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Most dynamic systems are controlled by discrete time controllers. One of the main

challenges faced during the design of a digital control law is the selection of the

appropriate sampling time. A small sampling time will increase the accuracy of the

controlled output at the expense of heavy computations. In contrast, a large sampling

time will decrease the computational power needed to update the control law at the

expense of a smaller stability region. In addition, once the setpoint is reached, the

controlled input is still updated, making the overall controlled system not energetically

efficient. To be more efficient, one can update the control law based on a significant

fixed change of the controlled signal (send-on-delta or event-based controller). Like

for time-based discretization, the amplitude of the significant change must be chosen

carefully to avoid oscillations around the setpoint (e.g., if the setpoint is in between

two samples) or an unnecessary increase of the samples number needed to reach the

setpoint with a given accuracy. This paper proposes a novel non-linear event-based

discretization method based on inter-events duration. We demonstrate that our new

method reaches an arbitrary accuracy independently of the setpoint amplitude without

increasing the network data transmission bandwidth. The method decreases the overall

number of samples needed to estimate the states of a dynamical system and the update

rate of an actuator, making it more energetically efficient.

Keywords: dynamic systems, feedback control, control theory, event-based signal processing, level crossing

sampling

1. INTRODUCTION

With ever faster and ever cheaper digital computers, the control of dynamic systems has shifted
from analog to digital controllers. Critically, the majority of discrete-time control laws assume
that the sampling rate of the discretization process is constant. There is currently a discrete-time
equivalent for the vast majority of continuous-time control theory principles, from the continuous
proportional-integral mechanical “governors” of Maxwell (1867) to the more recent optimal
control theories based on Pontryagin’s maximum principle (Pontryagin et al., 1962).

The selection of the appropriate sampling rate depends both on the open-loop system dynamics
and on the desired dynamics of the controlled system. A system with fast dynamics needs a high
sampling rate to ensure the stability of the controlled system at the expense of higher computational
power. Moreover, the controlled input of a dynamical system is traditionally updated at each time
step independently of the error amplitude. When a controlled system is in a stable configuration at
the setpoint, there is obviously no need to sample the data, update the controller and the actuator.
Indeed, doing so is not energetically efficient.
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In the early 60’s, this lack of efficiency combined with
lower computational power spurred the development of adaptive
discrete-time sampling methods (Dorf et al., 1962; Tomovic
and Bekey, 1966). In these methods, an event is sent once
the sampled signal increases or decreases by a certain delta
(send-on-delta/event-triggered discretization schemes). When
the signal doesn’t change, there are intrinsically no more updates.
More than three decades later, there was a resurgent gain of
interest for these discretization methods with aperiodic sampling
time leading to new control mechanisms (e.g., Arzén, 1999;
Bernhardsson and Aström, 1999; Heemels et al., 2012) for send-
on-delta, (Miskowicz, 2005, 2007) for area/integral thresholds,
and their analyses, e.g., the effect of noise on the send-on-
delta mechanism (Astrom and Bernhardsson, 2002; Cervin and
Astrom, 2007). In Hetel et al. (2017), a survey on stability studies
of aperiodic sampling systems is provided.

Event-based control mechanisms have also drawbacks. For
example, to the best of our knowledge, all current event-based
control schemes transmit the signal value within an event. This
limits the system dynamic range (ratio between the largest
and the smallest value that a signal within a control system
can assume) because the data transfer must have the same
representation as the system data. Therefore, if one wants to
control a system with a high accuracy on a wide range of value,
such a control system would need a high bandwidth network to
transmit the values of the signal.

In this paper, we propose a new framework and theory
for event-based control that are circumventing the problem
mentioned above while preserving the benefit of the event-based
approach. We formalize a generalized discretization method that
stems from the principle of neuromorphic event-based cameras
(Posch et al., 2008, 2011) for analog signals. In contrast to
traditional frame-based cameras where a clock synchronizes the
acquisition of each pixel and the pixels’ value is transmitted
directly in an image, in event-based cameras each pixel is
independent. When a pixel detects a light intensity change of
a certain magnitude, it signals the change emitting an event.
This event carries information about the time of the change,
the position of the pixel and if the light intensity increased or
decreased. The principal contribution of this work is to generalize
the level-crossing sampling representation in the context of
control. We focus on exploiting the benefit provided by a more
efficient information coding to reduce computation resources
through the use of the duration between two events rather than
the value of a signal to update the control law. Therefore, an event
can be represented with fewer bits than the input signal and this
increases the dynamic range of the control system.

First, we describe a general class of event-based discretization
functions and the associated reconstruction process in section
2.1. Then, in section 2.2 we show how uncertainties on the
event timing as well as on the initial value of the signal affect
the accuracy of the reconstructed signal. In section 2.3, we use
a logarithm as discretization function and we show how we
tackle the issue of the Zeno phenomenon (Heymann et al.,
2005; Lampersky and Ames, 2013). Section 3 presents control
results based on the logarithmic discretization. Finally, section 4
concludes the paper.

2. MATERIALS AND METHODS

2.1. Non-linear Event-Based Discretization
Figure 1 presents the general principle of a linear (Figure 1A)
and a non-linear (Figure 1B) event discretization applied to
an error signal ǫ(t). Using linear event-based discretization, if
the setpoint lies between two intervals then no event will be
generated (no event will be generated after t4 as the system is
stable between two samples). To overcome this problem, the
simplest method is to compute the step size such that the setpoint
is an integer multiple of the step size. It is worth noting that
when the setpoint lies between two samples, it corresponds to
a bias β in the linear function presented in Figure 1A. In the
non-linear case presented in Figure 1B, the step size needed to
generate events decreases as the controlled signal approaches the
setpoint. Therefore, one can stop the event generation when the
absolute error is smaller than a predefined threshold.

2.1.1. Event Generator Function
Given a generic finite dimension, non-linear continuous-time
system S to control, we assume that a control law C has been
designed to ensure that the output y of the system converge
toward a setpoint r, stabilizing (at least locally) the controlled
system. Both signals r and y can be multidimensional. Using
this representation, the error signal ǫ is equal to the difference
between the system output y and the setpoint r. Figure 2 is
a schematic summarizing this control configuration.Then, B, a
subset of R+ computed from the control law C, can be defined as
the basin of attraction around the equilibrium ǫ = 0 such that:

∀ǫ ∈ B ⊂ R
∗, lim

t→+∞
ǫ(t) = 0, (1)

lim
t→+∞

dǫ(t)

dt
= 0. (2)

Let h be the “event generator” continuous function that computes
the time of the next event ti+1 from the value of ǫ at ti.

h :B → R
+

ǫ(ti) 7→ h(ǫ(ti)) = ti+1
(3)

The key principle of our event-based discretization method is
that the duration between two events generated by h must tend
to zero when the error tends to zero. Mathematically, this can be
written has a limit:

lim
t→+∞

[(h ◦ ǫ)(t)− t] = 0. (4)

Equation (4) can be equivalently rewritten into:

lim
t→+∞

(h ◦ ǫ)(t) = lim
ǫ→0

h(ǫ) = lim
t→+∞

t (5)

⇒ lim
ǫ→0

h(ǫ) = ∞. (6)

Equation (6) is the first requirement that must be met by h if (4)
is true.
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FIGURE 1 | Comparison of linear (A1) vs. non-linear (B1) event-based discretization. (A2,B2) Represent the time course of the controlled system (black lines) and the

setpoint (red lines) for the linear and the non-linear discretization. Gray lines represents the levels at which an event will be triggered. Starting from an initial condition

ǫ(t0) (step a), one can evaluate g(ǫ(t0)) (step b). Then remove 1 from the value (step c) to evaluate when the next event will be generated g(ǫ(t1)) = g(ǫ(t0))− 1. Finally,

compute the inverse of g for this value and extract the error ǫ(t1) at the next event (steps d and e). These steps can be repeated to extract ǫ(t2) from ǫ(t1), ǫ(t3) from

ǫ(t2) and so on. As clearly shown in the figure, the limit of this recursive process when the error approaches zero is zero in the non-linear discretization but not in the

linear one (because of the bias β in the function).

FIGURE 2 | Generic closed loop control system. r represents the setpoint, y

the system output, ǫ the error between the setpoint and the system output, C

the controller, and S the controlled system.

2.1.2. Events Generation
As the class of functions that satisfy (4) is very broad, this section
presents a method to build these functions. One can compute
a time series {ti} using a monotonically increasing function g
applied to ǫ(t) such that an event will be triggered when the
difference of g between two events is equal to one:

∀i ∈ N
+

g :R+ → R
{

ti
∣

∣ g(ǫ(ti−1))− g(ǫ(ti)) = 1
}

. (7)

For the rest of the paper, we postulate that g is monotonically
increasing. However, it must be noted that if g is monotonically

decreasing, the same reasoning can be applied and the time series
becomes:

{

ti
∣

∣ g(ǫ(ti))− g(ǫ(ti−1)) = 1
}

. (8)

As g−1 exists (it is monotonically increasing), one can predict the
value of the error at which the next event will be triggered:

ǫ(ti) = g−1
(

(g ◦ ǫ)(ti−1)− 1
)

. (9)

This discretization process is presented in Figure 1.
In addition, ǫ−1 exists by definition of Equation (9).

Therefore, one can write the function h defined in (4) as:

ti = ǫ−1(g−1
(

(g ◦ ǫ)(ti−1)− 1)
)

(10)

= h ◦ ǫ(ti−1). (11)

From this relationship, a supplementary condition on g can be
extracted from (6):

lim
t→+∞

(g ◦ ǫ)(t) = lim
t→+∞

(g ◦ ǫ)(t)− 1. (12)

As g is a function of reals, only±∞ is a solution of (12).
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2.1.3. Signal Reconstruction
Using the proposed discretization, one can reconstruct the time
course of the original error signal using the events:

ǫ(tN) = ǫ(t0)+

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)]H(t − ti) (13)

in which H(x) represents the Heaviside step function:

H(x) =
d

dx
max(x, 0). (14)

As the series (13) converges toward 0, then:

lim
N→+∞

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)] = −ǫ(t0). (15)

2.2. Uncertainty Analysis
Up to now, our formulation of the events generation assumes
that there is no measurement uncertainties on both the initial
value of the error (ǫ(t0)) and on the time interval estimation
(ti − ti−1). In this paragraph, the effect of uncertainties on these
values is analyzed.

2.2.1. Uncertainty on the Initial Value
First, we will analyze how an uncertainty on the initial estimate of
the error, ǫ(t0), influences the estimate of ǫ(tN) and thus affects
the convergence of the series. We will postulate that we have
an infinitely accurate measurement of the time interval between
two events.

Given an estimate of the initial error

ǫ̂(t0) = ǫ(t0)+ δǫ0 (16)

with ǫ(t0) representing the true initial value, δǫ0 representing an
uncertainty on the true initial value, one can rewrite (13):

ǫ̂(tN) = ǫ(t0)+ δǫ0

+

N
∑

i=1

[g−1
(

g(ǫ(ti−1)+ δǫi−1 )− 1
)

− ǫ(ti−1)− δǫi−1 ]H(t − ti). (17)

The first terms of recursion (17) are:

ǫ̂(t0) = ǫ(t0)+ δǫ0 (18)

ǫ̂(t1) = ǫ(t1)+ δǫ1

= g−1
(

g(ǫ(t0)+ δǫ0 )− 1
)

(19)

Because g is monotonically increasing, it follows that
ǫ̂(t1) < ǫ̂(t0). This leads to g−1

(

g(ǫ(ti−1)+ δǫi−1 )− 1
)

<

ǫ(ti−1) + δǫi−1 for arbitrary i − 1. Then for i,
g−1

(

g(ǫ(ti)+ δǫi )− 1
)

< ǫ(ti) + δǫi is also verified. Therefore,
by induction:

lim
N→∞

g−1
(

g(ǫ(ti−1)+ δǫi−1 )− 1
)

= 0, (20)

and

lim
N→∞

ǫ̂(tN) = 0. (21)

This result shows that, independently of the initial error on the
measurement, the estimate of the error converges toward zero.

2.2.2. Uncertainties on Time Interval Measurement
In this section, we will analyze the effect of an uncertainty on
the measurement of the time interval between two events. If one
assumes that the uncertainty σi on the time value ti is drawn from
a uniform random distribution U

ς
−ς between −ς and ς , one can

write Equation (13) as:

ǫ(t)+ δǫ(t) = ǫ(t0)+

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)]H(t − ti + σi). (22)

Using (13) and (22), one can extract δǫ(t), using the rectangular
function 5:

5(X) = H(X)−H(0) (23)

δǫ(t) =

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)]5(σi). (24)

From (24), one can evaluate the bounds of the error if one
supposes that all the uncertainties are equal to either ς or−ς :

δ∗ǫ (t) = ±ς

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)]. (25)

If ǫ(t0) = ǫ0, the limit of (25) representing the upper (lower)
bound of δǫ(t) can be computed using (15):

lim
t→+∞

δ∗ǫ (t) = ∓ςǫ0. (26)

Similarly, the other bound is equal to ςǫ0. Equation (26) shows
that the boundaries of the uncertainty on the error signal is only
a function of the clock accuracy. Therefore, the proposed non-
linear discretization can be used to reach an arbitrary precision
of the controlled state, provided that the user has access to an
infinitely accurate clock.

2.3. Logarithmic Event-Based
Discretization
As the goal of the paper is to demonstrate the usefulness of
the discretization method to control a system, we postulate in
the following sections of the paper that the user has designed
a control law such that the controlled system is globally
asymptotically stable.

In the rest of the paper, we use a logarithmic function
as event discretization function g(ǫ). We demonstrated in
section 2.1 that a candidate discretization function g must fulfill
three conditions:

Frontiers in Neuroscience | www.frontiersin.org 4 August 2019 | Volume 13 | Article 827

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Daye et al. Event-Based Control

1. g : R+,∗ → R

x 7→ g(x)

2. g must be continuous and strictly monotonic on R
+,∗ (and

thus invertible)

3. limx→0 g(x) =

{

−∞ if dg/dx > 0
+∞ if dg/dx < 0

Selecting a logarithmic function with a base b of ǫ(t) for g
such that:

∀b ∈ R
+, b 6= 1

g(ǫ) =
ln |ǫ|

ln b
= logb|ǫ|, (27)

it is straightforward to demonstrate that the logarithm satisfies
the three conditions on g on R

+. The effect of the base of the
logarithm on events generation will be presented in section 3
Using (27), one can compute a time series {ti}:

∀b ∈ R
+, b 6= 1, i ∈ N

+

{

ti

∣

∣

∣

∣

∣

∣

∣

∣

ln |ǫ(ti)|

ln b
−

ln |ǫ(ti−1)|

ln b

∣

∣

∣

∣

= 1

}

(28)

A polarity information, pi, is added to the time series (28) to
express if ǫ(t) has increased or decreased between two samples
of the series:

b > 1

(ti, pi = +1) |

∣

∣

∣

∣

ǫ(ti)

ǫ(ti−1)

∣

∣

∣

∣

= b (29)

(ti, pi = −1) |

∣

∣

∣

∣

ǫ(ti−1)

ǫ(ti)

∣

∣

∣

∣

= b (30)

For the sake of simplicity, we will use b > 1 in the rest of
the paper. But the same relationships used to generate an events
series for b > 1 can be derived if 0 < b < 1:

0 < b < 1

(ti, pi = +1) |

∣

∣

∣

∣

ǫ(ti−1)

ǫ(ti)

∣

∣

∣

∣

= b, (31)

(ti, pi = −1) |

∣

∣

∣

∣

ǫ(ti)

ǫ(ti−1)

∣

∣

∣

∣

= b. (32)

Finally, as ǫ(t) can change sign between two events, we added a
third piece of information to each event representing a change of
sign between the current event and the prior one: si.

Therefore, an event ei is defined as a triplet (ti, pi, si) in which
ti represents the event time, pi represents its polarity (either 1 or
–1, could be represented by a single bit) and a Boolean si (0/1)
representing the fact that the sign of the signal changed between
the ei−1 and ei.

Using these notations, one can construct the time course of the
original signal ǫ(t) using1:

ǫ(t) = ǫ(t0)+ (−1)sN
N

∑

i=1

(b−pi − 1) ǫ(ti−1)H(t − ti), b > 1

(33)

in which H(x) represents the Heaviside step function:

H(x) =
d

dx
max(x, 0). (34)

2.3.1. Arbitrary Accuracy
The goal of this section is to demonstrate that the proposed
logarithmic discretization can be used to reach a stable point with
an arbitrary accuracy. Using (29), the value of the error signal at
time ti can be written using a geometric recursion:

ǫ(ti) =
ǫ(t0)

bi
. (35)

From (35), it is clear that from any finite value ǫ(t0):

lim
n→+∞

ǫ(ti) = 0. (36)

Equation (36) shows that one can reach an arbitrary precision
using the logarithmic discretization proposed in this section.
The arbitrary precision at which the error is considered null
(therefore at which the system has reached the setpoint) is a
design parameter of the control law.

2.3.2. Refractory Period
Theoretically when ǫ reaches zero, the number of events goes
to infinity and the duration between two events reaches zero. In
addition, even if the accuracy of the clock is very high, practically
the computations needed to evaluate the ratios (29) and (30)
can take some time. Therefore, for practical implementations,
we define the refractory period as the minimum time between
two events that the system can generate. These limitations put
some constraints on the overall system as the ratio between the
past error and the current one could be crossed multiple times
during the refractory period. To counter this issue, we added a
last parameter to the event representing the number of times the
threshold has been crossed between two events rn:

ri =

⌊

ln
(

ǫ(ti−1)/ǫ(ti)
)

ln b

⌉

if pi = −1 (37)

=

⌊

ln
(

ǫ(ti)/ǫ(ti−1)
)

ln b

⌉

if pi = +1. (38)

Equation (33) can be written to include rn:

ǫ(t) = ǫ(t0)+ (−1)sN
N

∑

i=1

(b−piri − 1) ǫ(ti−1)H(t − ti), b > 1.

(39)

1If 0 < b < 1, ǫ(t) = ǫ(t0)+ (−1)sN
∑N

i=1(b
pi − 1) ǫ(ti−1)H(t − ti)
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The presented discretization method allows us to benefit from
the event-based representation in the control context. In the
experiments section, we present its application to the control of a
second order dynamical system.

3. EXPERIMENTS

The proposed event-based non-linear discretization and the
resulting control laws are tested on two systems different systems.
The first one is a classical second order dynamical systemwhile in
the second example we stabilize an inverted pendulum on a cart.

3.1. Control of a Second Order Dynamical
System
This section presents the control of a second order dynamical
system with 0.1 and 0.01 s as time constants. The second-
order system is controlled by a proportional-integral-derivative
controller (see Appendix in Supplementary Material, section 3)
with a proportional gain equal to 1, an integral gain equal to
5, and a derivative gain equal to zero. This example is used as
an academic demonstrator of the new event-based discretization
method. Therefore, this second-order model doesn’t describe a
particular system and the units of the controlled signals, the
setpoint, the output or of any of the system internal signals
are arbitrary.

Figure 3A presents the results of the simulation when a
unitary step (the setpoint of the system goes from zero to one) is
applied to the controlled system 100ms after the beginning of the

simulation. The base of the logarithmic discretization function
was set to 1.05 and the refractory period was set to 1 millisecond.
The upper row represents the time course of the setpoint and the
output of the system. The second row represents the frequency of
the events generated. Positive (negative) frequencies correspond
to positive (negative) polarity events. The events frequency was
computed using the convolution of a 2.5 ms normal distribution
with the time of the events as it used in neuroscience to compute
the discharge frequency of neuronal activities (MacPherson and
Aldridge, 1979; Richmond et al., 1987). The last row represents
the control sent to the system to reach the setpoint. Importantly,
the control is updated only when an event is generated. Figure 3A
shows that the output of the system reaches the setpoint. In
addition, when the system output reaches the target (around
2 s, final error = 6.48e-4), no event is generated and the
control remains constant. 142 events were generated during
this simulation.

To test how a choice of base for the logarithmic discretization
function affects the control quality, we ran a series of simulations
for setpoint amplitude ranging from 1 to 1,000. Upper row in
Figure 3B shows the evolution of the mean squared error during
the last 250 ms as a function of the setpoint amplitude for three
different bases (1.01: black lines, 1.05: red lines, 1.1: blue lines).
The average mean squared error is statistically independent of
the setpoint amplitude (mean ± standard error of the mean
squared error. 1.01: 6.64e-5 ± 5.16e-6, 1.05: 6.56e-5 ± 8.92e-
6, 1.1: 6.41e-5 ± 1.52e-5). Lower row in Figure 3B shows that
the number of events generated during a simulation for the

FIGURE 3 | Control of a second-order system. Left column presents the simulation of a second order transfer function controlled by an event-based

proportional-integral controller when a step input is applied after 100 milliseconds. (A1) Represents the time course of the setpoint (red line) and the time course of the

output of the system (black line). (A2) Represents the frequency of events as a function of time. Positive frequencies correspond to the frequency of positive polarity

events representing an increase of the error signal (p+: black line). Negative frequencies correspond to the frequency of negative polarity events representing a

decrease of the error signal (p−: light blue line). (A3) Represents the time course of the control applied to the system to reach the setpoint. The right column

represents the sensitivity of the controlled system to a change of setpoint for different bases (represented by different colors). (B1) Represents the evolution of the

mean squared error as a function of the setpoint. (B2) Represents the evolution of the number of events triggered during a simulation as a function of the setpoint.
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same conditions decreases when the base of the logarithmic
discretization function increases.

This first set of simulations demonstrated that the absolute
error remained constant over a wide range of setpoint amplitudes
(from 1 to 1,000) without changing either the discretization or the
PID parameters. As the absolute error at the end of the simulation
remained mostly constant with increasing amplitude, the relative
error is decreasing.

3.2. Stabilization of an Inverted Pendulum
We have implemented a numerical simulation of an inverted
pendulum put on a cart. When a perturbation (in the form of an
external force T) is applied to the cart, the pendulum is moved
out of its equilibrium position. An event-based proportional-
integral-derivative (PID) controller stabilizes the pendulum in an
inverted position through a control force F applied to the cart.
The model of this dynamical system is presented in the Appendix
in Supplementary Material.

In the first two simulations, we measure the angular
orientation of the pendulum. In the last two simulations, we
used two sensors to measure the cart position and the angular
orientation of the pendulum. In all the simulations, we control

the force applied to the cart to stabilize the pendulum in upright
position. In each of the following simulations, the pendulum
started in the upright inverted position and we injected a fifty
milliseconds perturbation one hundred milliseconds after the
beginning of the simulation.

3.2.1. Proportional-Integral-Derivative Control Law
In this section, the pendulum angle was controlled by
a proportional-integral-derivative (PID) controller with a
proportional gain of 100, an integration gain of 2 and a derivative
gain of 10. We compared a traditional discrete PID controller
with an event-based version of the PID controller. The base of the
logarithmic discretization function was set to 1.05 for the event-
based control law simulations and the refractory period of the
sensor was set to 1 ms.

Figure 4 compares the two control laws when the control
sampling rate of the discrete controller was set to 1 kHz. For
the event-based control law, the control was updated each time
an event arrives. Figure 4A shows the results of the simulation
with the event-based control law. Figure 4B represents the
results of the simulation with the discrete PID. The last row in
Figures 4A,B represents the angular error of the pendulum. In

FIGURE 4 | Inverted pendulum on a cart controlled by either an event-based controller (Left column) or a discrete PID with a one millisecond sampling time (Right

column). (A1,B1) Represent the time course of forces applied to the system. The red curve represents the 100 N perturbation applied to the cart during 50 ms. The

blue curve represents the time course of the input force applied to the cart to stabilize the pendulum. (A2) Represents the frequency of events generated during the

simulation. Positive frequencies correspond to positive polarity events representing an increase of the error signal (p+: black line). Negative frequencies correspond to

negative polarity event representing a decrease of the error signal (p−: light blue line). (A3,B2) Represent the time course of the cart position. (A4,B3) Represent the

angular error of system (orange line, angle with respect to the vertical) and the estimate of the error built from the received events (green line).
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both control law conditions, the pendulum is stabilized by the
control law. The maximum error is smaller in the case of the
discrete PID controller. However, with the discrete PID, there
are peaks of desired force above 500 N. In addition, the discrete
version of the control law updated the force applied to the cart
2,500 times while the event-based version updated that force only
199 times, so the system is updated roughly 12.5 times less often
using the event-based control.

This simulation shows that the frequency of events generation
is sensitive to the amplitude of the error (the smaller the error,
the higher the number of events) and to the amplitude of the
time derivative of the error (the larger the amplitude of the
time derivative of the error, the higher the events frequency). In
Figure 4, the frequency of positive events increases during the
first part of the error increase (when the time derivative of the
error is important). Then, as the amplitude of the error time
derivative decreases and the amplitude of the error increases,
the frequency of events generation decreases as well. Afterwards,
there is a small plateau during which no positive nor negative
events are generated (corresponding to the peak of the error

signal, when there is no modification of the error amplitude
large enough to trigger an event). Finally, there is an increase
of the frequency of negative events as the error decreases due to
feedback control of the PID. It can be seen that, as the rate of
change of the error during the decrease of the error is smaller,
the overall frequency of the events is smaller. However, even if
the time derivative of the error decreases, the events generation
frequency increases toward the end of the stabilization period as
the error reaches zero. These observations show the sensitivity of
the events generation frequency to both the rate of change of the
error and the amplitude of the error.

Figure 5 compares a discrete PID control law and an event-
based control law when the discrete controller and the event-
based controller are set to update the control output at 20 Hz.
This experiment presents how the event-based controller can be
used to update regularly a control output. Therefore, contrarily
to all the other experiments, in this case, while the estimate of the
error and the integral of the error are updated each time an event
is generated, the control is updated every 50 ms. The striking
point in Figure 5 is that the event-based controller stabilizes the

FIGURE 5 | Inverted pendulum controlled with the event-based controller and the discrete controller set to update the control output at 20 Hz. The discrete controller

fails to stabilize the pendulum when the control frequency is reduced from 1KHz to 20 Hz. Each subfigures and the colors convention are defined as in Figure 4.

(A1,B1) Represent the time course of forces applied to the system. The red curve represents the 100 N perturbation applied to the cart during 50ms. The blue curve

represents the time course of the input force applied to the cart to stabilize the pendulum. (A2) Represents the frequency of events generated during the simulation.

Positive frequencies correspond to positive polarity events representing an increase of the error signal (p+: black line). Negative frequencies correspond to negative

polarity event representing a decrease of the error signal (p−: light blue line). (A3,B2) Represent the time course of the cart position. (A4,B3) Represent the angular

error of system (orange line, angle with respect to the vertical) and the estimate of the error built from the received events (green line).
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FIGURE 6 | Inverted pendulum controlled by state-space feedback law. Left column represents an event-based state-space feedback law with the force applied to

the cart updated at each event. Right column represents the same control law but with the force applied to the cart updated every 50 ms. (A1,B1) Show the time

course of forces applied to the system. The red curve represents the 100 N perturbation applied to the system during 50 ms. The blue curve represents the time

course of the force applied to the cart to stabilize the pendulum. (A2,A3,B2,B3) Represent respectively the frequency of pendulum angle and cart position events as a

function of time. Positive frequencies correspond to the frequency of positive polarity events representing an increase of the error signal (p+: black lines). Negative

frequencies correspond to the frequency of negative polarity events representing a decrease of the error signal (p−: light blue lines). (A4,B4) Show the time course of

the cart position (orange line, deviation from the central position) and the estimate of the position built from the received position events (green line). Finally, (A5,B5)

Represent the angular error of system (orange line, angle with respect to the vertical) and the estimate of the error built from the received events (green line).

pendulum (the effect of the external force is negated and the
pendulum remains in an upright position) while the system is
unstable with the discrete controller. More events are generated
in this condition compared to the condition in Figure 4A (432
events here vs. 199 events in Figure 4A).

In this set of simulations, we showed that the system could
reject a perturbation applied to the cart and keep the pendulum
stable while decreasing the number of times the controlled input
is updated by a factor 12 compared to an equivalent time-discrete
PID with a 1 ms sample time. We also showed that we can keep
the pendulum stable with the same controller parameters while
updating the force applied to the cart every 50 ms instead of each
time an event is received, reducing drastically the burden put on
the actuator.

3.2.2. State-Space Feedback Control Law
After the controllers reject the perturbation and stabilize the
pendulum angle, the third row in Figures 4, 5 shows that the
cart keeps moving. This displacement is generated because the
stabilized angle is not the upright position. It is not possible
to build an observer of the cart position based on pendulum
angle measurements as the observability matrix in this condition
is not full-rank. Therefore, it is not possible to stabilize both
the pendulum angle and the cart position using a single PID
with a single sensor on the pendulum angle. In this section, we
present a state-space feedback control law that stabilizes both the
pendulum angle and the cart position. To that goal, we used two
sensors, one on the cart position and one on the pendulum angle.
The optimal gainK of the state-space feedback law was computed
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using the linear-quadratic regulator2 updated each time an event
is emitted by one of the sensors. We used the estimate of the cart
position, the derivative of the estimate of the cart position, the
estimate of the angular error and the derivative of the estimate
of the angular error as states for the feedback. The estimate of
the derivatives was built like the derivative component in the
PID controller of the previous section. Figure 6A shows the
results of the simulation when the force applied to the cart is
updated every time one of the sensors emits an event. Figure 6B
shows the results of the simulation when the force applied to
the cart is updated only every 50 ms. The simulations show
that the designed state-space feedback control law rejects the
perturbation and that both the cart position and the pendulum
angle are stable by the end of the simulations. A total of 1049
events (451 position events, 598 angular events) were generated
during the simulation presented in Figure 6A, while a total of
1,679 events (1,113 position events, 566 angular events) were
generated during the simulation in Figure 6B.

In this final set of simulations, we stabilized both the inverted
pendulum angle and the cart position. The designed system
rejected the perturbation and stabilized both the pendulum angle
and the cart position. As for the PID simulations, the force
applied to cart was updated every 50 ms and we showed that we
could keep the system stable.

4. DISCUSSION

This work proposes a new non-linear event-based discretization
method and the associated proportional-integral-derivative and
state-space feedback control laws. The key novelty of the
new event generator function lies in the principle that the
time between two events must decrease when the discretized
signal (e.g., an error signal) tends to zero. Contrary to
current event-based discretization/control schemes (e.g., Arzén,
1999; Bernhardsson and Aström, 1999; Miskowicz, 2005, 2007;
Tabuada, 2007; Lunze and Lehmann, 2010; Donkers and
Heemels, 2012; Heemels et al., 2012), the generated events do
not contain the value of the signal. Instead, a transmitted event
contains four parts: the time of the change, a polarity (did the
signal increased or decreased), a sign changed bit (did the signal’s
sign changed) and a refractory gain (the number of times the
threshold set in the level-sampling mechanism has been crossed
during a refractory period) to account for multiple level crossings
during the shortest measurable duration between two events.

2A detailed description of the linear-quadratic regulator is outside the scope of

this paper. The interested reader can learn about it in various textbooks (e.g., in

Corriou, 2004).

Using the new event-triggering scheme, we showed that
all the uncertainties on the signal approximation emerge
from uncertainties on the measurement of the duration
between two events. Also, because the inter-event duration
is the key information to the signal reconstruction, the
components of the system do not require synchronized
clocks but all of them must measure a duration with the
same accuracy.

In addition, the precision of the representation of the error
signal stored in any active part of the control mechanism (e.g.,
128 bits to represent the state of the system) can be much
higher than the number of bits used to transmit an event
(e.g., an 32 bits unsigned integer to represent milliseconds).
As a result, the design of a control scheme based on the new
method of this paper can increase the controlled signal dynamic
range without increasing the network data bandwidth needed to
transmit the information between the different components of
the controlled system.

Our results demonstrate that the new method combines the
advantages of analog continuous time systems

• it can reach an arbitrary precision with a very high
dynamic range

• with the advantages of event-based control
• no events are generated when the error is null.

In addition, the amount of data transmitted between active parts
of the control system can be smaller than the memory needed
to store the signals value. This makes the overall system more
efficient energetically.
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