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The spontaneous dynamic characteristics of resting-state functional networks contain
much internal brain physiological or pathological information. The metastate analysis
of brain functional networks is an effective technique to quantify the essence of brain
functional connectome dynamics. However, the widely used functional connectivity-
based metastate analysis ignored the topological structure, which could be locally
reflected by node centrality. In this study, 23 healthy young volunteers (21–26 years)
were recruited and scanned twice with a 1-week interval. Based on the time sequences
of node centrality, we promoted a node centrality-based clustering method to find
metastates of functional connectome and conducted a test-retest experiment to assess
the stability of those identified metastates using the described method. The hub regions
of metastates were further compared with the structural networks’ organization to depict
its potential relationship with brain structure. Results of extracted metastates showed
repeatable dynamic features between repeated scans and high overlapping rate of hub
regions with brain intrinsic sub-networks. These identified hub patterns from metastates
further highly overlapped with the structural hub regions. These findings indicated that
the proposed node centrality-based metastates detection method could reveal reliable
and meaningful metastates of spontaneous dynamics and indicate the underlying nature
of brain dynamics as well as the potential relationship between these dynamics and the
organization of the brain connectome.

Keywords: metastate, dynamic functional connectivity, structural network, clustering analysis, node centrality,
hubs

INTRODUCTION

The functional brain connectome, considering the brain as a complex network, indicates the spatial
distributions and integrated organizations. Resting-state functional magnetic resonance imaging
(rs-fMRI) can provide these kinds of intrinsic information of brain function (Biswal et al., 1995;
Cordes et al., 2001) through measuring the synchronization between temporal fluctuations across
spatially separated brain regions, which are known as functional connectivity (FC). It is the most
basic measure and has been widely used in physiology (Damoiseaux et al., 2008; Betzel et al., 2014;
Chen et al., 2017, 2018) and pathology (Bing et al., 2010; Veer, 2010; Widjaja et al., 2013; Ham
et al., 2015; Su et al., 2015; Zhuo et al., 2018). More importantly, the brain function in resting
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state also reveals dynamics or temporal distributions of brain
connections, which spontaneously change from seconds to
minutes (Chang and Glover, 2010; Calhoun et al., 2014), which
is called dynamic FC. Dynamic FC provides a novel insight
into brain function which has been proved to contain useful
information (Viviano et al., 2017; Xia et al., 2019) and can even
be complementary to traditional static FC (Liégeois et al., 2019).
It also enables us to better understand the behavior of different
subnetworks (Al-Sharoa et al., 2019) and contains the intrinsic
neural activities (Hutchison et al., 2013b) associated with the
brain functional (Syed et al., 2017; He et al., 2018) or structural
organizations (Shen et al., 2015; Cabral et al., 2017). Though
dynamic FC presents a promising way to uncover the mysterious
activates in human brain function, it is still unclear how brain
function dynamically changes.

Metastate in the human brain is an interesting idea with
which to describe the spontaneous fluctuation of FC as well as
functional networks (Allen et al., 2014; Shakil et al., 2016; Shine
et al., 2016; Vidaurre et al., 2017) and originates from a typical
concept, “microstates,” in electrophysiological studies (Gale,
1983; Lehmann et al., 1987). Metastates are considered as the
certain brain FC patterns or brain states that repeatedly appear
over and over again in the scanning period and can somehow
represent those microstates at mesoscale. Increasing evidence
has shown that the occurrence of transition between metastates
contains meaningful information about normal aging and
schizophrenia (Hansen et al., 2015; Yu et al., 2015; Shakil et al.,
2016) and shows great potential regarding intrinsic interactions
and complicated organizations (Hutchison et al., 2013a) of brain
function (Hutchison et al., 2013a; Andrew and Michael, 2015).

Based on the sliding windowed correlations, plenty of previous
studies applied whole brain FC-based clustering to represent
and detect brain metastates (Allen et al., 2014; Hansen et al.,
2015; Yu et al., 2015; Shakil et al., 2016; Syed et al., 2017;
Cheng et al., 2018). It makes sense that the patterns of FC with
high similarity represent the same state and the connectivity
patterns are the first pictures of the fluctuations of whole brain
connection. However, high dimension in connection vectors may
limit the findings, and the whole brain FC patterns are not
well interpreted. What if using secondary measures of whole
brain dynamic FC would yield meaningful representations of
metastates? As is common knowledge, brain functional networks
exhibit rich-club organization, whereby a small number of
nodes tend to be connected densely. In fact, many studies
have found that certain nodes or brain regions dynamically
participate across different tasks (Schaefer et al., 2014; Bola and
Sabel, 2015; Preti et al., 2017) or across different provincial
communities (Hansen et al., 2015; Chen et al., 2017; Gordon
et al., 2018). These indicated the potential feature of dynamic
roles of nodes even in resting state. On the other hand, the
node centrality is the secondary measure and can represent the
topologic aspects of brain connectivity patterns. The regional
activities or the regional signals are the origins of brain
connectivity and the node centrality represents the significance
of regional activities. Therefore, the patterns of regions/nodes
would be reasonably more representative than the patterns
of connectivity.

Overall, this paper aims to propose a method to extract the
brain metastates using node centrality-based k-means clustering
in resting state. Specifically, the node centrality scores were
calculated as the degree-based eigenvector centrality (Correa
et al., 2012; Meghanathan, 2015a,b) for each windowed FC matrix
yielding a dynamic node centrality sequence. The metastates
would be defined by the cluster centers after k-means. We
expected that the metastates detected by the proposed method
can represent meaningful information of brain function or
physiological activities in resting state. Because of the lack
of mathematical proof of metastates, experimental reliability
analysis needs to be verified. Recently, there was a test-retest
reliability study (Chao et al., 2018) about dynamic FC, providing
the first insight into the reproducibility of dynamic FC but
only focusing on the FC not the metastates. Therefore, a test-
retest reliability experiment was performed to examine the
repeatability of metastates. Furthermore, we further compared
the hub distribution between functional metastates and the
structural network to explore the potential relationship between
them. Through this, we hopefully can verify the reliability of
metastates extracted with the proposed method and delineate the
potential mechanism of the functional dynamics in resting state.

MATERIALS AND METHODS

Participants and MRI Acquisition
All recruited participants underwent rigorous clinical
examinations and psychological evaluations and signed
informed written consent. In total, 23 healthy adults (mean age:
23.6 years; range from 21 to 26 years; 12 female), without history
of neurological or psychiatric disorders, with current physical
and mental health and also with healthy living habits (no drugs,
no alcohol addiction, no smoking, normal work and rest, and
emotional stability) were included in this study. One week before
MRI scanning, participants were told to keep normal emotion,
sleeping and food intake (not too heavy, e.g., too hot or too
salty). The study was approved by the medical ethics committee
for research in humans of Tianjin First Central Hospital.

Magnetic resonance imaging images were acquired on a 3.0T
Siemens scanner (Tim Trio, Germany) with a 32-channel head
coil at Tianjin First Central Hospital. For each subject, there was
a test-retest experiment: scanning twice with 1-week (7 days)
interval at the same imaging site and same time (6:00 pm–9:00
pm) of day. Acquisitions included resting-state fMRI with echo-
planar imaging (EPI) sequence, high-angular diffusion tensor
imaging (DTI) with spin echo-echo planar imaging (SS-SE-EPI)
sequence and anatomical T1 images with high-resolution 3-
dimensional (3D) magnetization-prepared rapid acquisition with
gradient echo (MPRAGE) sequence. Scanning settings for rs-
fMRI were as follows: repetition time (TR) = 2.5 s, echo time
(TE) = 30 ms, voxel size = 3.0 mm× 3.0 mm× 3.0 mm, flip angle
(FA) = 80◦, field of view (FOV) = 192 mm × 192 mm, matrix
size = 64 × 64, number of slices = 28, slice thickness = 3 mm
without interslice gap, scan time = 650 s, timepoints = 260.
During scanning, participants were instructed to relax, keep
their eyes open, try to keep their head and body still and
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not think anything special. Scanning settings for high-angular
DTI were as follows: TR = 4000 ms, TE = 30 ms, number of
slices = 45, slice thickness = 2 mm without interslice gap, voxel
size = 2.0 mm × 2.0 mm × 2.0 mm; three unweighted b0 scans
and 64 weighted diffusion scans with a weighting of 1000 s/mm2

were acquired within 12 min. Multiband acceleration sequencing
was used with accelerated factor = 4. Scanning parameters for
anatomical T1 images were acquired for anatomical reference
and definition of the different structural nodes of the network,
using the following scanning parameters: TR/TE = 10/4.6 ms,
FOV = 240 mm × 240 mm, 176 slices covering the whole brain,
1.0 mm isotropic voxel size, about 5 min.

Image Preprocessing
The fMRI data were preprocessed using the DPABI (V3.0)
package1 (Kevin et al., 2009). Preprocessing steps included
removing the first 10 volumes, slice-timing correction, head
motion correction, linear trend removal, band-pass filtering
with frequency of 0.02–0.1 Hz which depended on the size of
sliding window (Hindriks et al., 2016), and spatial smoothing
(FWHM = 6 mm full-width at half-maximum Gaussian kernel).
Nuisance signals including mean signals from ventricles (CSF),
white matter (WM), whole brain (global mean signal) and the
24 motion parameters (six motion parameters, derivative and
the quadratic terms) were regressed out (Fox et al., 2005).
There has long been controversy regarding global mean signal
processing (Kevin et al., 2009 and Fox et al., 2009). Because
global mean signal removal brings negative FCs, the global signal
contains much non-neural information and is sensitive to head
motion. However, researchers from the two perspectives come to
a consensus (Murphy and Fox, 2016) about this issue: whether
it is essential to do global signal removing really depends on
the specific question. In current research, node-degree-based
measures were obtained to capture the dynamic networks. It
is commonly known that the global mean signal removing can
greatly increase the specificity of the fMRI signal. Global mean
signal removing will be beneficial for our purpose. In addition,
removing the global mean signal can also reduce the impact
associated with head motion. To further control head motion
effects, we removed the volumes with frame-wise displacement
(FD) higher than 0.3 mm and removed the subject remaining
with less than 200 volumes. No significant differences were found
in terms of mean FD (p = 0.811) or the number of censored
volumes (p = 0.723) across all subjects between two scans by using
paired t-test.

Diffusion tensor imaging images were preprocessed using
DTI-Explore package2 (Leemans et al., 2009). Preprocessing
steps included susceptibility distortions correction (estimating
a field distortion map based on the three b0 images), eddy-
current distortions and motion corrections (Andersson and
Skare, 2002), a robust tensor fitting (Chang et al., 2005) and
WM tract reconstruction based on the FACT (fiber assignment
by continuous tracking) algorithm (Mori and Van Zijl, 2002;
Mori et al., 2010). This procedure resulted in a large sample of

1http://rfmri.org/dpabi
2http://www.exploredti.com

all possible (reconstructable) fiber tracts of the brain network.
A fiber streamline was stopped when the fiber track reached a
voxel with a FA value 0.1 (indicating a low level of preferred
diffusion within that particular voxel), when the trajectory of the
traced fiber left the brain mask or when the fiber tract made a
sharp turn of 45◦.

For each subject, T1 images from two sessions were aligned
and averaged for better quality. We utilized a two-step non-
linear spatial registration method to transform the native
functional or diffusional images to MNI space: firstly, native
functional image (the first volume) or diffusional image (b0
image) was individually affined to the averaged T1 image; second,
this natively averaged T1 image was nonlinearly registered
based on the MNI-152 T1 template in FMRIB Software
Library (FSL)3 software package (Linux, United Kingdom).
Combining these two steps, we can easily transform all the well
preprocessed functional images and diffusional measures into
standard MNI space.

Functional Network Construction
In this study, automated atlas labeling (AAL 90) (Tzourio-
Mazoyer et al., 2002) was adopted to define the regions of
functional networks. Each brain region in the AAL template was
used as a regional mask to extract the time signal of BOLD
functional data. We excluded the regions from the cerebellum
to focus more attention on the brain patterns. Ninety columns
of time signals were extracted and a 90 × 90 correlation matrix
was calculated using Pearson correlation. Then FC matrixes were
obtained by fisher z-transformation. The dynamic sequences of
FC matrixes were obtained by the sliding window correlation
method. There is still a lack of knowledge regarding what the
best window length is and how it influences the results. A large
number of previous studies (Hindriks et al., 2016; Chen et al.,
2017, 2018) have converged to a short range from 50 to 60 s.
Arbitrarily and also empirically, we fixed the length of the
rectangle window as 60 s (width = 24 × TR), and the window
was shifted with a step of 1 TR = 2.5 s (Hutchison et al., 2013a;
Leonardi et al., 2013; Allen et al., 2014). Therefore, for one scan
of each subject, a sequence of 232 FC matrixes were obtained.

The meaningless connections in static FC were removed
to make the FC matrix to be spared or less redundant.
Proportional thresholding on the weighted FC matrix was
conducted based on the connection density, which is one of
the two thresholding techniques of FC matrixes (the other is
deterministic thresholding based on a FC strength). In order to
select a proper density thresholding value, one sample t-test was
done on the static FC matrixes to find the significant connections
which were significantly >0 (FDR q < 0.05; focused on positive
connections), and two binarized matrixes for each group were
presented. A density thresholding value was selected referring
to the densities of these group binarized matrixes, which were
0.38 and 0.41. In this paper, 40% of the connections—which
had the higher FC strength—were retained (namely, 40% of the
connections had higher FC strength and were set to one while
the other 60% were set to zeros), yielding binarized connectivity

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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matrixes. Density-based binarization can provide binarized FC
matrixes which have the same number of connections. After the
density-based thresholding, the FC weights were given back to
the remaining connections, yielding weighted matrixes.

Clustering Analysis
The degree-based measure of node centrality is a direct and
local topologic measurement including degree centrality and
eigenvector centrality. Degree centrality:

CD (i) =
∑

i6=j
Aij (1)

Eigenvector centrality:

CE (i) =
1
λ1

∑N

j=1
Aijxj (2)

Here, Axj = λxj. “A” represents the FC matrix, “xj” and “λ,”
respectively, represent the nonzero eigenvector and eigenvalue of
“A,” “i” and “j” respectively, represent different nodes. Because
degree centrality is too local, ignoring the importance of the
nodes that the target node connects with, eigenvector centrality
is considered here. These node centrality scores were calculated
for each spared, weighted and windowed FC matrix, yielding
a series of node centrality scores. The yielded node centrality
time series represented the node centrality distribution of FC
patterns at each windowed time. Then, every node centrality
vector was normalized into a standard normal distribution
N(0,1). We also compared the difference of this dynamic node
centrality with different window length: 20, 30, 50, and 60 s
(Supplementary Figure S1). The node centrality time series with
all kinds of window lengths showed temporally repeated patterns.
However, the periods of patterns were shorter, with 20 and 30 s,
than that of other two window lengths, which were within the
popularly used window length range. The 50 and 60 s patterns
were quite similar.

Each node centrality vector of one windowed FC matrix
was treated as one sample in clustering analysis. Datasets
from scan I and scan II were treated as two independent
groups to conduct the clustering analysis separately. Based
on the k-means++ algorithm (Arthur and Vassilvitskii, 2007),
the clustering results based on all vectors within one group
were obtained first with randomized initialization (group-level
clustering). And then the resulted cluster centers were used
as the initial starts for a second round of clustering within
each subject’s node centrality vectors in that group (individual
clustering). K-means++ was reported to be more independent
from the initial points than the original k-means clustering.
Within the group-level clustering, an optimization about the
number of clusters was conducted with elbow criterion based
on the cluster validity index (Supplementary Figure S2).
Finally, k = 5 was outperformed. For the distance measure
in k-means, we tried several ones, and arbitrarily selected
the correlation distance (1 – Pearson correlation) because
of the better clustering and higher stability of the optimal
number of clusters. Typical individual results were shown in
Figure 1. The whole clustering strategies were done for each
group separately. Different clusters or centers indicated that

the extracted metastates and all the node centrality vectors
recognized as the same cluster were averaged to represent the
node centrality pattern of that metastate.

When the clustering was done, dwell time and transition time
were calculated, which are typically and popularly used features
to describe the dynamic of metastates (Allen et al., 2014; Chen
et al., 2019). Dwell time was the total time that one metastate
appears during the scan period (Supplementary Figure S3),
which was calculated by the number of windows belonged to
one cluster, or the number multiplied by TR (Damaraju et al.,
2014; Mennigen et al., 2018; Xia et al., 2019). Transition time
represented the times of transitions from one metastate to
another during the scan period (Chen et al., 2019; Lee et al., 2019;
Xia et al., 2019).

Test-Retest Reliability Analysis
The intra-class correlation coefficient (ICC) (Bartko, 1966) is
one of the reliability coefficient indexes to measure test-retest
reliability. Bartko (1966) first used it to evaluate the reliability
in 1966. Xi-Nian et al. (2010) and Zuo and Xing (2014)
used ICC to analyze the test-retest reliability of various fMRI
processing methods and indicators, which had important guiding
significance for fMRI studies. ICC is equal to the individual
variability divided by the total variability, and the value is between
0 and 1. A value of 0 represents completely untrusted, and 1
represents completely trusted. It is generally acknowledged that
ICC < 0.4 indicates poor reliability and >0.75 indicates good
reliability. ICC is defined as:

ICC =
∑n

i=1 (x1i − x̄) (x2i − x̄)

(n− 1) s2
x

(3)

Here, n represents the total number of subjects; x1i represents
the first measurement of the ith subject; x2i represents the second
measurement of the ith subject; and x̄ and sx represent the mean
value and the standard deviation of all observations, respectively.
Before the ICC analysis, the Bartlett and Kolmogorov–Smirnov
tests were applied to verify the heteroscedasticity and the
normality of the data.

Structural Network Construction
Based on DTI image analysis and fiber tracking, the direct
structural connections were calculated. With the AAL-90
parcellation, 90 brain typical regions within individual native
space were assigned and used to generate the structural
connectivity according to the number of tracts between each pair
of regions. Data processing was performed based on the whole
brain fiber tracts using TrackVis software4.

Regional Hub Nodes Analysis
A series of highly connected nodes, having high node degrees
or high centralities, are identified as “brain hubs.” In this
paper, we utilized a typical way to highlight the hub nodes.
All nodes were ranked according to node centrality scores,
and those higher than the mean up to one standard deviation

4http://trackvis.org/
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FIGURE 1 | The dynamic changing of node centrality (A,C) and changing states of clustering analysis (B,D) for two typical subjects. The color represents normalized
node centrality score and red means higher centrality.

were recognized as hub nodes (top-ranking nodes based on one
standard deviation criteria) (Van Den Heuvel and Sporns, 2013;
Dai et al., 2014; Oldham and Fornito, 2018). The node centrality
scores representing each metastate were used to define the hub
nodes of that metastate. Since the node centrality used here
is a kind of degree-based centrality, these hub nodes mainly
indicated the provincial hub characteristics. The hub nodes
distribution of five metastates were extracted and presented in
a 3D view. Also, the transition characteristics between different
metastates were analyzed.

For the structural network, rich-club analysis (Heuvel Van
Den and Olaf, 2011; Sharaev et al., 2018) was applied to
delineate the highly connected sub-network known as rich-
club, including all hubs. To define the rich-club, the steps
included: (1) ranking nodes according to node centrality scores;
(2) applying a threshold to define a subgraph that contains only
more than a certain sorted node; (3) calculating the total weight
of the connectivity between the reserved subgraph nodes; (4)
calculating the weight sum of the same number of edges, which
are the highest ranking weights in the complete network; and (5)
calculating the ratio of steps 3 and 4. The rich-club coefficient is
shown as follows:

∅
w (r) =

W>r∑E>r
l=1 wrank

l

, (4)

where, W>r is the weight sum of the edges in the subgraph
with nodal ranking higher than r, E>r is the number of

these edges in the subgraph, and wrank is one of the vectors
whose weights are ranked from high to low. Due to random
networks also showing an increasing function of ∅w (r),
∅

w (r) is typically normalized by a set of comparable random
networks of equal size and similar connectivity distribution,
resulting in a normalized rich-club coefficient ∅w

norm (r), which
was computed as:

∅
w
norm (r) =

∅
w (r)
∅

w
rand (r)

, (5)

Where, ∅w
rand (r) w rand is computed as the averaged rich-

club coefficient from 1000 random networks preserving the
same degree. This normalized rich-club coefficient gives a better
indicator of the significance of the rich-club effect. For this
metric, if for certain values of r then we have ∅w

norm (r) > 1, which
denotes the presence of the rich-club effect.

RESULTS

Clustering Results
As shown in Figure 1, individual node centrality vectors and
the corresponding time series of clusters’ labels from two typical
subjects were presented. It could be found that the clustering
results were well in accordance with the temporal changes of node
centrality distributions. For two scans and the average group,
the cluster centers were shown in Figure 2, including state 1
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FIGURE 2 | The clustering results for scan I, scan II and the averaged centers from two scans. The hotter regions represent a higher level of node centrality.

FIGURE 3 | The correlation distance of the cluster center for scan I, scan II
and the averaged centers from two scans. The dark color indicates the close
correlation distance and high correlation, which represents that the two states
can be considered to be the same state.

(S1), state 2 (S2), state 3 (S3), state 4 (S4), and state 5 (S5). The
Figure 3 indicated distances between each of the two cluster
centers. The dark color indicated low distance, which represented
that the two clusters were closed metastates. On the contrary,
the two states were quite different, which should be considered
as two different metastates. There was high consistency between
the clustering results from two scans, and the cluster centers
from one group could exactly correspond to the similar one from
the other group.

Test-Retest Results
The dwell time and transition time were illustrated in Figures 4,
5A. In Figure 4, there was no significant difference between
two scans in these two features, under FDR corrected p < 0.05.
However, for both scans, after one-way ANOVA and t-test
analysis, the dwell time of S5 was significantly lower than that
of the other four (p < 0.001). The transition time matrixes,
depicted in Figure 5A, also showed similar patterns between
two scans. In the transition time matrix, the columns of a
state represented that the time switched from other states
to that state, and the rows of a state represented that the
time moved from that state to other states. The ICC matrix
(Figure 5B) of these two features (diagonal for dwell time

FIGURE 4 | The dwell time of metastates under clustering, for all five
metastates of two scans. White represents the dwell time of scan I, and gray
represents the dwell time of scan II. ∗∗∗Represents significant difference.

and non-diagonal for transition time) revealed the reliability
of the appearances of the observed metastates across 1-week
interval scans. Results showed that there was high degree
of reliability (ICC > 0.4) for dwell time of states 1–4 and
most transition time between states. S5 showed relatively
low reliability in its dwell time and high reliability only in
transition from S1 to S5.

Hub Nodes of Networks
The node centrality distributions for different groups were
showed in Figure 6A, for Scan I, Scan II and the average
separately. Thresholding (mean + 1 standard deviation) the
hub nodes on the averaged node centrality scores provided the
binarized map indicating the hub nodes for each metastate,
as well as the corresponding spatial visualization with glass
brain in Figure 6B. The Figure 6B showed the hub node
distribution of each metastate, including S1, S2, S3, S4,
and S5. Moreover, the transition characteristics between
different metastates (the thicker line represented the higher
transition time) were described. Also, the overlapping rates
of the hub regions with brain intrinsic sub-networks were
shown. The detailed information of these hub nodes for
each metastate is listed in Table 1 along with one of
the previously well-established brain intrinsic sub-networks:
the frontoparietal network (FPN), occipital network (OCC),
sensorimotor network (SMN), default mode network (DMN)
and cingulo-opercular network (CON, mainly includes the
subcortical nucleus). Segmented based on AAL, these hub
patterns of each metastate could be uniquely assigned as
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FIGURE 5 | (A) The transition time matrix between different metastates for two scans. (B) The ICC matrix of two features (diagonal for dwell time and non-diagonal
for transition time). Red to yellow indicates the time from high to low.

FIGURE 6 | The group averaging results of the clustering. (A) The node centrality distribution for different groups, for Scan I, Scan II and the average separately; the
binary one represents the hub regions for each metastate; (B) the 3D view of the hub regions for each metastate, red nodes represent the hub nodes; gray nodes
represent the non-hub nodes. Transitions between different metastates are connected by straight lines, and thicker line represent the higher transition time. Each
metastate shows the corresponding brain sub-networks and overlapping rate of hub regions with brain sub-networks.

one of these intrinsic networks, according to the overlapping
rate between hub nodes and intrinsic sub-network regions.
In Table 1, the underlined regions are the most overlapping
regions between hub nodes and intrinsic network (state
1: 17/17 with SMN; state 2: 14/16 with OCC; state 3:
10/16 with DMN; state 4: 9/18 with CON; state 5: 12/15
with FPN). The hub nodes of the structural network are
also listed in Table 1 and visualized in Figure 7, which
resulted from rich-club analysis. The hub regions shared
with the structural network for each metastate are boldfaced
in Table 1.

DISCUSSION

In this paper, we proposed a method to extract metastates
based on the node centrality of the dynamic functional networks
and assessed the appearance of these metastates with test-retest
across a 1-week interval. To our knowledge, this is the first
study to analyze the repeatability of metastates of dynamic
functional networks with time interval in the resting state.
Furthermore, we also found the coupling relationship between
dynamic functional networks and the structural network at the
hub regions level. Several main findings are as follows: (1) the
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TABLE 1 | Hub regions of both metastate and structural network.

Network Hub Regions

State 1 (SMN) PreCG.L, PreCG.R, ROL.L, ROL.R, SMA.L, SMA.R,
INS.L, INS.R, PoCG.L, PoCG.R, SMG.L, SMG.R, PCL.L,
HES.L, HES.R, STG.L, STG.R

State 2 (OCC) CAL.L, CAL.R, CUN.L, CUN.R, LING.L, LING.R, SOG.L,
SOG.R, MOG.L, MOG.R, IOG.L, IOG.R, FFG.L, FFG.R,
PoCG.L, PoCG.R

State 3 (DMN) PCG.L, SFGmed.L, SFGmed.R, ORBsupmed.L,
ORBsupmed.R, REC.L, REC.R, ACG.L, MTG.L, MTG.R,
OLF.L, OLF.R, TPOmid.L, TPOmid.R, ANG.L, ANG.R

State 4 (CON) ROL.L, ROL.R, SMA.R, INS.L, INS.R, HES.L, HES.R, ACG.L,
ACG.R, DCG.L, DCG.R, _CAU.L, PUT.L, PUT.R, PAL.L,
PAL.R, THA.L, THA.R

State 5 (FPN) SMG.L, SMG.R, ORBsup.R, IPL.L, IPL.R, MFG.L, MFG.R,
ORBmid.L, ORBmid.R, FGoperc. L, IIFGoperc.R, IFGtriang. L,
IFGtriang.R, ORBinf.L, ORBinf.R

Structural SFGdor.L, SFGdor.R, SMA.L, SMA.R, SFGmed.L, DCG.R,
SOG.L, SOG.R, MOG.L, PCUN.L, PCUN.R, PUT.L, PUT.R,
THA.L, THA.R,

proposed method showed high reliability in individual metastates
extracted across a 1-week interval; (2) the hub regions of each
metastate highly overlapped with the intrinsic functional brain
subnetworks; (3) the hubs of metastates were highly overlapped
with the structural core network. It can be speculated that the
dynamic transitions between metastates are potentially associated
with the core structure of the structural network, indicating
structural constraint.

Repeatability of Proposed Method
Previous studies suggested that a high frequency of FC state
transitions existed in the brain (Damaraju et al., 2014; Li et al.,
2017; Marusak et al., 2017), but the stability of these states as
well as their transitions have not been proved. In our study,
the changes of dwell time and transition time can reflect the
temporal characteristics of functional metastates, which indicates
that metastates show a process of stable dynamic changes over
time. As shown in Figures 4, 5, according to the metastate results
of the same group of subjects at two scans in different time,

the repeatability of the metastate time series can be detected.
Dwell time can demonstrate the importance of a certain state
in the temporal series of brain dynamic function. Longer dwell
time indicates that the brain function corresponding to this state
is more dominant. Respectively, for five metastates, there is no
statistical significance in dwell time between scan I and scan II.
This result indicates the stability of the metastate. At the same
time, S5 is significantly different from the other states, which
demonstrates that S5 is not active at resting state (Figure 4).
The transition time indicates the information exchange and
cooperation mechanism between metastates (Chen et al., 2019).
In the brain dynamic functional network time series during
resting state, the more frequently the state is transiting indicates
that there is more information exchange in this state, which
may involve an internally close collaboration or interaction
mechanism. It is observed that the average number of metastate
transitions is highly consistent (Figure 5A). Moreover, a majority
of ICCs are higher than 0.4, which illustrates good reliability
(Figure 5B). Interestingly, compared with other states, the
transitions of S5 shows a low reliability, which may be related to
the instability of S5. It is concluded that the dynamic transition
rules of the metastates obtained by the two scans are almost
the same, which indicates that the time series of brain metastate
transitions in the same individual have good repeatability in
different time periods.

Specific Representations of Functional
Metastates
The hub nodes of each FC network metastate show the
particularity in spatial distribution. Considering the hub node
distribution of each metastate and functional subnetwork, it is
found that the hub node distribution is highly consistent with
the functional subnetwork nodes. Hub nodes for each metastate
are mainly located in the corresponding subnetwork. Specifically,
five metastates correspond to specific networks with FC, such
as the FPN (Emerson and Cantlon, 2012; Di and Biswal, 2015;
Lee and Telzer, 2016), OCC (Yan et al., 2011; Damoiseaux et al.,
2016; Chen et al., 2017; Zhang et al., 2017), SMN (Jolles et al.,
2011; Pujol et al., 2014; He et al., 2016; Syed et al., 2017), DMN
(Betzel et al., 2014; Wu et al., 2014; Jiao et al., 2016, 2017) and

FIGURE 7 | The rich-club results of the structural network. Red nodes represent the hub nodes of the structural network; gray nodes represent the non-hub nodes.
The yellow lines depict the connectivity.
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(CON, mainly includes the subcortical nucleus) (Betzel et al.,
2014; Luca et al., 2014; Raichlen et al., 2016; Long et al., 2017),
respectively (Figure 6). Accordingly, the dynamic changes of
the brain functional network reflect the characteristics whereby
different functional modules are “activated” alternately in a
certain time series.

It is found that the hub node distributions of five metastates
respectively, correspond with five intrinsic functional networks,
which reveals the physiological significance of metastates. Among
them, S5 corresponds to the FPN, which has a low repeatability.
As the main network in higher the cognitive and thinking
consciousness processes, the FPN is susceptible to brain activity
at resting state (Zanto and Adam, 2013; Gulbinaite et al.,
2014; Alarcón et al., 2018). A low repeatability of S5 can
be explained in that the resting state is an ambiguous and
imprecise state of brain function. Furthermore, S5 is relatively
less active in resting state with a lower dwell time, which
further indicates that the FPN is a brain network involved in
higher cognitive processes. The changes of dynamic network
time series seem to imply that the brain shows dynamic
“activation” characteristics of different intrinsic networks or
cognitive resources. On the other hand, the intrinsic networks
or network modularization structure are closely related to the
rotational activity of the dynamic local brain regions. Therefore,
it is speculated that compared with the traditional network
modularization organization of static FC, the single spatial
integration and separation characteristics reveal the internal
mechanism. This particular pattern of temporal and spatial
organization may better reflect the organization and operation
mechanism of brain networks. It is interesting to find that the
hub nodes of metastate are not fully consistent with the intrinsic
network of brain regions. Further analyzing the distribution of
hub nodes, we can find that the hub nodes of each metastate
respectively, belong to local hubs and global hubs. The local hub
is responsible for information integration within the network,
and the global hub is responsible for information integration
between networks. Thus, we can speculate that the changes of
hub nodes reflect the integration ability of local brain functional
resources, and it is simultaneously constrained by the global
network structure.

Coupling With the Structural Network
Through the rich-club analysis, we extracted the structural
core of the structural network (Figure 7). The most
important nodes were obtained in the structural network,
which are highly overlapped with hub nodes. In addition,
a small number of hub nodes in each metastate belonged
to the rich-club. It is indicated that the dynamic changes
of functional metastates are the spontaneous transition
of the intrinsic function resources, which are captured
based on the node centrality. This transition mechanism
relies on the structural core of the structural network,
which plays an important connector role in the metastate
transition process (Hagmann et al., 2008; Yong et al., 2009;
Heuvel Van Den and Olaf, 2011). At the same time, the
constant changes of metastates reflect the feeder effect of
local intrinsic networks. The connect-feed theory simplifies

brain network connectivity from an information-processing
perspective (Bullmore and Sporns, 2009). Connective core
nodes and hub nodes are defined as the connectors,
which have the effect of globally connecting different
modules. Connectivity that connects edge nodes or local
network nodes to core nodes or hub nodes is known as
feeder, which can transfer local information to advanced
network structure.

LIMITATIONS

We have designed a test-retest study to assess the reliability of
functional metastates, but there are still several aspects that need
further improvements. First, strictly inclusive participants are of a
relatively small size. Although we have some potential influential
factors that may affect the results, it is still hard to be sure because
of the small sample size. Specially, it is more focused on the age at
about 20 s and may not be represented. To further corroborate
our results and elucidate the spontaneous fluctuations of the
FC through metastates transitions, a better study should be
performed to follow subjects from wide ages. A study a with
large sample will also improve estimates of FC variability and
permit patterns of connectivity, which may be critical for future
investigations. Second, as mentioned in the discussion section,
the brain parcellation atlas used is a commonly used one, and
there are many finer templates with higher spatial resolution and
more detailed or specific divisions of brain regions. With finer
parcellation, it is probable to obtain more spatially dependent
patterns represented as metastates and provide more information
about coupling between dynamic function in resting state and
intrinsic structure. It is also another powerful way to verify the
reliability of the proposed method at different spatial levels of
brain parcellation. Third, how the hub regions are identified
here is not rigorous, but relatively comparable. With that said,
we used the normalized rich-club coefficient to find the hubs of
the structural network, and spurious hubs nodes will probably
be found. At the same time, there were many details that were
arbitrary and tricky from the perspective of more rigorous
thinking, for example the functional network thresholding, the
sliding window size and the fMRI preprocessing. This makes
it difficult to draw a strong conclusion. However, the methods
here provide a general method and insight view of the dynamic
hub nodes of functional networks. Future work should use
stricter methods to identify the hub nodes, for example using
non-parametrical testing and multiple comparison correction.
Fourth, the exact sliding window size is important and should
be carefully considered in dynamic FC research. In this work, we
arbitrarily chose an empirically used window length in previous
literatures without further exploring the potential effects for
varied window lengths. Future work on the effect of window size
on metastate extraction is needed. What is more important about
this is whether the sliding window correlation method reflects
the dynamic FC, which has been the focus of several studies
(Leonardi and Van De Ville, 2015; Hindriks et al., 2016) and
resulted in two sides. For example, with surrogate data, Hindriks
et al. (2016) concluded that with the sliding window-based
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method it was hard to reflect the dynamic FC, and Leonardi
suggested that an extra 0∼1/w low frequent pass filtering
on the sequence of dynamic FC can reduce spurious
information about dynamic FC, even though plenty of
studies have found meaningful things about dynamic FC.
In our thoughts, what really mattered is to know what
kind of or how to describe the characteristics of dynamic
FC in resting state. In any case, a surrogate can never
represent real fMRI data and we also never know the
exact information underlying our brain function. However,
with careful thinking, we might still explore the nature of
dynamic FC in practice.

CONCLUSION

In conclusion, we proposed a clustering method to extract
metastates based on the node centrality of the dynamic
functional networks, assessed the dynamic features of these
metastates in resting state across a 1-week interval and further
explored the possible meanings of these metastates. These
metastates were repeatable and highly related to the intrinsic
subsystems of brain function in resting state. Considering
the overlapping of the hub nodes between metastates and
the structural network, we also speculated that dynamic
functional network metastates were coupled with or constrained
by the structural network. We might further conclude that
the metastates, or possible sub-systems, interacted with each
other in an alternate provincial centralization under the
core frame of the structural network. In additional, node-
based representation of dynamic function networks, as well
as metastates, might provide a new useful insight into
the underlying information of spontaneous dynamics in
resting state networks.
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