al., 2017) and thus better correction strategies
will be needed (see section “Correction Strategies” below).

Spin History Effects
As mentioned above, head motion tends to have major
components that involve “nodding” and displacements in the
inferior–superior direction (Seto et al., 2001). As fMRI protocols
commonly adopt 2D multi-slice imaging with an axial or oblique-
axial slice prescription, brain tissue will inevitably move through
each slice, producing an artifact that is usually referred to
as the “spin history effect.” In an rs-fMRI experiment, the
baseline signal intensity is a function of multiple MR acquisition
parameters and MR tissue properties, but the quantities relevant
to spin history are the flip angle (θ) of radiofrequency excitation,
the repetition time (TR) determining the temporal resolution
of the rs-fMRI time series, and the longitudinal relaxation time
(T1) at a particular voxel location. At the start of any time series
data acquisition, it takes several TR intervals to establish the
steady-state baseline signal intensity, which is achieved from a
balance of how far the tissue magnetization or “spins” are flipped
toward the transverse plane, and the time allotted for T1 recovery
before the next θ pulse is applied. Ideally, the θ value should
be constant through the slice, but in reality there is significant
spatial non-uniformity. Thus, through-plane motion disturbs the
steady state magnetization of the imaged slice by introducing
spins with different excitation history. The steady state will also
be disturbed if tissues with different T1 values move in and out
of the slice – which is particularly observable for voxels that
include blood vessels.
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Spin history effects have been modeled empirically (Friston
et al., 1996; Muresan et al., 2002) and in phantom experiments
to establish the dependency on MR acquisition parameters and
tissue properties (Yancey et al., 2011). The characteristic behavior
is that a discrete through-plane displacement causes a signal
transient that may be similar in amplitude to the rs-fMRI signal
and requires several TR intervals to attenuate. In cases of slow,
smooth motion, spin-history artifacts may be quite difficult to
distinguish from the true BOLD fluctuations in rs-fMRI data.

Dynamic Geometric Distortions
Although EPI and spiral k-space readouts provide good temporal
resolution for rs-fMRI experiments, both are very sensitive to
spatial non-uniformity in the static magnetic field (Jezzard and
Clare, 1999; Glover, 2012). Automatic “shimming” procedures
are available on all clinical MRI systems and provide some
benefit, but the differences in magnetic susceptibility at interfaces
between brain tissues, bone, and air are sufficiently large that
regions of geometric distortion and signal loss remain – typically
in inferior frontal and inferior lateral temporal areas (Ojemann
et al., 1997). It is well appreciated that a constant correction for
these effects may be needed at each point in the rs-fMRI the time
series data collection, but dynamic corrections may be needed
as well (Zaitsev et al., 2017). Lung ventilation effects during the
respiratory cycle cause magnetic field fluctuations in inferior
brain regions at 3 T and above (Raj et al., 2001; Van de Moortele
et al., 2002). Furthermore, head motion causes the susceptibility-
induced field non-uniformities to fluctuate in a manner such that
the boundary conditions at each tissue interface satisfy Maxwell’s
Equations. The end result is dynamic geometric distortions that
are observable in the EPI phase-encoding direction (Wu et al.,
1997; Jezzard and Clare, 1999; Andersson et al., 2001). The
effects are non-linear with respect to motion estimates and vary
depending on the position and orientation of the tissue interfaces
relative to the main magnetic field, the amount of head motion,
and the magnetic field strength.

Coil Sensitivity
Multi-channel receiver coils are now an established part of fMRI
protocols, providing higher signal-to-noise ratio (SNR) than
previously achievable and enabling higher temporal resolution
through various parallel imaging reconstruction approaches
(Pruessmann, 2006). Channel count continues to increase, with
64-channel coils currently available from at least one major MRI
system vendor. The higher the channel count, the smaller each
individual element becomes. The associated area of sensitivity of
each element also becomes more localized, with steeper spatial
sensitivity gradients. This implies that at some point, multi-
channel receiver coils will become appreciably sensitive to head
motion, if the translation or rotation of brain tissue becomes
sufficiently large in relation to the sensitivity gradients of the
individual coil elements. Two recent reports have indicated that
this problem may be relevant for rs-fMRI at 3 T in a 16-channel
coil geometry, for a conventional EPI k-space readout (Faraji-
Dana et al., 2016a) as well as for parallel imaging reconstruction,
with worse artifacts occurring as the acceleration factor was
increased (Faraji-Dana et al., 2016b). In both cases, it was possible

to suppress these artifacts by tracking and correcting for the
relative motion between the head and the receiver coil, at each
point during the fMRI-time series data collection.

CORRECTION STRATEGIES

Given the complexity of the problem, it is not surprising that a
multifaceted approach is needed in the quest to achieve full and
robust motion correction in rs-fMRI data. A brief summary of the
available correction strategies is given below. The choices range
from simple commonsense approaches, to more sophisticated
retrospective corrections as well as “real-time” corrections.

Head Restraints and Behavioral
Intervention
At the outset, it would seem straightforward simply to restrain
individuals so that no head motion occurs during rs-fMRI.
The problem would thus be solved at the source, without
introducing artifacts into the data. Unfortunately, it is often very
difficult to achieve this goal in practice. Mild head restraint is
an essential part of all fMRI procedures: padding between the
head and the coil is commonly adopted (with other options
available such as the use of vacuum pillows, and thermoplastic
facial masks fixed to the MRI table), whereas bite bars and
even more restrictive clamping systems are used less frequently
(Bettinardi et al., 1991; Green et al., 1994; Righini et al., 1996;
Schültke et al., 2013). Although restraints decrease the extent
of head motion in cooperative subjects, in many cases the
milder forms of restraint are ineffective at eliminating some
component of motion at the sub-millimeter and millimeter level,
such as nodding. However, the stronger restraints have the
potential to increase claustrophobia, can become uncomfortable
and tiresome especially for lengthy fMRI sessions, and in some
cases can exacerbate motion as subjects try to alleviate associated
pain or pressure (Zeffiro, 1996). Brain activity is also likely to be
altered as a result, especially in very young or very old healthy
individuals. Furthermore, clinical contraindications make strong
restraints unacceptable for certain patient populations (Zeffiro,
1996; Schültke et al., 2013).

Subjects are also commonly instructed to “try to lie still
and not move” as part of setup and positioning prior to rs-
fMRI experiments. For these instructions to have the intended
effect, subjects must appreciate the small level of motion that
can be tolerated and also must remain vigilant at keeping still.
As mentioned above, pediatric and patient populations may
not be able to fulfill these requirements, with reduced rs-fMRI
data quality as a consequence. For example, children are more
prone to head motion when tasks are less engaging, making
motion correction strategies important for rs-fMRI acquisitions
(Yuan et al., 2009; Engelhardt et al., 2017). Pre-training using
“mock scanning” or “fMRI simulator” sessions may help to
reduce the need for sedation when imaging children and may
provide more runs with usable MRI data (Epstein et al., 2007;
De Bie et al., 2010; Barnea-Goraly et al., 2014), but significant
benefit of this approach is not consistently demonstrated (Thieba
et al., 2018; Li et al., 2019). Training tools and interventions
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such as watching a movie and/or motion feedback training
(visual or verbal) have shown promise in children, young adults
and stroke patients (Vanderwal et al., 2015; Graham et al.,
2016; Greene et al., 2018). In the case of the movie paradigm,
however, functional connectivity measures are contaminated
by brain activity associated with watching the movie and
cannot be considered truly “resting-state.” Collectively, these
methods require additional set-up, lengthen the duration of
the imaging session, and are not widely adopted yet, at least
partly for these reasons. Another alternative is to monitor
head motion and adjust the length of the time series data
acquisition so that enough data of sufficient quality are collected
(Dosenbach et al., 2017). Although useful, this approach is
rather open-ended and may be inefficient for patients with
moderate-to-excessive motion.

Imaging Protocol
The rapid 2D multi-slice imaging methods commonly used
in rs-fMRI not only provide adequate temporal resolution
to sample BOLD responses, but also afford some protection
against motion artifacts. In addition to the “snap-shot” imaging
capability provided by the raster scan k-space readouts used
in EPI, the spiral k-space readout intrinsically compensates for
motion in the plane of each image slice (Glover and Lai, 1998).
Researchers have also continued to develop imaging methods
with even better motion compensation (Lee et al., 2010; Krämer
et al., 2012; Graedel et al., 2017; Kecskemeti et al., 2018). The
increasingly popular alternative involves simultaneous multi-
slice acquisitions together with parallel imaging reconstruction to
provide increased temporal resolution, better snap-shot imaging
capability, and robustness to static and dynamic geometric
distortion (Feinberg et al., 2010; Setsompop et al., 2012;
Zahneisen et al., 2014b). However, this approach introduces a
different set of noise characteristics which may have implications
for rs-fMRI analysis (Golestani et al., 2018). Dual- and multi-
echo imaging methods have also been receiving attention recently
because the acquisition of two or more images of each slice
at different echo time (TE) values helps to isolate BOLD
signals from noise. This can be achieved by regressing low TE
value data (with minimal BOLD weighting plus noise) from
higher TE value data (with more optimal BOLD weighting
plus noise) (Buur et al., 2009; Bright and Murphy, 2013), or
by a more complex multivariate denoising approach relying
on signal decay properties (Kundu et al., 2013). Dual- and
multi-echo approaches must be applied judiciously, however, so
that the spatiotemporal resolution of 2D multi-slice rs-fMRI is
not compromised.

Retrospective Motion Correction
Over the years, many strategies have been developed that
help to suppress the effects of head motion after fMRI data
have been collected. These “retrospective” methods are an
essential part of processing rs-fMRI signals and are easily
implemented as part of freeware analysis packages developed
and applied by the functional neuroimaging research community
(e.g., Esteban et al., 2019).

Rigid-Body Registration
Volumetric rigid-body registration primarily corrects for partial
volume effects and is typically viewed as an essential step
of rs-fMRI analysis. Head motion parameters are estimated
iteratively with six DOF by optimizing a cost function that
quantifies the similarity between each image in the time
series and a reference image (Friston et al., 1995; Cox, 1996;
Jenkinson et al., 2002; Oakes et al., 2005). The reference image
should be chosen carefully (such as the average image over
the time series), as the error in motion parameter estimates
increases with the extent that each image must be re-aligned.
Although very useful, volumetric rigid-body registration does
have some limitations. Most implementations do not correct
for motion that occurs during multi-slice acquisition of the
entire brain volume, so slice-to-volume as well as slice-to-slice
registration approaches have been developed (Kim et al., 1999,
2008; Yeo et al., 2008; Beall and Lowe, 2014; Chen et al.,
2015; Ferrante and Paragios, 2017). The accuracy of motion
estimates also depends on the signal quality in the image slices,
which are acquired at low spatial resolution and at relatively
low SNR, with BOLD-related signal variations that can bias
motion estimates toward neural activations depending on the
choice of the cost function (Freire and Mangin, 2001). The
latter effect can be mitigated in principle by simultaneously
optimizing the registration while estimating fMRI signals,
although the approach has only been tested for task-based fMRI
thus far (Orchard et al., 2003). Furthermore, the registration
process inherently requires resampling and interpolation so
that all motion-corrected images utilize a common Cartesian
coordinate system. This can further reduce spatial resolution
and bias activation estimates (Grootoonk et al., 2000; Yuan
et al., 2016). Lastly, volumetric registration algorithms work
well for small head movements, but become less accurate or
fail completely for larger motion (Oakes et al., 2005; Morgan
et al., 2007). In particular, large motions can invalidate the
assumption of rigid-body motion as a consequence of the
geometric distortions introduced by dynamic magnetic field
inhomogeneity (Elliott et al., 2004). In such cases, complex
affine or non-linear transformation models are beneficial, as
well as use of dynamic maps of the magnetic field (Hutton
et al., 2002; Roopchansingh et al., 2003; Sutton et al.,
2004; Visser et al., 2012; Ooi et al., 2013b), although these
methods are more computationally intensive and have not been
widely adopted yet.

Linear Regression
Various linear regression strategies are also commonly adopted
to address the residual motion-related signal variance that can
arise from imperfect volumetric rigid-body registration. For
example, the six time-dependent motion parameter estimates
that are output from the registration are easily applied in
multiple linear regression to remove these “nuisance” effects
from the rs-fMRI data. The approach has been extended
further to 12 parameters (including temporal derivatives;
Power et al., 2012), 24 parameters (squares of the motion
parameters and temporal derivatives; Friston et al., 1996;
Satterthwaite et al., 2013; Yan et al., 2013) and even 36
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parameters (squares of the motion parameters, and both first
and second temporal derivatives; Power et al., 2014). Specialized
regression procedures have also been proposed for group
comparisons (Satterthwaite et al., 2012; Yan et al., 2013).
The use of higher-order regressors has demonstrated greater
reduction in motion-related variance (Lund et al., 2005) and
has been suggested for high-motion subjects (Satterthwaite
et al., 2013; Yan et al., 2013; Yuan et al., 2016), for which
low-order regression (6 or 12 parameters) has been found
less effective (Power et al., 2012; Satterthwaite et al., 2013).
However, concerns associated with overfitting and removal
of BOLD signals arise in cases where head motion is
minimal and large numbers of nuisance regressors are used.
Direct evidence of this effect has been shown in task-based
fMRI (Johnstone et al., 2006; Ollinger et al., 2009) whereas
more investigations remain to be undertaken in rs-fMRI.
Moreover, motion parameter estimates are often highly coupled
and fitting with better statistical power is achieved when
a method such as principal component analysis (PCA) is
used to reduce the dimensionality of the nuisance regressors
(Woods et al., 1998).

When considering regression approaches, it should also be
recognized that fMRI signal changes from movements can
have a latency of several seconds (due to spin history effects,
for example) (Power et al., 2014). Simple motion parameter
regression cannot completely remove such deviations and
thus more sophisticated methods are of interest, such as the
use of more nuisance regressors as indicated above. Another
approach considers that BOLD signals arise predominantly
from GM, and thus additional effects from motion and non-
neural sources can be removed by using spatially averaged
time series signals of WM and CSF (WM-CSF) as nuisance
regressors, and possibly the related derivatives (Weissenbacher
et al., 2009). To address the dimensionality concerns raised
above, a regressor from WM-CSF PCA space can be used
(Behzadi et al., 2007; Muschelli et al., 2014). Different WM
regressors can also be obtained for each GM voxel, accounting
for spatial variations in WM noise that may not be apparent in
the average regressor (Jo et al., 2010). Both the latter methods
have been shown to perform better than regression of the
average WM-CSF time series. Irrespective of how the WM-CSF
regressors are derived, however, they should be implemented
with “erosion” of the corresponding spatial masks to avoid
contamination from adjacent GM voxels – otherwise the rs-
fMRI signal can be attenuated (Jo et al., 2010). Furthermore,
when applying WM regressors, it should be recognized that
they may represent signal of functional origin (Ding et al.,
2013; Peer et al., 2017). More research on this topic will be
important in clarifying the noise or information characteristics
of WM signals.

An additional nuisance regressor of potential interest is
obtained by spatially averaging the rs-fMRI time series data
over the whole brain. This “global signal” is usually correlated
with the first PC of the whole brain time series (Carbonell
et al., 2011). The value of global signal regression (GSR) is
currently in dispute (Murphy and Fox, 2017; Xu et al., 2018).
Originally, GSR was performed assuming that any source that

modulates the global brain signal is non-neural (Desjardins
et al., 2001), but more recent studies have shown that the
global signal does contain measurable neural contributions
(Schölvinck et al., 2010; Wong et al., 2016) and even distinguishes
healthy subjects from schizophrenia patients (Hahamy et al.,
2014). Nevertheless, many studies have demonstrated the
usefulness of GSR for mitigating motion-related noise, although
with residual artifacts that depend on the distance between
functional connections (Yan et al., 2013; Power et al., 2014;
Ciric et al., 2017). Other studies report that GSR introduces
false anticorrelations (Murphy et al., 2009; Weissenbacher et al.,
2009). This discrepancy in the literature may relate to the
level of non-neural noise that has a global effect on the rs-
fMRI signal, and suggests that it may be useful to quantify the
global noise level to determine whether GSR should be adopted
(Chen et al., 2012).

Scrubbing
Involuntary head motion can produce substantial transients
in the rs-fMRI signal. The transients can be identified by
establishing a threshold for outlier signals, for example based
on relative signal difference followed by corrections such as
“spike” regression (Lemieux et al., 2007), or scrubbing/censoring
(ignoring) the erroneous data (Power et al., 2012). Both
methods are effective at removing transient motion artifacts
(Satterthwaite et al., 2013; Power et al., 2014; Ciric et al.,
2017; Parkes et al., 2018), with some notable caveats in the
latter case. Temporal interpolation or spectral decomposition
of un-scrubbed data can be used when outliers occur at
multiple adjacent time points, but this must be done carefully
to avoid residual artifacts and subtle motion bias (Power
et al., 2014). Moreover, rs-fMRI analysis can be complicated
by the variation in temporal DOF across subjects or groups
of subjects with considerable differences in head motion
(Parkes et al., 2018). Data sets with a greater number of
scrubbed spikes will have systematically reduced temporal
autocorrelation. “Trimming” each dataset to equal length
provides a simple solution, although the reliability of functional
connectivity estimates may be reduced (Birn et al., 2013;
Power et al., 2014). Subjects with high levels of motion may
need to be excluded if many points in the rs-fMRI time
series are scrubbed.

Data-Driven Methods
Various multivariate methods are useful to determine what
components, or “features,” exist in the rs-fMRI data without
imposing a mathematical model a priori for the signal and
noise properties. Such data-driven methods are advantageous
because they place less burden on the operator to identify all
types of motion artifacts and implement specific correction
methods – potentially allowing results to be replicated more
easily across studies. However, data-driven methods do require
some form of post hoc feature selection of the components
(and the number of components used) to identify the
signals of interest and remove structured noise. For example,
mutually orthogonal features are identified by PCA, which
has been used to remove motion-related signal fluctuations
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at the edge of the brain for improved temporal SNR
compared to use of motion parameter regression (Patriat
et al., 2015). In addition, ICA (Thomas et al., 2002) is
popular to identify features based on statistical independence
rather than orthogonality. Manual identification of noise-
related ICs requires detailed knowledge of the spatiotemporal
properties of the rs-fMRI signal (see Griffanti et al., 2017
for guidance) and is laborious and operator-dependent, but
multiple automatic methods have been developed that are
robust and objective (Tohka et al., 2008). These include
methods specifically focused on removing physiological noise
associated with cardiac pulsatility and respiration (Beall and
Lowe, 2007; Perlbarg et al., 2007), and more general artifact
removal methods with different processes for feature selection
(Bhaganagarapu et al., 2013; Salimi-Khorshidi et al., 2014;
Pruim et al., 2015b). Work has also been done to compare
the effectiveness of these methods, as well as in relation
to other de-noising approaches such as spike regression
and scrubbing (Pruim et al., 2015a; Parkes et al., 2018).
Additional comparisons of this type will be necessary to
establish whether one or more methods are particularly
advantageous across different populations of test subjects in
rs-fMRI studies.

Other Methods and Considerations
Briefly, it is important to make three additional comments about
retrospective correction of motion artifacts in rs-fMRI data.
First, comparative work on volumetric versus surface-based fMRI
analysis shows that the latter provides superior inter-subject
alignment and better preservation of functional regions upon
smoothing (Anticevic et al., 2008; Tucholka et al., 2012; Smith
et al., 2013a). Even so, retrospective motion correction is usually
performed as a preliminary step in the volumetric domain prior
to the projection of de-noised fMRI data onto the brain surface.
Second, artifact reduction is an intensive field of MRI research
and new correction methods are continuously being developed,
some of which may have significant merit without aligning to the
categories listed above. One example is a method called “wavelet
despike” that has been developed to identify dynamic events
occurring across various frequencies, for the removal of sudden
spikes from head motion as well as slower spin-history related
artifacts (Patel et al., 2014). This method is particularly useful for
subjects with elevated head motion and is capable of reducing or
even removing distance-dependent connectivity artifacts without
the need for scrubbing (Patel et al., 2014). Third, it is evident that
because no gold-standard protocol exists to correct artifacts in rs-
fMRI data, the data analyst is confronted with choosing from very
many rs-fMRI artifact correction methods, many of which have
multiple parameter settings. Multiple correction methods must
be selected to suppress artifacts most successfully, and the various
methods are likely to interact with one another, sometimes in an
order-dependent fashion. This state of affairs has led to multiple
studies that compare various correction methods and/or their
interaction effects, using various metrics to indicate the quality
of the rs-fMRI results (Churchill et al., 2012a,b; Carp, 2013;
Hallquist et al., 2013; Satterthwaite et al., 2013; Power et al.,
2014; Pruim et al., 2015a; Shirer et al., 2015; Ciric et al., 2017;

Vytvarová et al., 2017; Gargouri et al., 2018; Parkes et al., 2018).
Such work will continue to be necessary as MRI systems, imaging
protocols, and methods of analysis improve over time.

Real-Time Motion Correction
Although patient setup procedures, use of rapid imaging
acquisitions, and retrospective de-noising approaches are
commonly adopted in rs-fMRI experiments, another class of
correction methods described as “real-time,” “adaptive,” or
“prospective” show considerable promise and may become
essential tools in the long term. Here, the term “real-time”
is adopted for these methods, which depart from typical
rs-fMRI protocols that produce reconstructed images in a
Cartesian coordinate system that is static with respect to the
MRI system. Instead, images acquired with real-time motion
correction are reconstructed in a moving coordinate system
that is fixed to the head. In principle, images viewed in the
moving coordinate system will appear to be static, provided
that rigid body motion is a good approximation. (In reality,
effects that violate this assumption will also have to be corrected
either in real-time or retrospectively, as indicated below).
Real-time motion correction requires (a) a method to track
head motion, usually relative to an initial head position and
orientation; and (b) incorporation of the tracking data to
update MRI spatial encoding synchronously with the moving
coordinate system. The latter requirement necessitates software
modifications to the underlying image acquisition method (e.g.,
EPI). Depending on how rapidly and accurately the update
occurs, real-time approaches have the potential to account
for both partial volume effects and spin-history effects in very
convenient fashion. In cases where the real-time update is
relatively slow, prospective correction can be added to account
for the lag between motion measurement and acquisition of
the next multi-slice image dataset – using a Kalman filter, for
example (White et al., 2010). Various real-time motion correction
methods exist, categorized below based on the choice of motion
tracking strategy.

Navigator Echoes
Magnetic resonance signals that are acquired and spatially
encoded specifically for position tracking are known as “navigator
echoes” and were among the first methods of real-time motion
correction developed for fMRI (Lee et al., 1996, 1998). The main
advantage of such methods is that position tracking is achieved
without requiring custom ancillary hardware or fiducial markers
(see below). Navigator echoes have progressed from tracking
motion in 1D (Ehman and Felmlee, 1989) to full 3D capability
(Welch et al., 2002; Wastiaux et al., 2006; Tisdall et al., 2012)
based on calculations performed in k-space (Lin et al., 2010)
or image space (White et al., 2010; Hoinkiss and Porter, 2017).
However, the methods have not been widely adopted in fMRI
studies to date (Boksman et al., 2005). Possible reasons for
this include (a) insufficient position tracking accuracy for fMRI
applications, arising from sensitivity to imperfections such as
gradient non-linearity and magnetic field inhomogeneity; and (b)
potential disruption of the steady state magnetization in brain
regions where functional connectivity is of interest.
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Image-Based Methods
A more popular method for real-time motion correction involves
the use of volumetric image registration to track the change in
head position and orientation at each point in the fMRI time
series in relation to a reference volume of multi-slice images
(Thesen et al., 2000). This approach is now a standard option
on some MRI systems, and assumes that multiple effects are
negligible: head motion on the timescale of the TR interval
(typically ∼2 s); dynamic geometric distortion; and other artifacts
that violate the rigid-body assumption, such as interactions
between head motion and coil sensitivity. One or more of
these assumptions may not always be valid. For improved
functionality, a revised version of this method has recently
been implemented to take advantage of simultaneous multi-slice
fMRI for higher temporal resolution and intra-volume motion
correction (Hoinkiss et al., 2018).

Other Position Tracking Devices
Many additional methods have been investigated for real-
time motion correction that either adopt novel MRI signal
approaches for position tracking, or other MRI-compatible
sensor technologies. “Active marker” methods use at least
three non-collinear RF micro-coils, each containing an MRI-
sensitive material, as fiducials to measure rigid-body head
motion with minimal impact on temporal resolution (Erhart
et al., 1998; Krueger et al., 2006; Ooi et al., 2009, 2013a).
“Passive marker” approaches have also been explored that
use small pickup coils for position tracking based on the
voltages induced by imaging gradients (Haeberlin et al., 2014;
Aranovitch et al., 2018). As for navigator echoes and image-
based methods, active and passive MRI marker devices can also
suffer from instrumental imperfections that introduce errors in
signal localization. Nonetheless, improved image stability has
been demonstrated in standard EPI sequences (Ooi et al., 2011)
as well as increased statistical significance for fMRI (Muraskin
et al., 2013). The most recent and sophisticated work in this area
uses an inductively coupled microcoil and a series of other passive
marker components: a pickup coil, magnetometer, accelerometer
and angular rate sensor. When all the sensor measurements
are combined, position tracking with sub-millimeter accuracy is
achievable from a single fiducial device (van Niekerk et al., 2019).

Optical sensors are also attractive for their high temporal
resolution and spatial accuracy, and intrinsic MRI-compatibility.
The original work involved laser interferometry (Eviatar
et al., 1999), but was not pursued due to impracticalities in
achieving line-of-sight and mirror adjustment. Better results
are achieved using one or more optical cameras to track
reflective fiducial markers affixed to the head (Zaitsev et al.,
2006; Maclaren et al., 2012; Todd et al., 2015). These
methods enable a tracking accuracy of ∼5–100 µm with
temporal resolution of ∼20–50 ms, exceeding the capabilities of
most MRI-based methods (Eschelbach et al., 2018). However,
there are also some concerns about the practicality, cost
and robustness of these methods at present. Calibration is
required to transform optical position tracking data into
the spatial coordinates of the MRI system, which may be
time-consuming (Maclaren et al., 2018). Calibration errors

can create further artifacts (Zahneisen et al., 2014a) that
must be corrected retrospectively (Aksoy et al., 2012). The
cost of optical tracking systems tends to be high, due to
hardware considerations involving the MRI-compatibility of
the cameras, and the research and development required to
develop motion-correction capabilities with good calibration and
real-time integration in MRI systems and imaging protocols.
The camera view of markers (typically through openings in
the head coil) may be obstructed if motion is substantial,
and there is the general concern with all fiducial marker
approaches (optical and other) that movement of the skin,
for example due to frowning or facial expressions, may not
accurately reflect motion of the brain. Each of these problems
is being actively investigated and ameliorated (Singh et al.,
2015; Benjaminsen et al., 2016; Eschelbach et al., 2017; Frost
et al., 2018). Notably, optical motion correction has been
shown to improve temporal SNR of both resting state and
task-based 3D EPI acquisitions (Todd et al., 2015), with
demonstrated benefits for increased significance and sensitivity of
connectivity measures (Chu et al., 2018). Based on the promising
outcomes of this collective work, optical tracking devices are
also available for MRI applications commercially through third-
party vendors, and are starting to be offered by MRI system
vendors themselves.

One final comment is required about real-time motion
correction methods for rs-fMRI. The existing literature in
this area predominantly relies on the assumption of rigid-
body head motion and, as emphasized earlier, this is likely
insufficient for full suppression of motion artifacts. For example,
residual geometric distortions will likely be present due to
motion-induced dynamic magnetic field inhomogeneities, which
can be resolved by real-time shim updates or by distortion
corrections from time-dependent field maps (Ooi et al., 2013b;
Rotenberg et al., 2013). Corrections for the interaction between
head motion and multi-channel coil sensitivity can also be
included (Faraji-Dana et al., 2016a,b). More research is needed
to establish what combinations of retrospective and real-time
corrections are most appropriate for rs-fMRI analyses, with the
promise of more robust methodology and improved detection
sensitivity in the future.

CONCLUSION

Despite its utility in neuroscience, rs-fMRI is confounded by
the effects of head motion during data collection, which may
result in complex spatial-temporal patterns of artifact. Diverse
and efficacious methods are now available that can be combined
to correct for these artifacts. Much progress has been made
to improve rs-fMRI data quality, but the existing methods
are not yet sufficiently robust to provide full control for
motion-related confounds. Real-time correction methods show
considerable promise toward reaching this goal in the future.
At present, however, the following recommendations represent
our view of how to address the potential for confounds in rs-
fMRI experiments due to motion artifacts – reasonably, and
transparently. Neuroimaging data analysts should:
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• report summary statistics of the head motion characteristics
for the group(s) under study, including whether group
differences in head motion are statistically significant;

• report and justify the methods used in the research to
correct for motion artifact;

• include statistical corrections in group level comparisons
to ensure that, as much as is reasonably possible, motion
artifacts to do not introduce confounds in the interpretation
of rs-fMRI results; and

• survey the fMRI literature for ongoing improvements
in motion artifact correction methods, and evaluate and
incorporate new methods as appropriate to maintain state-
of-the-art capabilities.

These practices will help to advance the neuroscientific
research that can be conducted using rs-fMRI, as will the

continued focus on technical developments to ensure that motion
artifacts become less of a problem in rs-fMRI data.
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