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Moscow, Russia

Automatic segmentation methods based on deep learning have recently demonstrated

state-of-the-art performance, outperforming the ordinary methods. Nevertheless, these

methods are inapplicable for small datasets, which are very common in medical

problems. To this end, we propose a knowledge transfer method between diseases

via the Generative Bayesian Prior network. Our approach is compared to a pre-train

approach and random initialization and obtains the best results in terms of Dice

Similarity Coefficient metric for the small subsets of the Brain Tumor Segmentation 2018

database (BRATS2018).

Keywords: brain tumor segmentation, brain lesion segmentation, transfer learning, Bayesian neural networks,

variational autoencoder, 3D CNN

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form
pictures of the anatomy of some part of the human body. It is used as a diagnostic tool for
various types of cancer, diseases of the central nervous system, such as multiple sclerosis or epilepsy
(Hammers et al., 2007; Sharaev et al., 2018a,b), depression (Sheline, 2000; Ivanov et al., 2018) and in
plenty other cases (Ronneberger et al., 2015; Çiçek et al., 2016). Recent advances in computer vision
revealed a high potential for application of neural networks in the medical problems: classification
of MRI or CT for disease diagnosis, automatic detection and segmentation of different pathologies
(Gong et al., 2007; Davatzikos et al., 2008; Pominova et al., 2018). Even though it is unlikely that
these models will be used as a diagnostic tool without any human intervention in the nearest future,
they could be beneficial serving as decision support systems.

Semantic segmentation of MRI scans is an essential but highly challenging task. Accurate
segmentation can simplify and speed up the work of radiologist, reduce the risk of mistakes
by automatic detection of tumors (Kohl et al., 2017), multiple sclerosis plaques (Rey et al.,
2002), hemorrhages (Davuluri et al., 2012; Guerrero et al., 2018) or other disease manifestations
(Wachinger et al., 2018). It is also applicable for analysis and quantification of some illnesses. For
example, currently, the exact volume of affected brain areas of patients with multiple sclerosis is
not calculated due to the extreme difficulty of this task. Instead, a very rough approximation is used
while exact information about affected volumes in practice may be highly useful for understanding
the progression of the disease.
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State-of-the-art methods for semantic segmentation imply the
use of deep neural networks, which usually have millions of
tuning parameters, hence demanding a large amount of labeled
training samples to avoid overfitting. At the same time, manual
labeling of the MRI with tumors or other manifestation of the
disease, is time consuming and expensive. Consequently, in most
cases only tiny datasets are available for training. As a result,
methods which need less labeled examples for training are of
great significance. To this end, we can exploit knowledge from
existing labeled datasets.

Medical imaging dataset has several crucial peculiarities,
which one should take into account while solving semantic
segmentation problem with the small training dataset. We can
group them into image preprocessing, prediction postprocessing,
selection of network architecture and specificity of the transfer
learning from data with a different disease. Preprocessing
includes image alignment, skull-stripping, normalization of the
images within a given dataset (Litjens et al., 2017). A variety of
MRI protocols are available with or without the use of contrast
agents. These protocols allow the setting up of different contrasts
among the various tissues within the same organ system. Thus,
the quality of the segmentation heavily depends on this feature of
the dataset.

Depending on the dataset, different postprocessing of the
obtained prediction may be required. For example, it is a
common problem, that the full 3D scan does not fit into memory,
and one has to use patches to obtain predictions. Predictions
for overlapping patches are further combined by giving a higher
weight to the pixels in the center since they are known to produce
better predictions. Moreover, for some problems, it is known
that predicted mask could not contain more that one connected
component, e.g., when a separate organ or it’s part is being
segmented. In this case, postprocessing could also remove all the
extra prediction, which may drastically boost the performance.

Furthermore, the choice of network architecture is a
crucial step. Semantic segmentation problem is usually solved
in computer vision by fully convolutional networks with
architectures similar to U-Net (Ronneberger et al., 2015). U-
Net with 3D convolutions also known as V-Net (Milletari et al.,
2016) is extensively applied to various types of medical images
(Ronneberger et al., 2015; Milletari et al., 2016; Deniz et al.,
2018; Guerrero et al., 2018; Livne et al., 2019). The state-of-the-
art approaches consider additional regularization with training
multitarget networks and also the ensembling of the models
(Myronenko, 2018) or cascade models by stacking several V-Nets
(Isensee et al., 2018).

Finally, there is a common practice to apply transfer learning
techniques, when the size of the target training dataset is not
sufficient. There exist several large publicly available datasets
with labeled segmentation, which may be used to transfer
knowledge to smaller ones. Nevertheless, these images may be
pretty different in terms of diseases, modality, protocols and
preprocessing methods, which leads to extra difficulties. In this
work, we address the problem of knowledge transfer between
medical datasets when source dataset potentially contains
relevant information for the given problem (e.g., it depicts
scans of the same organ), but still comes from the different

domain, complicating the work of the conventional transfer
learning techniques.

1.1. Transfer Learning Approach
Transfer learning is a set of techniques from machine learning,
used to store knowledge from one problem or dataset and apply
it to another but similar problem (Pan and Yang, 2010). In
deep learning, it is usually performed by network initialization
with weights trained on source dataset and fine-tuning on a
target dataset. If the size of the target dataset is too small, some
parameters of the network may be frozen to avoid overfitting.
This approach can be beneficial for the segmentation of medical
images (Havaei et al., 2016), but the degree to which it will
be useful highly depends on the source and target datasets
similarity. Van Opbroek et al. (2015) applied transfer learning
to support vector machine classifier in the setting, where the
source and target datasets only differ in scanners and acquisition
protocols. The authors showed that with a small target dataset
transfer learning considerably outperforms common supervised
learning approach. Ghafoorian et al. (2017) were also using
very similar datasets for transfer learning in white matter
hyperintensities segmentation problem and obtained higher dice
similarity coefficient when the model was trained on the target
and fine-tuned on the source domain. The authors of both papers
assumed that source dataset is almost the same as a target one
with only small differences, such as scanner type or voxel size to
be present.

Margeta et al. (2017) used fine-tuning to solve classification
task on MRI scans. A convolutional neural network was pre-
trained on a dataset with natural images, which is somewhat
irrelevant for their problem and therefore requires fine-tuning
of the whole model with a relatively big dataset of 215 MRI
scans. Zhou et al. (2017) proposed using continuous fine-tuning
when training dataset is steadily expanded with images, labeled
by the current version of the model. The authors suggested
starting from the pre-trained network and choosing the most
confident predictions of the model to include them into the
training set. The main restriction of this approach is the fact
that the method requires unlabeled data from the same domain.
Moreover, the authors suggested working only with patches of
images to assess the confidence of the algorithm, which might
be less practical for tasks different from classification, such as
detection or segmentation. Han et al. (2018) exploited network
pre-trained on a large number of X-ray computed tomography
(CT) to restore high-resolution MRI from under-sampled k-
space data with few training MR observations available.

Christodoulidis et al. (2017) showed improvement in lung
tissue pattern classification accuracy when fine-tuning the model
trained on six open-source texture databases separately and
taking an ensemble of all these models. The authors determined
that transfer learning from a single dataset does not provide
a stable increase in accuracy and sometimes even performs
worse than random initialization. Li et al. (2018) proposed a
novel approach, which helps to transfer knowledge from healthy
subjects to new disease classification problem. They showed
improvement in accuracy, sensitivity, specificity over deep neural
network trained from scratch. But the authors only use fully
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connected layers, working with features exctracted from the
functional MRI, rather that with raw images.

Another branch of work suggests dealing with smaller sample
size, using mixed supervision models (Mlynarski et al., 2018;
Shah et al., 2018). These papers highlight that for medical
image segmentation we cannot rely on transfer learning of
parameters from networks (pre-)trained for analysis of natural
images. Hence, the authors proposed to simultaneously use high-
quality expensive labeling with lower-quality but cheap labels for
training (mixed supervision). Despite of the interesting results,
the developed method considers the case of partially available
expensive labels from one dataset. However, we consider the case
of different datasets with different diseases.

Transfer learning may be also considered as a special case
of the domain adaptation problem (Wilson and Cook, 2018),
when one aims to take model trained on one domain (referred
to as source) and adapt it to perform just as well on a new
target domain.

Finally, Elsayed et al. (2018) suggest novel approach,
adversarial reprogramming of the neural networks. The paper
considers an additive perturbation to the network input to
apply the adversarial reprogramming. The authors demonstrated
adversarial reprogramming on classification tasks in the
2D image domain (MNIST classification, and CIFAR-10
classification). To apply the approach one should define a hard-
coded mapping function from source labels to the adversarial
task labels. Therefore we can not apply this approach to the
segmentation tasks. Moreover, the method is applicable only for
datasets with images of smaller spatial size than that of the source
dataset. Hence, it is an interesting research problem to adapt the
proposed technique for segmentation tasks of 3D MR images,
however, it is out of the scope of our paper.

In this paper, we propose a method for knowledge transfer
between diverse neuroimaging datasets. Conceptually, our
approach consists of the following steps: we solve the semantic
segmentation problem for a small labeled training dataset.
Provided a larger dataset, referred to as the source, which
may differ from the target dataset drastically in terms of the
modality, resolution or other properties. Proposed method
outperform straightforward fine-tuning on studied semantic
segmentation problem.

When dealing with a small dataset along with the
multidimensional model, there exists a high risk of overfitting.
Experiments show that filters of different segmentation networks
often exhibit similar structure, which could be exploited for
regularization purposes. Probabilistic formulation of the model
allows us to apply these restrictions on the weights formally
using the method described below.

At the first stage, the source dataset is used to train
a segmentation network. Following the assumption that
kernels from this model have a useful structure for the
target segmentation problem, generative model—Variational
Autoencoder (VAE) (Kingma and Welling, 2014) is trained
on the weights from the source network which tries to
approximate the distribution of the kernels. Finally, to
solve the target problem, we fit the segmentation network
with the same architecture as in the first point but with

the generative model used as a prior distribution over
the weights.

The rest of the paper is organized as follows: in sections
2.1–2.3 we discuss U-Net architecture (Ronneberger et al.,
2015), which was used for semantic segmentation, describe
deep Bayesian approach for training neural networks with prior
distribution over parameters and, finally, explain how we can
learn prior distribution from data and apply it to variational
inference to perform knowledge transfer. Section 2.4 is devoted
to the medical datasets, that were used for the experiments,
in sections 2.5–2.7 more practical details, such as metrics,
loss functions and experimental setup are presented. Section 3
discusses the results of the experiments, where we compare the
proposed approach with random initialization and pre-trained
weight initialization. Finally, in section 4 we discuss the key
findings of the study, potential drawbacks and outline for the
future work.

2. MATERIALS AND METHODS

In this part, we shall discuss U-Net architecture, which serves
as a foundation for all the experiments in this work. Then
we discuss the approximate Bayesian approach, stochastic
variational inference (Hoffman et al., 2013) in deep neural
networks and the importance of prior distribution selection.
This part is crucial for the understanding of Deep Weight
Prior (DWP) (Atanov et al., 2018), which allows us to transfer
knowledge among datasets. The idea of DWP lies in the fact
that we learn the prior distribution of convolutional filters in
the form of a generative model, instead of using parametric
distribution. Since we get kernels from the network trained
on source dataset to learn the prior and further exploit it
for variational inference on the target dataset, this approach
can be considered as a transfer learning technique. Finally,
we proceed to the description of the practical part, including
datasets, validation methods, loss function and complete
experiment setup, which evaluates the performance of the
proposed approach.

2.1. 3D U-Net
U-Net (Ronneberger et al., 2015) was chosen due to its
popularity and experimentally proven efficiency for MRI
semantic segmentation tasks (Milletari et al., 2016; Deniz et al.,
2018; Guerrero et al., 2018; Livne et al., 2019). The detailed
architecture of the network is shown in Figure 1. It consists
of downsampling blocks, colored in green, upsampling bocks
(yellow) and simple blocks which do not change spatial resolution
of the image. The chosen architecture has 726,480 parameters,
estimated from a training set of 20 or 10 images. Since U-Net
is a fully convolutional network, the number of parameters does
not depend on the input size. Regardless of the initial resolution,
each input is compressed by the factor of 8 in the encoder part
of the network and upsampled back to the initial size in the
decoder. For instance, BRATS18 (Menze et al., 2015) which is
initially cropped to [152, 184, 144] pixels, gets compressed to the
[19, 23, 18] in the middle of the network and then decoded back
to the initial size.
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FIGURE 1 | U-Net architecture used in the experiments contains ResNet-like blocks both in Encoder and Decoder parts with skip-connections.

The first part, encoder, takes an image as the input and
gradually decreases its resolutions, using strided convolutions,
and simultaneously increases the number of channels. Each
block in the encoder, except for the initial one, consists of two
convolutions with kernel size 3 × 3 × 3, preceded by instance
normalization and ReLU activation layer. Downsampling blocks
differ only in the sense that the first convolution has stride
2, instead of 1. Blocks have ResNet-like structure (Guerrero
et al., 2018) when the input is added to the output of
the block.

Decoder, on the other side, steadily increases the spatial
resolution of the image to return it to the initial size. Upsampling
block does not have a residual connection, and it consists of one
3D convolution with kernel 3 preceded by instance normalization
and ReLU activation and is followed by a trilinear upsampling
with factor 2. Simple blocks are identical to the encoder part,
except that they take as input not only the output of the
previous layer but also an output of the encoder block with
the same resolution. This feature of the U-Net model, known
as skip-connection, allows the model to keep more details in
the reconstruction.

2.2. Deep Bayesian Models
In this part, we present deep Bayesian Inference and apply it to
the U-Net model. Consider a U-Net model with L convolutional
layers. Denote byw(i), i = 1, ..., L kernels for the ith convolutional
layer and w = (w(1), . . . ,w(L)) vector of all the model parameters.

If kernel filters at a layer i are of size 3 × 3 × 3, with C
(i)
inp input

channels and C
(i)
out output channels, then the weight matrix has

dimensions of C(i)
inp × C

(i)
out × 3× 3× 3.

In the Bayesian approach, one combines prior distribution
p(w) on the parameters w of the model with the information
from observed training dataset D = {(xi, yi)}

N
i=1 in the form of

likelihood p(D|w) by posterior distribution p(w|D), computed
with Bayes formula:

p(w|D) =
p(D|w)p(w)

p(D)
.

For most cases, posterior distribution cannot be computed in
closed form, since denominator of the above formula is not
tractable. A common way to deal with this problem is to apply
variational inference (Jordan et al., 1999) when posterior is
approximated by parametric distribution qθ (w) which minimizes
Kullback-Leibler divergence between the true posterior p(w|D)
and its variational approximation qθ (w). More specifically, we
are not interested in a point estimate of the model’s weights
w. Instead we are going to receive its distribution which is
parametrized by θ .

Moreover, we assume that both variational approximation
qθ (w) and prior distribution p(w) are factorized over layers, input
and output channels:

qθ (w) =
L∏

i=1

C
(i)
inp∏

p=1

C
(i)
out∏

k=1

qθipk (w
(i)
p,k),

p(w) =
L∏

i=1

C
(i)
inp∏

p=1

C
(i)
out∏

k=1

p(w(i)
p,k).

Given all the assumptions above, the task burns down to
the maximization of evidence lower bound (ELBO) (Hoffman
et al., 2013) with respect to parameters of variational posterior
distribution θ :

Frontiers in Neuroscience | www.frontiersin.org 4 August 2019 | Volume 13 | Article 844

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kuzina et al. Knowledge Transfer in MRI Segmentation

max
θ

L(θ)

≈ max
θ

LD∗ −
∑

i,p,k

∫
qθipk (w

(i)
p,k) log



qθipk (w

(i)
p,k)

p(w(i)
p,k)




︸ ︷︷ ︸
KL-divergence between qθipk (w

(i)
p,k) and p(w(i)

p,k)

. (1)

KL
approx
i,p,k = −H(qθipk (w

(i)
p,k))+ E

qθipk (w
(i)
p,k)

[
KL(rψ (i) (z|w

(i)
p,k)||p

(i)(w)) −E
r
ψ(i)

(z|w(i)
p,k)

log pφ(i) (w
(i)
p,k|z))

]
,

Detailed derivation of the above expression is presented
in Appendix A. The first part of the formula is a data term
LD∗ , also referred to as a reconstruction error. It is in
charge of prediction quality, forcing the model to fit the data.
Second term—Kullback–Leibler divergence between variational
distribution and prior over parameters of the model requires
posterior distribution to be as close as possible to the prior,
serving among other things as a regularization.

In the Bayesian framework, prior distribution is used to
incorporate some knowledge or specific property, such as sparsity
(Neklyudov et al., 2017) into parameters of the model. In the
context of the current work, we consider prior distribution
as a method for knowledge transfer. During our experiments
with MRI semantic segmentation, we have noticed that kernels
from different segmentation networks share a similar structure,
when appropriately trained, in contrast to noisy kernels from
models trained on small datasets. Therefore, prior distribution,
which restricts kernels to be more structured, presumably should
improve segmentation quality on modest training sets. We
propose to apply Deep Weight Prior, discussed in the next part,
to enforce precisely this property.

2.3. Deep Weight Prior
Deep Weight Prior (Atanov et al., 2018) is an expressive prior
distribution, which helps to incorporate information about
the structure of previously learned convolutional filters during
training of a new model. Prior is learned in the form of
a generative model—Variational Autoencoder (Kingma and
Welling, 2014). It allows us to learn expressive distribution over
the kernels, but we do not have direct access to its density and are
only able to obtain samples.

Priors, whose probability density function (pdf) p(w) is not
accessible directly are called implicit in contrast to explicit priors,
where pdf is available. To work with implicit priors we introduce
some latent variables, assuming that conditional distribution
with respect to them comes from some parametric family e.g.,
Gaussian distribution. We will use this method to work with
Deep Weight Prior.

More precisely, we will consider implicit prior distribution
in the form of Variational Autoencoder (VAE) (Kingma and
Welling, 2014) with encoder rψ (i) (x|w) and decoder pφ(i) (w|z),
modeled by neural networks. Finally, given the prior over latent
space p(z), we arrive at the prior distribution for the kernels from
the layer i:

p(i)(w) =

∫
pφ(i) (w|z)p(z)dz.

The main advantage of this prior is that it is non-restrictive,
learnable from data and provides a fast sampling opportunity.
Unfortunately, with implicit prior, it is not possible to compute
Kullback–Leibler divergence from the ELBO objective (Equation
1). To this end, we follow the work of Atanov et al. (2018) which
replace KL-divergence by its upper bound.

KL(qθ (w)||p(w)) ≤ KLapprox,

whereH(·) is an entropy of a corresponding distribution.
If rψ (i) (x|w), pφ(i) (w|z) and qθ (w) are explicit distributions,

we can use approximate lower bound (equation 2), for
which we will be able to compute stochastic gradients
with reparametrization trick to perform stochastic variational
inference. We maximize approximate ELBO with respect to the
parameters of the variational posterior distribution θ and DWP
encoder parameters ψ .

max
θ ,ψ

L(θ)approx = max
θ ,ψ

LD − KLapprox (2)

The Algorithm 1 provides a pseudocode for the proposed
algorithm. The algorithm requires as input the trained variational
autoencoder on the reference dataset. We discuss particular
details of training in section 2.7. Details on how different parts
of the loss function are calculated, are presented in the Figure 2
for better understanding. We begin with sampling weights with
reparametrization from variational distribution, which is fully
factorized Gaussian ŵ ∼ qθ (w). These samples are used to
compute log-density of the variational posterior and parameters

Algorithm 1: Algorithm for training model with Deep
Weight Prior.

Input: Dataset D : {(xi, yi)}
N
i=1

Input: Variational approximation of the posterior distribution
qθ (w)
Input: DWP with encoder rψ (z|w) and decoder pφ(w)

while not converged do

Sample minibatch D
∗
: {(xi, yi)}Mi=1

for Layer i ∈ {1, . . . L}, input channel p ∈ {1, . . .Cinp} and
output channel k ∈ {1, . . .Cout} do

Sample weights with reparametrization:

ŵ
(i)
pk

∼ qθipk (w
(i)
pk
)

Sample latent variables with reparametrization:

ẑ
(i)
pk

∼ rψ (i) (z|ŵ
(i)
pk
)

Compute stochastic gradients of the objective:

L
approx = LM +

∑
p,k,i

[
− log qθipk (ŵ

(i)
p,k))− log rψ (i) (̂z|ŵ

(i)
p,k)

+ log p(̂z)+ log pφ(i) (ŵ
(i)
p,k |̂z)

]

Update parameters θ = θ + α ▽θ L
approx and

ψ = ψ + β ▽ψ L
approx

Output: qθ (w) — posterior distribution of the model parameters
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FIGURE 2 | Full scheme of the training procedure with Deep Weight Prior.

of the distribution rψ (i) (z|ŵ). Distribution rψ (i) (z|ŵ) is used to
sample with reparametrization latent variable ẑ ∼ rψ (i) (z|ŵ)
to further pass it to the decoder and obtain parameters of
the distribution log pφ(ŵ| ẑ ). At this point, we have all the
components of the objective to calculate stochastic gradient and
update parameters θ of the U-Net and ψ of the DWP encoder.

2.4. Datasets
To emphasize the ability of the proposed approach to
generalizing, two public available datasets were chosen
with different diseases on the challenging task of the
brain segmentation.

First one comes from the annual competition on brain
tumor segmentation, BRATS18 (Menze et al., 2015; Bakas et al.,
2017). It contains pre-operative MRI scans of 275 patients
with glioblastoma (GBM/HGG) and lower grade glioma (LGG).
Each volume has resolution 240 × 240 × 155 pixels, acquired
with different protocols and scanners in 19 institutions. All
the images were co-registered, reshaped to the same resolution
and skull-stripped. Ground truth labels were manually created
by expert neuroradiologists for all the scans. The analysis was
performed on T2-weighted volumes. Figure 3 shows an example
from this dataset. The second dataset is Multiple Sclerosis
Human Brain MR Imaging Dataset (MS) (CoBrain analytics,
2018), which is available on the Skoltech CoBrain Analytics
platform. This dataset contains 170 manually labeledMRI FLAIR
sequences of subjects with multiple sclerosis. All the images
were acquired on 1.5T Siemens Magnetom Avanto scanner with
slice thickness = 5 mm, slice spacing = 1.5 mm and have
resolution 448 × 512 × 22. Figure 4 depicts one sample from
this dataset.

FIGURE 3 | Example of MRI slices and ground truth segmentation from

BRATS18 dataset.

2.5. Evaluation Methods
Two conventional metrics for semantic segmentation (Clèrigues
et al., 2018; Deniz et al., 2018; Kao et al., 2018; Myronenko, 2018)
are used to evaluate the model performance—Dice Similarity
Coefficient (DSC), also known as F1-score, and Intersection over
union (IoU):

DSC =
2TP

2TP + FN + FP
=

2IoU

1+ IoU
,

IoU =
TP

TP + FN + FP
.
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FIGURE 4 | Example of MRI slices and ground truth segmentation from

MS dataset.

The number of true positive (TR), false negative (FN) and
false positive (FP) pixels is calculated for each image and
averaged over the whole test set. We compare model predictions
with the segmentations, which have been manually created by
professional radiologists (Menze et al., 2015) and are considered
as ground truth.

2.6. Loss
To train U-Net in the non-Bayesian setting, we use a combination
of binary cross-entropy and Dice losses. We apply this loss when
training all models without Deep Weight Prior: for pre-training
on the source dataset, fine-tuning on target dataset and training
models with random initialization.

The first component of the loss, binary cross-entropy, is a
common loss function for classification problem (Goodfellow
et al., 2016). In semantic segmentation setting we classify each
pixel of the input image, resulting in the following loss function:

LCE = −
∑

i,j

yi,j log ŷi,j + (1− yi,j) log(1− ŷi,j),

where ŷi,j is a predicted probability for pixel j from image i to be
from the class of interest. Problem with cross-entropy is that it
does not account for class imbalance, which usually takes place
in semantic segmentation tasks, since background is the most
prevalent class. Dice loss, in contrast, is known to be robust to this
problem. It is based on Dice Similarity Coefficient and defined as:

LDICE =

N∑

i=1

FNi + FPi

2TPi + FNi + FPi
=

N∑

i=1

(1− DSC(i)).

The weight of each component in the final combination was
chosen experimentally. Since cross-entropy loss resulted in
model learning to predict background for all the pixels in most
cases, we arrived to the setting where it has a low weight of 0.01:

L = 0.99LDICE + 0.01LCE.

2.7. Experimental Setup
The aim of the experiments is to compare the proposed method
(Unet-DWP) with the conventional transfer learning approach:
training the model on the small target dataset with pretrained

Algorithm 2: Procedure for UNet-PR training onm images

Input: Dataset to train prior on Dprior : {(xi, yi)}
N
i=1

Input: Target dataset Dtarget : {(xi, yi)}
n
i=1

Train one 3D U-Net model on Dprior and remember the
weights
for Iteration ∈ [1, 2, 3] do

Split Dtarget on train and test: DTrain
target , D

Test
target

Selectm images from D
Train
target

Initialize model with the weights trained on Dprior

Train 3D U-Net on selected images
Evaluate model on D

Test
target

Algorithm 3: Procedure of UNet-DWP training onm images

Input: Dataset to train prior on Dprior : {(xi, yi)}
N
i=1

Input: Target dataset Dtarget : {(xi, yi)}
n
i=1

Train 3D U-Net models with different initializations on Dprior

Collect kernels and split them into seven parts (depending on
the input size of the layer)
Train 7 VAE, to use them as implicit prior
for Iteration ∈ [1, 2, 3] do

Split Dtarget on train and test: DTrain
target , D

Test
target

Selectm images from D
Train
target

Train 3D U-Net on selected images with DWP
Evaluate model on D

Test
target

on the source dataset (UNet-PR) or freezing layers in the middle
of the network (UNet-PRf) while fine-tuning only the first and
the last block of the model to reduce overfitting on a small
dataset. As a baseline, we also consider random initialization
(UNet-RI), where the model is trained only on the small target
dataset. We use initialization introduced in He et al. (2015), also
known as He initialization for UNet-RI. The training procedure
summarized in the Algorithm 2 for pre-training approaches and
in the Algorithm 3 for proposed training with deep prior (UNet-
DWP). To compare the proposed methods, we use MS dataset
as a source and small subsets of BRATS18 dataset as targets.
Both dataset consider the MRI scans of the brain, however with
different diseases. The purpose of this setup to show the ability of
the method to generalize between diseases. Models performance
was compared on the whole tumor segmentation on subsets of
BRATS18 volumes, containing 5, 10, 15, or 20 randomly selected
images with the fixed test sample size of 50 images. The proposed
method is mostly relevant for datasets of small sizes since they do
not contain enough samples to train proper network and prior
knowledge from a larger dataset should improve the quality.

2.7.1. U-Net Training Details

All the models on the target dataset were trained on the whole
volumes with batch size 2 and without any data augmentation.
Table 1 summarize hyperparameters details used during training.
For training we use Adam optimizer with initial learning rate
10−3. Learning rate is decreased by the factor of 10, when loss
on the validation set is not decreasing by more than 10−4 during
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10 epochs. We stop training the model as soon as learning
rate reaches the value 10−6. Three different train-test splits
of BRATS18 were used for validation in order to verify the
robustness of the result. All the experiments were performed on
the NVIDIA Tesla V100-SXM2 GPUs.

Kernels for further DWP training were collected from U-Net
network, trained on the while volumes of the source dataset.
Batch size, optimizer and LR scheduler are presented in Table 1.
We have applied this setting to train 10models until convergence,
which took on average 100 epochs for one model. To obtain
more filters, we have applied cyclical learning rate (Smith, 2017)
to obtain 10 more networks. That is we increase learning rate
back to 10−3 for a converged model and continue training it
with the same LR scheduler to converge to a new minimum.

TABLE 1 | U-Net hyperparameters details.

Parameter Value

Batch-size 2

Optimizer Adam

Initial learning rate 10−3

LR scheduler Reduce learning rate when a loss has stopped

improving

LR scheduler patience 10

LR scheduler factor 0.1

Max epochs 500

Early stopping criterion LR == 10−6

Test size 50

Train sizes [5, 10, 15, 20]

FIGURE 5 | Examples of trained kernels. (A) Kernels from U-Net, trained on

MS dataset, which were further used to train DWP. (B) Samples from trained

Deep Weight Prior.

As a result, we end up with 20 trained networks with average
Dice Score of 0.61 on validation set. As can be seen from the
Figure 5, obtained filters have clear structure, which indicates
their potential usefulness.

2.7.2. DWP Training Details

To train the DWP prior we should specify the number and
architecture of the variational auto-encoders and collect the
training set of filters. We train variational autoencoder with
latent vector dimention 6. We’ve used Adam optimizer, batch
size of 20 images. All the hyperparameters are presented in
the Table 2. Appendix B contains architectures, which were
used. We assume that filters from the layers, which take as
input images of the same resolution come from the same
distribution. As a result, seven Variational Autoencoders were
trained and served further as implicit prior distributions for
the kernels of the corresponding layers. To obtain the training
set of filters U-Net models were trained on the whole MS
dataset with random initialization. Afterwards, kernels were
collected from trained models to train prior in the form of the
Variational Autoencoder.

3. RESULTS

Each model (UNet-RI, UNet-DWP, UNet-PR and UNet-PRf)
was estimated at three different random train/test splits. For a
fixed test sample of 50 images 5, 10, 15, and 20 images were
selected for training, and on each sample, three models were
estimated. Tables 3, 4 and Figure 6 summarize the obtained
results. UNet-RI stands for the model trained with the random
initialization, UNet-PR and UNet-PRf are transfer learning
approaches (in the second case, weights of the middle layers
were frozen), where U-Net was pre-trained on MS dataset and,
finally, UNet-DWP is a model trained with Deep Weight Prior.
We calculate mean DSC and IoU metrics for different train-test
splits and its standard deviation, which is given in the brackets.

We can see that models trained with DWP noticeably
outperformed both randomly initialized and pre-trained U-
Net for all the training sizes. We observe higher variability in
prediction accuracy for the problems with smaller sample sizes,
which shrinks as training dataset grows, and the superiority of

TABLE 2 | DWP hyperparameters details.

Parameter Value

Batch-size 20

Optimizer Adam

Initial learning rate 10−3

LR scheduler Reduce learning rate when a loss has stopped

improving

LR scheduler patience 15

LR scheduler factor 0.1

Max epochs 500

Early stopping criterion LR == 10−6

Latent dimension 6
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UNet-WDP becomes clearer. It is also worth mentioning that
the pre-trained mode where part of the weights were frozen
fails. We believe that this means that information from other
diseases is not relevant for the new task by default, and without
fine-tuning of the whole network, we are not able to achieve
consistent results.

Figure 7 contains example predictions of different models
(Figures 7C–E) along with ground truth segmentations
(Figure 7B). Each row corresponds to different training sample
size. For example, for the model trained on 10 images, there
is a notable difference in tumor coverage for UNet-DWP and
UNet-PR models, which results in DSC of 0.92 for the first model
and 0.74 for the second. On other images we may also note, that
model with DWP manages to cover more relevant areas.

It is worth mentioning, that transfer learning model on
average performs even worse than the model without any prior
knowledge about the data. This result is quite surprising, but it

TABLE 3 | Mean Dice Similarity Score for the different subsets of BRATS18

dataset.

Train size UNet-DWP (ours) UNet-PR UNet-PRf UNet-RI

5 0.64 (0.05) 0.61 (0.02) 0.58 (0.03) 0.62 (0.02)

10 0.71 (0.04) 0.64 (0.01) 0.60 (0.03) 0.66 (0.01)

15 0.71 (0.02) 0.67 (0.02) 0.63 (0.02) 0.70 (0.02)

20 0.74 (0.01) 0.69 (0.01) 0.65 (0.02) 0.70 (0.01)

Best results are in bold.

TABLE 4 | Mean Intersection over Union for the different subsets of BRATS18

dataset.

Train size UNet-DWP (ours) UNet-PR UNet-PRf UNet-RI

5 0.52 (0.05) 0.49 (0.02) 0.45 (0.03) 0.50 (0.02)

10 0.58 (0.05) 0.52 (0.01) 0.47 (0.03) 0.53 (0.01)

15 0.60 (0.02) 0.56 (0.02) 0.50 (0.02) 0.58 (0.02)

20 0.63(0.01) 0.58 (0.01) 0.53 (0.02) 0.60 (0.01)

Best results are in bold.

can be explained by strong disease specificity of the data. Even
from the examples in Figures 3, 4 it can be seen, that datasets
differ not only in the shapes of the target segmentation (plaques
of multiple sclerosis are much smaller and difficult to notice that
brain tumor) but also in resolution, contrast and preprocessing
method, as a result, after corresponding initialization, fine-tuning
may converge to a worse solution.

Figure 5 illustrates prior over the weights, that was used for
the given experiment. Figure 5A contains kernels of the U-Net,
trained on the MS dataset. Since the dataset is big enough,
they are not noisy and have clear structure, as it was expected.
Figure 5B depicts samples from Variational Autoencoder, which
was later used as an implicit prior distribution. Even though
samples from the Deep Weight Prior on the right are not
identical to the real kernels on the left, they still have similar
structure and we can assume that the VAE managed to grasp a
proper distribution.

4. DISCUSSION

The proposed method can be used for knowledge transfer
between medical imaging data from different domains, resulting
in performance improvement over conventional transfer
learning. This method is based on the deep Bayesian approach
and exploits implicit prior distribution over convolutional filters.

Our approach is not limited to a specific task and can be
applied to such problems as classification, detections or any
other, where convolutional neural networks are used. But we
believe that it is the most relevant for the semantic segmentation
problem. There are plenty of challenges in this area. One of the
most significant is that manual segmentation of MRI volumes,
which is needed to train any supervised model, is very expensive.
The reason is that it requires the work of several professional
radiologists and each image should be labeled several times
by different people to reduce ambiguity. For instance, it takes
around 60 min for a radiologist to label one scan of the patient
with a brain tumor, resulting in 4 h of work per observation
(Menze et al., 2015). Moreover, institutions are often hesitant to
share data with external collaborators because of patient privacy,

FIGURE 6 | Segmentation accuracy on BRATS18 dataset for various train sample size, calculated for three different splits.
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FIGURE 7 | Examples of models’ predictions on test samples, compared to ground truth segmentation. (A) Test MRI. (B) Ground truth segmentation. (C) UNet-DWP.

(D) UNet-PR. (E) UNet-RI.

as well as ethical and legal considerations. As a result, there
are very few publicly available datasets, and they are often tiny,
up to 5 or 10 images. Besides, data is highly disease-specific,
making conventional transfer learning technique inefficient for
cases, when source dataset, used for initial model training,

has a different domain (another illness, MRI modality and
preprocessing method), which is confirmed in our experiments.

The most popular model for semantic segmentation is
volumetric U-Net (Deniz et al., 2018; Guerrero et al., 2018;
Livne et al., 2019). The idea behind this architecture is quite
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simple; it is based on conventional U-Net model for semantic
segmentation. The main advantage of this models is that it
proceeds the whole 3D image, using 3D convolutions, instead
of working with 2-dimensional slices separately. It is also quite
common to use different heuristic regularization techniques: VAE
regularization, (Myronenko, 2018), anatomically constrained U-
Net (Degel et al., 2018; Oktay et al., 2018).

In this work, we compare three methods for semantic
segmentation of a brain tumor on small datasets of size from
5 to 20. In the first approach, we train 3D U-Net from
scratch, using the information only from a given small dataset,
in the second approach we firstly train a model on a large
dataset with multiple sclerosis segmentation and then use trained
kernels to initialize model for brain tumor segmentation. Finally,
we propose a new approach to transfer information using
Deep Weight Prior—implicit prior distribution, also learned
on a large dataset with multiple sclerosis and applied to
train tumor segmentation network. We have shown that the
proposed approach outperforms both simple and fine-tuned
models. Presumably, transfer learning approach fails in this case
because prior was trained on the samples with different illness
and information about it is not a proper initialization for a
new task. At the same time, Deep Weight Prior ensures that
kernels come from similar distribution, bringing up structure
into convolutional filters. Even though all the experiments were
performed on a simple U-Net model, it can be applied to any
other architecture with a more complicated structure.

4.1. Extra Experiments
During our experiments, we aimed at using datasets containing
the same organs to make sure that the source data has enough
relevant information to transfer to the target one. But of
course, the proposed method is not limited to the specific
part of the human body and can be applied to other organs
as well. To test this hypothesis, we performed additional
experiments on the dataset, containing CT scans of the liver
from the medical decathlon segmentation challenge (Simpson
et al., 2019). As a source Task08_HepaticVessel dataset
was used, containing 443 CT scans of patients with liver
tumors. As a target dataset subsets of Task03_Liver and
Task09_Spleen datasets were used. The first target dataset
is closer to the source one since it contains 201 CT images
of patients with a liver tumor. In the second dataset the
aim is to segment spleen on the CT scans for 41 patients,
which makes transfer learning from the source dataset a more
challenging task.

The purpose of this additional experiment was to provide
evidence that the proposed method can be successfully applied
not only to the brain but also to other organs.We did not tune the
architecture to reach state-of-the-art performance for the specific
dataset. Instead, we applied the same architecture, experimental
setups as in the main part of the paper. The only difference was
that due to the large image size, we had to use patches instead
of the whole volumes ([40, 400, 400] for the source, [192, 192,
192] for the first target dataset and [24, 480, 480] for the second
target dataset).

Preliminary results that we have obtained are quite promising.
They are presented in Table 5 and show that for both target

TABLE 5 | Mean Dice Similarity Score for the subsets of Task03_Liver and

Task09_Spleen datasets.

Task03_Liver Task09_Spleen

Train

size

UNet-DWP

(ours)

UNet-RI UNet-PR UNet-DWP

(ours)

UNet-RI UNet-PR

5 0.275 0.284 0.209 0.467 0.391 0.105

10 0.328 0.293 0.052 0.625 0.584 0.239

15 0.389 0.306 0.243 0.556 0.579 0.302

20 0.353 0.336 0.156 0.649 0.566 0.459

Best results are in bold.

TABLE 6 | Mean Dice Similarity Score for the experiments with large available

target dataset (MS-BRATS18).

Train size UNet-DWP (ours) UNet-PR UNet-PRf UNet-RI

100 0.76 (0.01) 0.79 (0.01) 0.77 (0.01) 0.77 (0.01)

datasets U-Net with Deep Weight Prior performs better than the
competitors in most cases. We believe that this part could be
further improved, by tuning the architecture and adding more
datasets for comparison.

The reasonable question arises is the necessity for transferring
when a relatively large dataset is available. Hence, we consider the
additional experiment of transfer learning from theMS dataset as
the source to the BRATS18 as the target, while 100 of samples are
available from the target dataset.

Taking into account standard deviation, results, presented in
Table 6 are quite close to each other. As it was expected, our
method converges to the UNet-RI result as a number of training
samples increases, since in this case knowledge transfer becomes
less useful because there is enough information in the target
dataset to train a proper network (Lu, 2017).

Further research on the topic may include experiments with
knowledge transfer from other problem settings, e.g., from
classification to segmentation and vice versa. The first setting
is of higher interest, since there are usually more observations
in classification datasets and there are more of them available
for different diseases, making it a more accessible source of
prior knowledge.
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