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The interaction between the gut microbiota and alpha-synuclein (αSyn) aggregation in
Parkinson’s disease (PD) is receiving increasing attention. The objective of this study
was to investigate gut microbiota, and effects of an inflammatory lipopolysaccharide
(LPS) trigger in a human αSyn over-expressing mouse model of PD (Thy1-αSyn). Stool
samples from patients with confirmed PD and Thy1-αSyn mice were analyzed using
16S ribosomal RNA sequencing. Compared to healthy controls, the relative abundance
of mucin-degrading Verrucomicrobiae and LPS-producing Gammaproteobacteria were
greater in PD patients. In mice, the abundance of Gammaproteobacteria was negligible
in both Thy1-αSyn and wild-type (WT) animals, while Verrucomicrobiae were reduced
in Thy1-αSyn mice. The effect of LPS on intestinal barrier function was investigated
in vitro using intestinal epithelial (IEC-6) cells, and in vivo via administration of LPS in
drinking water to Thy1-αSyn mice. Acute exposure to LPS in vitro resulted in a reduction
and altered distribution of the tight junction markers ZO-1 and e-Cadherin around the
cell membrane in IEC-6 cells, as shown by immunohistochemistry. LPS administration
in Thy1-αSyn mice resulted in the emergence of early motor manifestations at
10 weeks, compared to untreated mice who were still asymptomatic at this age.
This study reaffirms that an altered microbiome exists in patients with PD, and
supports the notion of a proinflammatory gut microbiome environment as a trigger for
PD pathogenesis.

Keywords: Parkinson’s disease, microbiome, lipopolysaccharide, Gammaproteobacteria, Thy1-αSyn,
gastrointestinal
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INTRODUCTION

Parkinson’s disease (PD) has traditionally been characterized
by motor impairment but is now considered a multisystemic
disorder displaying a plethora of non-motor symptoms
(Chaudhuri et al., 2006; Emamzadeh and Surguchov, 2018;
Greenland et al., 2019). For example, people with PD frequently
report various gastrointestinal complaints including constipation
and nausea, and have prolonged intestinal transit time, often
years prior to their PD diagnosis (Martinez-Martin et al., 2011;
Lin et al., 2014; Fasano et al., 2015; Adams-Carr et al., 2016).
A key feature of the disease is the formation of insoluble
alpha-synuclein (αSyn) aggregates within neurons (Goedert
et al., 2013), contributing to the loss of dopaminergic neurons
in the basal ganglia. This Lewy body pathology also occurs more
widely throughout the central and peripheral nervous systems,
including the enteric nervous system (Beach et al., 2010).

The concept that PD is initiated following continuous
gut aggravation has gathered significant momentum in recent
years. Enteric αSyn is associated with greater intestinal
permeability (Forsyth et al., 2011), and a positive relationship
between inflammatory bowel diseases and future PD risk
is evident in various populations (Lin et al., 2016; Peter
et al., 2018; Weimers et al., 2018). Individuals with PD
also exhibit an imbalanced gut microbiome (dysbiosis) and
gastrointestinal inflammation (Keshavarzian et al., 2015; Hill-
Burns et al., 2017; Heintz-Buschart et al., 2018). Various
studies report similar trends in the microbial composition
of people with PD, where commensal bacteria (e.g., phylum
Firmicutes) are reduced, while pathogenic gram-negative bacteria
(Proteobacteria, Enterobacteriaceae, Escherichia sp.) and mucin-
degrading Verrucomicrobiaceae are increased (Keshavarzian
et al., 2015; Scheperjans et al., 2015; Unger et al., 2016; Hill-
Burns et al., 2017; Li et al., 2017). Moreover, bacterial treatments
in vitro and fecal microbial transplants in vivo also support the
role of the gut microbiome in αSyn aggregation, gastrointestinal
inflammation and motor symptom development (Sampson et al.,
2016; Choi et al., 2018; Sun et al., 2018).

Gram-negative bacteria, elevated in people with PD, produce
lipopolysaccharide (LPS), an endotoxin associated with intestinal
inflammation (Guo et al., 2015; Nighot et al., 2017). Interestingly,
the abundance of gram-negative Enterobacteriaceae is positively
correlated with the degree of postural instability and gait
difficulty in individuals with PD (Scheperjans et al., 2015). In
rodent models, LPS administration mirrors PD pathology. Direct
stereotaxic injection of LPS into the substantia nigra causes
microglial inflammation, oxidative stress, cellular apoptosis,
reduced dopamine production and motor impairments (Sharma
and Nehru, 2015). In the periphery, an intraperitoneal dose
of LPS increased αSyn expression and intestinal permeability
in the large intestine (Kelly et al., 2014), while chronic
intranasal instillation resulted in progressive hypokinesia,
selective dopaminergic neuronal loss and nigrostriatal αSyn
aggregation (He et al., 2013). Recently, intrarectal administration
of Proteus mirabilis-derived LPS to mice was shown to reduce
the tight junction cell marker occludin but increased tumor
necrosis factor alpha levels, and caused toll-like receptor 4

overexpression in the colon 16 days after treatment (Choi et al.,
2018). These effects extended to the brain, with microglial
activation throughout nigrostriatal regions and αSyn aggregation
throughout central and enteric neurons, supporting evidence
for environmentally-triggered gut-brain pathology in the context
of PD (Choi et al., 2018). With enteric levels of αSyn
being associated with greater intestinal permeability and LPS
translocation across the intestinal barrier in people with PD
(Forsyth et al., 2011), there is the potential for gut microbiota
to induce αSyn propagation along peripheral nerves toward the
brainstem, and brain more widely.

As such, early gastrointestinal dysfunction in people with PD
may be more than a prodromal symptom, but rather an early
contributing factor for αSyn pathology in susceptible individuals.
Therefore, the objective of this study was to investigate the
gut microbiota in PD patients and αSyn over-expressing mice.
Mice over-expressing human αSyn (C57BL-6N-Tg (Thy1-SNCA)
61Mjff/J) exhibit nigrostriatal pathology and dopamine depletion
(Chesselet et al., 2012), and were chosen for this study as a
progressive model of PD which allows for a clinically relevant
exploration of the gut microbiome prior to the onset of
motor impairments. The identification of pro-inflammatory
Gammaproteobacteria in PD patients but not the genetic rodent
model led to the exploration of LPS as an environmental
inflammatory trigger for PD in intestinal epithelial cells and αSyn
over-expressing mice.

MATERIALS AND METHODS

Human Participants
Participants were recruited from The Movement Disorders
Clinics at the Perron Institute for Neurological and Translational
Science. Patients (n = 14) and healthy controls (n = 7) with
no history of antibiotic or non-steroidal anti-inflammatory
drug use in the previous 3 months were included in this study.
All patients were confirmed to have idiopathic Parkinson’s
disease by a movement disorders neurologist, in accordance
with the United Kingdom Brain Bank criteria. Human Research
and Ethics approval was granted from The University of
Western Australia (Approval number RA/4/20/4470). All
participants gave written informed consent in accordance
with the Declaration of Helsinki. Clinical and demographic
characteristics of the participants recruited are presented in
Supplementary Table S1.

Participant Clinical Information and
Fecal Sample Collection
Relevant participant demographic and clinical information was
obtained from healthy controls and patients. At the time of all
assessments, patient response to their dopaminergic medications
was at optimum levels (“ON” period), and motor symptoms were
evaluated using the MDS-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) Part III and Hoehn and Yahr Scale, as
previously described (Evans et al., 2017). For subsequent analyses
the patients were divided into mild (n = 7) and severe (n = 7)
groups based on MDS-UPDRS PIII and Hoehn and Yahr scores.
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Rectal swab samples were used to collect stool samples for DNA
extraction and 16S rRNA sequencing. Samples were obtained
by inserting a dual Dacron swab moistened with sterile liquid
Stuart medium (Becton Dickenson, Sparks, MD) 1–2 cm past the
anal verge and rotating the swab gently through 360◦. Collected
swabs were stored in liquid Stuart medium at −20◦C prior
to DNA extraction.

Wild-Type and Thy1-SNCA Mice
Mice overexpressing wild-type human αSyn (Thy1-SNCA)
throughout the central and enteric nervous systems exhibit
progressive αSyn pathology, nigrostriatal dopamine depletion
and inflammation coupled with motor and non-motor
symptoms, including slowed colonic transit time and
constipation (Chesselet et al., 2012; Hallett et al., 2012). Four male
hemizygous mice overexpressing wild type human α-Synuclein
(C57BL-6N-Tg (Thy1-SNCA)15Mjff/J) (αSyn) were acquired
from Jackson Laboratories (Jax Stock #017682) (Ouyang, 2012)
and bred to female C57BL/6N mice to generate the male and
female heterozygous offspring used in this study. Wild-type
(WT) controls and αSyn littermates were housed together and
received food and water ab libitum. All animals were maintained
on a 12-hour light-dark cycle with constant temperature and
humidity at the same facility. For animal studies, fecal pellets
were collected from individual WT controls and αSyn mice at
8 weeks of age. All animal husbandry and experiments were
approved by the Ozgene Animal Ethics Committee.

Functional Assessments
Adhesive Removal
Small adhesive stickers (30 mm × 40 mm) were placed on
the nasal bridge. Timing began once the mouse was released
into the home cage. Time between first paw contact with the
sticker and removal of the sticker was measured. The mean
of all three replicates per day was used for further analysis
(Guyenet et al., 2010).

Hind Limb Clasping Reflex
The mouse was suspended in the air by its tail, and the distance
of the hind limbs to the abdomen for the majority of 10 s
was scored on a 4-point scale, as previously reported (Sampson
et al., 2016). A score of 0 was given if hind limbs are constantly
splayed outward from the abdomen, a score of 1 if one hind
limb was retracted toward abdomen for more than 50% of the
time suspended, and two if both limbs are retracted. A maximum
score of three indicates both hind limbs are entirely retracted
and touching the abdomen for more than 50% of the suspended
time (Guyenet et al., 2010). Retraction of the hind limbs during
the tail suspension test is considered to be a dystonic type of
reaction indicative of striatal dysfunction (Zhang et al., 2014;
Sampson et al., 2016).

DNA Extraction and 16S rRNA
Sequencing
Human stool swabs and mouse fecal pellets were sent to
the Australian Genome Research Facility (AGRF, Australia)

for total nucleic acid extraction, 16S rRNA sequencing and
microbial diversity mapping of the V3-V4 region, as previously
described (Reyes et al., 2010). For this study, relative abundance
and number of different Operational Taxonomic Units (OTU,
diversity) were provided from the data sequencing.

Small Intestinal Epithelial Cell Culture
Rat small intestinal epithelial cells (IEC-6; ECACC 88071401), a
model for the crypt region which regulates intestinal permeability
(Kimura et al., 1997) were supplied by CellBank Australia
(WestMead, NSW, Australia). IEC-6 cells were maintained in
Dulbecco’s Modified Eagle’s Medium (DMEM)/5% fetal calf
serum (FCS; Thermo Fisher, Melbourne, Australia) containing
penicillin (20 U/ml) and streptomycin (20 mg/ml) at 37◦C in a
CO2 incubator (5% CO2, 95% air balance, 97% humidity). For
experimentation, IEC-6 cells were seeded in 24-well plates at
approximately 5 × 104 cells/well in 500 µl DMEM/5% FCS and
used for studies 1–3 days after plating.

Lipopolysaccharide Treatment
Both IEC-6 cells and mice were treated with LPS (E. coli 055:
B5, Sigma, Australia). For in vitro studies, culture media was
aspirated from each well and replaced with DMEM/5% FCS
containing LPS (10 µg/ml final concentration) and maintained
at 37◦C in a CO2 incubator (5% CO2, 95% air balance, 97%
humidity) for 4 h. For animal studies, animals were provided
with drinking water containing LPS (5 µg/ml) diluted in 0.075
M sucrose. LPS was provided for 15 h starting at lights out
(6:00 pm) for 10 consecutive days starting at 8 weeks of age.
A low dose of oral LPS for 10 days was chosen to mimic
clinically relevant chronic exposure to luminal LPS produced
by gut microbes. Unlike systemic LPS administration, oral LPS
does not cause severe neurological deficits (Suffredini et al., 1999;
Inagawa et al., 2011).

Tissue Preparation
Cervical dislocation and tissue harvesting were performed at
various timepoints following behavioral assessments. Small and
large intestines were flushed with PBS and optimal cutting
temperature (OCT) compound (Tissue-Tek), and fresh-frozen in
liquid nitrogen. Tissue was thawed to −20◦C and subsequently
sectioned onto glass slides using a cryostat microtome (CM1510,
Leica, Germany) for immunofluorescence analysis.

Protein Extraction and Western Blots
Analysis
Western blot analysis was completed as previously described
(MacDougall et al., 2017). Briefly, 15 mg of tissue homogenate
from each sample was separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) using pre-cast
Bis-Tris gels (10%; Bio-Rad). Membranes were blocked in PBS-
Tween 20 (0.1%) with ovalbumin (1 mg/ml) for 1 h, followed
by overnight incubation (4◦C) with alpha-synuclein (1:1000;
Abcam, 212184), human alpha-synuclein (1:1000; Invitrogen
701085), or β-tubulin (1:3000; Invitrogen MA1-118) diluted in
1% PBS-T, and 1-hour incubation at room temperature with goat
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anti-rabbit Star Bright blue 700 (1:5000; Bio-Rad 12004162) or
goat anti-mouse IgG HRP (1:20000; Bio-Rad 1705047) secondary
antibodies. All membranes were visualized using ChemiDoc
Imaging System (Bio-Rad). Quantification and densitometry
were performed using ImageJ software (National Institutes of
Health, United States).

Immunocytochemistry and
Immunofluorescence
Mounted tissue sections or IEC-6 cells were fixed in a 1:1 solution
of methanol/acetate and incubated at −20◦C for 15 min. After
aspiration of the fixative, IEC-6 cells and mounted tissue sections
were air-dried for 30 min at room temperature. IEC-6 cells were
then washed in PBS + 0.2% Tween, and then blocked in 10%
bovine serum albumin (BSA) for 15 min. Tissue sections were
gently rinsed with PBS and blocked in 10% goat serum/1% BSA
in 0.05% Triton X-100 PBS for 2 h. IEC-6 cells and tissue sections
were incubated with TLR4 (1:200; Thermo Fisher), ZO-1 (1:400;
Thermo Fisher), e-Cadherin (1:400; Thermo Fisher) primary
antibodies overnight at 4◦C, rinsed and incubated with goat anti-
rabbit Alexa Fluor 555 (1:400, Bio-Rad) secondary antibodies for
2 h at room temperature. Prior to the final PBS wash, nuclei
were stained with DAPI 0.5 µg/ml (Sigma-Aldrich, St. Louis,
MO, United States). Tissue sections and cells were imaged with
a fluorescent microscope (Olympus IX70; Olympus DP70 digital
camera; Olympus).

Statistical Analysis
Statistical analysis was conducted through IBM-SPSS (v.24, IBM
Corporation) and GraphPad Prism (version 7, GraphPad, Inc.,
La Jolla, CA, United States) software. Results are shown as mean
(SD) unless otherwise indicated, with a p < 0.05 considered
significant. PD patients were dichotomized into mild and severe
groups by a specialized clinician. Extreme outliers in abundance
data were excluded as determined through ROUT (regression
and outlier removal) calculations (via GraphPad Prism). For
densitometric analysis of tissue lysate blots, mean difference
was determined via an independent t-test. Behavioral assessment
differences were compared cross-sectionally using the Mann-
Whitney U tests, and before and after LPS treatment using
paired t-tests.

RESULTS

Bacterial Diversity and Abundance Are
Altered in Parkinson’s Disease
Mean bacterial diversity based on total number of OTUs
present, did not significantly differ between healthy control
(236.10 ± 83.53) and PD patients (220.00 ± 76.05). After
grouping by PD severity, the mean diversity of severe PD
patients (174.90 ± 29.70) was significantly lower than that
of mild patients (265.1 ± 83.03, p < 0.05). The four
dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteria) comprised 98.4% of mean control microbiota,
and only 88.1% of mean PD microbiota. Mean bacterial class

abundance is shown for controls, and mild and severe PD groups
(Figure 1A). Notably, mean Clostridia abundance decreased
with increasing disease severity, with a concomitant increase
in classes Gammaproteobacteria and Verrucomicrobiae. The
six most abundant bacterial classes were further investigated
(Figure 1B). Both mild and severe PD groups demonstrated a
higher mean abundance of Gammaproteobacteria than controls,
with a significant increase in the mild PD group (621.22×
fold, p < 0.05). Severe patients exhibited elevated levels of
Verrucomicrobiae than controls, and a significant difference was
evident when compared to the mild PD group (4.35× fold,
p < 0.05). Clostridia and Bacteroidia were more abundant in
healthy controls than mild and severe PD groups, but these
differences did not reach statistical significance.

Thy1-αSyn Over-Expressing Mice
Whole brain homogenates and sections from Thy-1 αSyn-
overexpressing (Thy1-αSyn) mice and wild-type littermates
(WT) were analyzed for levels of αSyn at multiple time points. At
4, 8, and 12 weeks of age, human αSyn was detected in Thy1-αSyn
mice but not the WT controls (Figure 2A). Interestingly, total
αSyn protein progressively increased between time points, with a
∼1.5-fold increase in 4-week old, and ∼3 fold in 8 and 12-week
old Thy1-αSyn brain tissue, when compared to WT controls.
No significant differences in hindlimb clasp reflex (striatal
dysfunction, Figure 2B) or nasal adhesive removal (fine motor
control, Figure 2C) were observed from weeks 4–12 between
Thy1-αSyn and WT mice. No differences in general locomotion
or behavior were observed between the Thy1-αSyn and WT mice.
The mean weight of Thy1-αSyn mice was lower than their WT
littermates, with a mean weight 16% lower than WT controls at
12 weeks of age (Figure 2D and Supplementary Table S2).

Bacterial Diversity and Abundance Are
Altered in Thy1-αSyn Mice
Thy1-αSyn and WT mice groups both showed a high mean
microbial diversity, and Thy1-αSyn (347.6 ± 22.81) mice had a
significantly greater diversity than WT controls (306.3 ± 21.55,
p < 0.05). Overall classes Bacteroidia, Clostridia and Bacilli
comprised the majority of the microbiome in both WT and
Thy1-αSyn mice (Figure 3A). The six most abundant bacterial
classes were compared between animal groups (Figure 3B).
Verrucomicrobiae was significantly lower in Thy1-αSyn mice
(mean relative abundance ± SD = 0.0007 ± 0.0009) than WT
controls (0.0059 ± 0.0038, p < 0.05). However, the mean
relative abundance of classes Bacteroidia, Clostridia, Bacilli,
Coriobacteria and Betaproteobacteria were not significantly
altered between Thy1-αSyn and WT mice.

LPS Alters Quantity and Distribution of
ZO-1 and e-Cadherin in IEC-6 Cells
in vitro
As previously mentioned, gram-negative Gammaproteobacteria
produce LPS, an inflammatory endotoxin. Given the increased
abundance of Gammaproteobacteria in the pilot clinical cohort
and the inferred increase in intestinal LPS, we next explored
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FIGURE 1 | Mean class abundance in people with Parkinson’s disease and healthy controls. Individuals with Parkinson’s disease (PD) were grouped by a clinician.
Pie charts illustrate the mean relative abundance of bacterial classes in healthy controls and individuals with mild or severe PD (A). Comparison of the six most
abundant classes demonstrates a significant increase in Gammaproteobacteria in mild PD compared to controls (621.22× fold, p < 0.05), and significantly elevated
levels of Verrucomicrobiae in severe PD patients, when compared to mild PD patients (4.35× fold, p < 0.05) (B).

the effects of LPS on IEC-6 intestinal epithelial cells in vitro.
The expression of the known LPS receptor, TLR4, was confirmed
in IEC-6 cells (Figure 4A). Acute exposure of IEC-6 cells to
LPS (10 µg/ml) did not affect cell viability or expression of
TNF-α when compared to untreated cultures (Supplementary
Figure S1). However, LPS treatment resulted in a noticeable
reduction and altered distribution of the tight junction proteins
ZO-1 (Figure 4B) and e-Cadherin in cells (Figure 4C) when
compared to untreated IEC-6 cells.

LPS Administration Leads to the
Emergence of Motor Symptoms in
Thy1-αSyn Mice
After LPS consumption (10 µg/ml) in drinking water for 12
nights, treated Thy1-αSyn mice had a significantly increased

mean hindlimb clasp reflex (HC) score during the tail suspension
test compared to baseline (Figure 5A) and untreated 10-week
old Thy1-αSyn (Figure 5E), whose score remained normal
(p < 0.05). WT groups maintained a normal HC score at
all time points (Figures 5B,F). A non-significant trend for
slower adhesive removal was evident when comparing LPS
Thy1-αSyn mice (1.37s ± 1.09) to baseline (0.83s ± 0.95)
(Figure 5C) and untreated 10-week old Thy1-αSyn mice
(0.7s ± 0.81) (Figure 5G). LPS WT mice showed a non-
significant trend for faster removal (1.82s ± 1.14) than baseline
(3.29s ± 5.57) (Figure 5D) with no difference compared
to untreated 10-week old WT (3.04s ± 2.69) (Figure 5H).
After LPS consumption, Thy1-αSyn mice also displayed
slower locomotion and altered behavior compared to baseline
and WT animals.
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FIGURE 2 | Progessively increasing brain αSyn levels are not associated with notable motor impairments in 12-week old mice. Compared to WT mice, the
Thy1-αSyn mice exhibit progressively increasing human and total αSyn in whole brain lysates compared to WT mice at 4, 8 and 12 weeks of age (A). There were no
significant differences in hind-limb clasp scores (B) or nasal adhesive removal (C) between animal groups. The weight of both groups increased with age, where the
Thy1-αSyn mice consistently weighed less (D).

Although it is unlikely to have impacted the observed motor
impairments, both Thy1-αSyn and WT LPS-treated mice were
significantly heavier than baseline. Treated Thy1-αSyn mice were
also significantly heavier than untreated mice at 10-week old
(Supplementary Figure S2). The observed weight gain is a
possible consequence of the sucrose in the LPS mixture.

DISCUSSION

Previous studies have reported an altered gut microbiome
and gastrointestinal inflammation in individuals with PD

(Forsyth et al., 2011; Keshavarzian et al., 2015; Hill-Burns et al.,
2017; Heintz-Buschart et al., 2018), however, it remains to be
seen whether such changes are causative or symptomatic of the
disease. Despite a small sample size, our data demonstrated a
significant shift toward a dysbiotic gut microbiome in Australian
people with PD, due to reduced diversity and altered relative class
abundance. Subsequently, this study investigated the relationship
between αSyn, motor impairments and microbial-derived LPS in
an αSyn-overexpressing animal model of PD.

In contrast to patients with mild PD, those with more
advanced disease were found to have significantly reduced
bacterial diversity compared to healthy controls, in keeping with
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FIGURE 3 | Thy1-αSyn mice do not demonstrate a pro-inflammatory gut microbiome at 8 weeks of age. Bacteroidia, Clostridia and Bacilli account for the majority of
the microbiome in both WT and Thy1-αSyn mice as per 16S rRNA sequencing at 8 weeks of age (A). Thy1-αSyn mice exhibit a significantly lower abundance of
Verrucomicrobiae, however, the mean relative abundance of Bacteroidia, Clostridia, Bacilli, Coriobacteria and Betaproteobacteria are not significantly different (B).

the findings of previous studies (Keshavarzian et al., 2015; Unger
et al., 2016; Hill-Burns et al., 2017; Li et al., 2017). Lower bacterial
diversity has been linked to intestinal inflammation and immune
activation, and has also been reported in inflammatory bowel
diseases such as Crohn’s disease and ulcerative colitis, as well as
obesity (Ott et al., 2004; Eckburg et al., 2005; Ley et al., 2006;

Manichanh et al., 2006; Frank et al., 2007; Dicksved et al., 2008;
Carroll et al., 2011).

Our data demonstrated a significant increase in
Gammaproteobacteria coupled with a non-significant reduction
in Clostridia and Bacteroidia in people with PD. Clostridia
and Bacteroidia are typically abundant throughout the
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FIGURE 4 | Gammaproteobacteria-produced LPS treatment increases intestinal permeability in vitro. IEC-6 cells express TLR4, a known LPS receptor (A). Acute
LPS treatment (10 µg/ml for 4 h) resulted in a noticeable reduction of and alteration in the distribution of ZO-1 (B) and e-Cadherin (C).
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FIGURE 5 | LPS treatment mildly exacerbates motor impairments in Thy1-αSyn mice. After LPS consumption (10 µg/ml) in drinking water for 12 nights, mean
hindlimb clasp reflex (HC) score was significantly higher than baseline (A) and compared to untreated Thy1-αSyn mice (E), while WT scores remained normal at all
time points (B,F). Mean adhesive removal time for Thy1-αSyn mice demonstrated a non-significant increase compared to baseline (C), however, was lower than
untreated 10-week-old Thy1-αSyn mice (G). LPS-treated WT mice were non-significantly faster than baseline (D) and slightly slower than untreated animals at
10-week old (H).

healthy gut lumen (Lloyd-Price et al., 2016), and in this
study were non-significantly reduced in mild and severe
PD groups compared to healthy controls. Clostridia mostly
consist of commensal bacteria located in the gastrointestinal
mucosa, and genera including Blautia, Faecalibacterium and
Ruminococcus are widely considered the principal producers of
the anti-inflammatory metabolite butyrate (Sokol et al., 2008).
Clostridium tyrobutyricum and various Bifidobacteria strains
protect against LPS-induced inflammation and alterations
to tight junction proteins in vitro (Riedel et al., 2006; Xiao
et al., 2018). Interestingly, it has recently been reported that
bacteria within Bacteroidia secrete an immunoinhibitory
form of LPS which silences proinflammatory TLR4 signaling
(d’Hennezel et al., 2017). Conversely, Gammaproteobacteria
and Verrucomicrobiae, which normally represent only a small
proportion of the healthy adult gut microbiome, are considered
to be important for immune patterning and maintenance
of mucin integrity (Eckburg et al., 2005). However, the
abundance of Gammaproteobacteria is positively associated with
metabolic disorders, inflammation and cancer, where increased
Proteobacteria abundance is a proposed marker for dysbiosis
(Shin et al., 2015). As a major contributor to LPS production,
the finding of markedly elevated Gammaproteobacteria coupled
with reduced Clostridia and Bacteroidia in both the mild and
severe PD groups provides a basis for increased luminal LPS
levels and reduced commensal, anti-inflammatory action in

PD, which may impair intestinal integrity and cause chronic
intestinal inflammation (Finnie et al., 1995; Lührs et al., 2002;
Guo et al., 2015; Nighot et al., 2017). In low levels, Akkermansia,
the only genus within Verrucomicrobiae, typically represent
1–4% of the gut microbiome and are beneficial mucin degraders
that promote intestinal barrier turnover (Collado et al., 2007;
Derrien et al., 2008). However, Akkermansia muciniphila
exacerbates Salmonella-induced inflammation in gnotobiotic
mice due to disruption of the protective mucus layer (Ganesh
et al., 2013). Consequently, although both PD groups exhibited
reduced commensal bacterial action, when coupled with high
levels of Verrucomicrobiae in the severe PD group this may
increase intestinal leakiness, facilitating translocation of luminal
LPS to the enteric nervous system or systemic circulation.
Systemic LPS has been linked to intestinal inflammation, which
in turn is associated with enteric αSyn aggregation (Forsyth
et al., 2011; Devos et al., 2013; Kelly et al., 2014). Alternatively,
the elevated levels in severe patients may be a product of
longer disease duration as Verrucomicrobiae thrive in low
nutrient environments (Sonoyama et al., 2009). More thorough
characterization of the gut microbiome, metabolomic profiling
and intestinal protein expression is required in a larger sample
size to clarify the influence of the gut microbiome on intestinal
dysfunction in PD.

We subsequently examined if elevated CNS αSyn levels are
associated with alterations in the gut microbiome prior to the
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onset of motor symptoms in Thy1-αSyn mice. Thy-1 promoter
activity does not begin until postnatal day 10 (Chesselet et al.,
2012; Hallett et al., 2012), which may underlie the progressive
accumulation of human and total αSyn between 4 and 12 weeks
of age, however, further studies are required to characterize αSyn
levels throughout the brain and peripheral nervous system of
Thy1-αSyn mice at different time points. Bacteroidia, Clostridia
and Bacilli dominated the microbiome in both WT and Thy1-
αSyn mice while Gammaproteobacteria abundance was very
low, reflecting previous microbial profiling in healthy lab mice
(Hildebrand et al., 2013). Antibiotic use, Clostridium difficile-
associated colitis and high fat diets are associated with increased
Proteobacteria and Gammaproteobacteria abundance in mice
(Cani et al., 2008; Hildebrandt et al., 2009; Reeves et al., 2011).
However, despite progressively increasing αSyn levels in the
brain, there was no evidence of a pro-inflammatory microbial
signature in Thy1-αSyn mice. As other models induce PD
symptoms and deficits through environmental triggers (e.g.,
Rotenone or MPTP treatment) (Johnson et al., 2018; Sun et al.,
2018; Yang et al., 2018), or exacerbate PD pathology by oral
bacterial administration (Choi et al., 2018) or altering the gut
microbiome (Sampson et al., 2016), this suggests that elevated
central αSyn levels alone may not drive early intestinal changes
in PD. As such, our findings from clinical studies and Thy1-
αSyn mice further strengthen evidence for a causative link
between microbial dysbiosis and PD progression, supporting
a previously reported pathological spread of αSyn from the
gut to the CNS in PD pathogenesis (Braak et al., 2006;
Hawkes et al., 2007; Tomé et al., 2013; Holmqvist et al., 2014;
Stokholm et al., 2016).

As various studies have implicated microbially-derived LPS
in PD pathogenesis (Forsyth et al., 2011; He et al., 2013; Kelly
et al., 2014; Sharma and Nehru, 2015; Choi et al., 2018), this
study was the first to investigate the role of LPS as a catalyst
for intestinal permeability and phenotypic change in Thy1-αSyn
mice. In vitro, a 4-hour LPS treatment noticeably reduced tight
junction protein levels (ZO-1 and e-Cadherin) around the cell
membrane. Following a 12-day oral LPS treatment, we observed
a significant increase in hind-limb clasp score with the tail
suspension test in the Thy1-αSyn, but did not observe more
severe motor impairments in treated Thy1-αSyn or WT mice,
contrary to prior studies utilizing LPS or Thy1-αSyn mice in
the context of PD. Previously, an intraperitoneal injection of
LPS into healthy C57/BL6 mice resulted in elevations in both
normal and aggregated αSyn throughout the large intestine, with
a concomitant increase in intestinal permeability, between 3
and 5 months post-LPS treatment (Kelly et al., 2014). Similarly,
intranasal administration of LPS to healthy mice every second
day for 5 months caused progressive hypokinesia, nigrostriatal
αSyn aggregation, selective dopaminergic neuronal loss and
accompanying reduction in striatal dopamine, with no evidence
of systemic inflammation or immune activation (He et al., 2013).
Although these studies demonstrated the marked influence of
systemic LPS-induced inflammation on PD pathogenesis in
mice, the current study sought to investigate the interaction
between a genetic predisposition for PD and intestinal LPS.
The failure of Thy1-αSyn mice to develop more severe motor

impairments after 12 days of oral LPS treatment may be due
to the low dose and less invasive route of administration,
which was chosen to mimic more clinically relevant chronic
intestinal LPS exposure. As such, future studies in this model
should investigate the effects of administering chronic and higher
doses of oral LPS, as well as to older mice. Recently, chronic
stress exacerbated rotenone-induced PD pathology in mice,
increasing intestinal hyper-permeability, markers of oxidative
stress, neuroinflammation and fecal Akkermansia levels while
altering tight junction proteins (Dodiya et al., 2018). Similarly,
future studies should characterize the combined influence of
different PD risk factors in rodent models, such as environmental
toxins and diet.

Microbial dysbiosis may underlie the associations between
environmental toxins, pathogens and dietary factors with PD.
Rotenone exposure, a Western diet (low fiber/high processed
carbohydrate) or high fat diets are linked with dysbiosis,
inflammation and PD-like symptoms in rodents (Cani et al.,
2008; Hildebrandt et al., 2009; Martinez-Medina et al., 2014;
Johnson et al., 2018; Yang et al., 2018), while pesticide and
manganese exposure are associated with PD risk (Smyth et al.,
1973; Van Der Mark et al., 2011; Kamel et al., 2014). Conversely,
exercise, plant-based and Mediterranean diets are associated with
a healthy gut microbiome (Tomasello et al., 2016) as well as
reduced PD risk and later age of onset (Alcalay et al., 2012),
strengthening evidence for environmental modulation of the gut
microbiome in PD.

Overall, this study strengthens increasing evidence for
a complex interaction between environmental and genetic
determinants of PD, where dysbiosis and gastrointestinal
dysfunction may act as a catalyst for αSyn pathophysiology and
eventual neurodegeneration. Future studies should explore the
cumulative risk of various genetic variants involved in immune
regulation and intestinal integrity coupled with environmental
factors such as nutrition, drug and toxin exposure, and
microbial composition. Although a crucial regulator of the
gastrointestinal environment, the gut microbiome is easily
manipulated, and thus provides an exciting avenue for future
clinical interventions to modify the natural course and severity
of symptoms in PD.
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