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Background: miR-126 is closely related to the occurrence of various complications
after intracerebral hemorrhage (ICH), but the molecular mechanism is not fully
elucidated. This study aimed to explore the mechanism of miR-126-3p in alleviating
brain injury after ICH.

Methods: Serum miR-126-3p levels were compared between patients with IHC and
healthy controls. A rat model of ICH was generated by intracerebral injection of Type VII
collagenase. The rats were intracerebral injected with miR-126-3p mimics or negative
control miRNA. Rat brain microvascular endothelial cells (BMECs) were used as a cell
model of blood-brain barrier (BBB), and validated by immunofluorescence staining of
Factor VIII. The BBB permeability of BMECs after miR-126-3p antagomir transfection
was determined by FITC-dextran 20 through a confluent BMECs layer (measured over
120 min). The binding site of miR-126-3p in the 3′UTR of VCAM-1 was predicated by
TargetScan, and verified by dual luciferase reporter assay. The expression levels of miR-
126-3p and vascular cell adhesion molecule-1 (VCAM-1) in rat brain tissues and BMECs
were measured by real-time PCR or western blotting.

Results: Serum miR-126-3p level was markedly down-regulated in patients with ICH.
The rats with ICH had decreased miR-126-3p levels in serum and hemorrhagic area,
while those changes were reversed by the treatment with miR-126-3p mimic. VCAM-1 is
a direct target of miR-126-3p, and VCAM-1 expression in hemorrhagic area was down-
regulated by the administration of miR-126-3p mimic in rats. Inhibition of miR-126-3p
by anti-miR126 treatment in BMECs resulted in barrier leakage.

Conclusion: miR-126-3p attenuates intracerebral hemorrhage-induced blood-brain
barrier disruption, which is associated with down-regulated expression of VCAM-1 in
hemorrhagic area.

Keywords: intracerebral hemorrhage, miR-126-3p, VCAM-1, BMECs, BBB

Abbreviations: BBB, blood-brain barrier; BMECs, brain microvascular endothelial cells; EGFL7, epidermal growth factor-
like-domain 7; ICH, intracerebral hemorrhage; NVU, neurovascular unit; VCAM-1, vascular cell adhesion molecule 1.
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INTRODUCTION

Intracerebral hemorrhage is a common life-threatening type of
stroke (Min et al., 2016). Although efforts have been made to
alleviate ICH and post-ICH complications, the outcome is far
from being optimal. Approximately 20% of ICH patients have to
suffer from remained varying degrees of neurological dysfunction
after treatment (Duan et al., 2016).

MicroRNA (miRNA) is a class of endogenous, 18–23
nucleotides non-coding small RNA. Accumulating studies have
clarified the origin of circulating miRNAs in serum (do Amaral
et al., 2017; Zhou et al., 2018). In brief, miRNAs are transcribed
in the nucleus as pri-miRNAs with 5′-caps and 3′-polyA tails.
Drosha removes the cap and polyA tail to generate pre-miRNAs,
which are exported from the nucleus to the cytoplasm via
Exportin 5. In the cytoplasm, pre-miRNAs are cleaved into
mature miRNAs by Dicer. Pre-miRNAs and mature miRNAs can
excrete from the cells into the bloodstream via binding to RNA-
binding proteins, microvesicles, exosomes or multi-vesicular
bodies. miR126-3p levels are decreased in the serum of ICH-
injured rats may be due to that injured brain tissues expressed
lower levels of miR-126-3p and reduced release into blood.

Many studies also have highlighted the roles of miRNAs in
regulating the pathogenesis, diagnosis, and treatment of ICH.
For examples, Leung et al. (2014) showed that miR-124-3p and
miR-16 were elevated in the serum of ICH patients. Moreover,
the levels of plasma miR-29c and miR-122 are proposed to be
related to hematoma enlargement (Martinez and Peplow, 2017).
Previous studies showed that the serum levels of miR-126, miR-
146a, miR-let-7a, and miR-26a were significantly down-regulated
in ICH patients when compared with healthy controls (Zhu et al.,
2015). Since miR-126 has been shown to play a crucial role in
vascular integrity and angiogenesis (Wang et al., 2008), we are
particularly interested in miR-126. It has been reported that miR-
126 weakens leukocyte adherence and vascular inflammation
by targeting and binding to vascular cell adhesion molecule-1
(VCAM-1) (Harris et al., 2008). The study from Bai et al. (2017)
suggested that miR-126 plays a neuroprotective role in ischemic
retinopathy by regulating VCAM-1 and BCL2-like 11. A previous
study by our group showed that miR-126-3p attenuates BBB
disruption, cerebral edema, and neuronal injury in ICH rat
models (Xi et al., 2017). Low expression of miR-126 has been
identified to be associated with larger perihematomal edema
(Zhu et al., 2015). In addition, the overexpression of miR-126
was shown to protect against ICH complications by increasing
the levels of VEGF-A and decreasing caspase-3 in endothelial
cells (Kong et al., 2017). Furthermore, through quantifying
endothelial-specific miRNAs in cerebral arterioles from wild type
mice and from pathological mice models of chronic kidney
disease (CKD), a study also identified miR-126 as one of the most
dysregulated miRNAs, which suggests that miR-126 is a potential
new biomarker of cerebral troubles of CKD patients (Metzinger-
Le Meuth et al., 2014). Collectively, these findings suggest that
miR-126 helps maintain the integrity of vascular physiological
structures and the normal barrier function of endothelial cells.
However, the protective role of miR-126 in ICH-induced BBB
disruption has not been fully elucidated so far.

The BBB prevents neurotoxic plasma components, blood cells,
and pathogens from entering the brain, BBB dysfunction relates
to neurological deficits in ICH, stroke, traumatic brain injury, and
so on (Chen et al., 2016; Sweeney et al., 2019). The monolayer
cell structure formed by BMECs are a major component of the
BBB, and they maintain BBB functions in the brains (Abbott
et al., 2006). Therefore, BMECs are chosen in our present study.
BMECs bind to the basement membrane through connexins, and
form NVU with astrocytes, pericytes, and smooth muscle cells
(Neuwelt et al., 2011). Brain endothelial cell lines can be used
to establish the in vitro BBB models. To a certain extent, brain
endothelial cell lines are superior to primary BMECs, because
of their rapid growth and stability over several generations.
Nevertheless, because of the inherent characteristics of the
primary brain cells, BMECs cannot be completely replaced by
brain endothelial cell lines. Multiple markers are currently used
to assist in the identification of BMECs, including endothelial
cell markers and tight junction protein (Stebbins et al., 2016;
Qian et al., 2017).

In the current study, we explored the method of separating
primary BMECs based on the method established by Ruck. (Ruck
et al., 2014), and validated the isolated cells from neonatal rat
brains as BMECs by immunofluorescence staining of Factor VIII
(Unger et al., 2002). Using the in vitro primary BMECs cell model
and an in vivo rat model of ICH, we aimed to explore the potential
mechanisms of miR-126-3p in alleviating the complications of
ICH such as BBB damage, neuronal damage, and brain edema.

MATERIALS AND METHODS

Patients
Thirty-eight patients with acute spontaneous ICH, ≥18 years
of age, and admitted within 48 h after onset were included in
this study. Blood samples were drawn upon admission and the
serum samples were frozen for later examination. Serum samples
from 22 age-matched healthy subjects were used as control. Since
the data on expression levels of miR-126-3p in human serum
were retrospectively analyzed, written informed consents were
waived, and this study (approval No. 2019PS169K) was approved
by the Human Ethical Committee of Shengjing Hospital, China
Medical University.

Animal Models of ICH
Adult male Wistar rats (n = 48; weighing 250–280 g) were
obtained from Charles River Laboratories (Beijing, China).
All experiments were carried out according to the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals. All experiments involving rats were approved (approval
no. 2017PS146K) by the Institutional Animal Care and Use
Committee of Shengjing Hospital, China Medical University.
After anesthetization by injection of 10% chloral hydrate, the
rats were placed in a prone position and fixed in a stereotaxic
frame. A burr hole (1 mm) was made using a dental drill (0.2 mm
anterior to the bregma and 3 mm right lateral to midline, and
6 mm depth below the skull surface). Type VII collagenase was
injected at 0.4 µl/min (0.5 U in 2 µl normal saline) into the hole
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to induce ICH (n = 36 rats), as previously described (Rosenberg
et al., 1990). The skull of the sham-operated animal was drilled at
the same point and an equal volume of saline without collagenase
was injected (n = 12 rats).

Immediately after modeling, the 36 rats with ICH were
randomly divided into three groups: the untreated ICH
group, the miR-NC group, and the miR-126-3p group
(n = 12/group). A 1-mm burr hole was drilled at another
position (0.8 mm posterior to the bregma and 1.5 mm
right lateral to midline, and 4.5 mm depth below the skull
surface). The rats were injected with 10 µM miR-126-3p mimic
[5′-UCGUACCGUGAGUAAUAAUGCG-3′ (forward)], and [5′-
CAUUAUUACUCACGGUACGAUU-3′ (reverse)] or negative
control [miR-NC, 5′-UUCUCCGAACGUGUCACGUTT-3′
(forward)] and [5′-ACGUGACACGUUCGGAGAATT-3′
(reverse)] (GenePharm, Shanghai, China) (5 µl, 0.5 µl/min)
(Xi et al., 2017), respectively. The Sham group and the ICH
group were treated with the same amount of transfection reagent
EntransterTM-in vivo (Engreen, Beijing, China). After surgery
and treatments, the rats recovered for 24 h and were allowed free
access to food and water.

Dual Luciferase Reporter Assay
Vascular cell adhesion molecule 1 wild-type or mutant 3′UTR
fragment was subcloned into pmirGLO (Promega, Madison, WI,
United States). Until reaching 70% confluence, the cells were
starved for 12 h and then co-transfected with 75 pmol miR-
126-3p mimic or NC mimic and 1.5 µg recombinant plasmid
containing wt or mut 3′UTR. Forty-eight hours post-transfection,
luciferase activities were determined by Dual-luciferase reporter
assay kit (KeyGen, China).

Blood Sampling and Brain Tissue
Collection
The rats were euthanized and the blood was drawn from the
inferior vena cava. The serum samples were frozen for later
determination of miR-126-3p expression. The brain was divided
into ipsilateral and contralateral hemispheres in relation to ICH.
The perihematomal zone was defined as a 2-mm margin around
the hematoma. The perihematomal and hematomal tissues were
excised, snap-frozen in liquid nitrogen, and stored at−80◦C.

Isolation of BMECs, Cell Culture,
Identification, and Transfection
The brains of neonatal rats were isolated and stored in cold
PBS (phosphate buffered saline). The cerebellum, diencephalon,
pia mater, meningeal blood vessels, and white matter were
removed. The cortex was collected, washed with PBS, minced,
digested with 0.1% type 2 collagenase (Biosharp, Hefei, China)
at 37◦C, and filtered through a mesh filter. The mixtures were
centrifuged, washed with 20% BSA and digested with a mixture of
collagenase and neutral protease (Solarbio, Beijing, China). The
cell suspension was added into Percoll (Solarbio) and centrifuged
at 1,000 × g for 20 min. BMECs were obtained and cultured in
DMEM (Gibco; Thermo Fisher, Waltham, MA, United States)
containing 10% FBS (HyClone; GE Healthcare, Logan, UT,

United States). Immunofluorescence was used for BMECs
identification. The cells were digested with 0.25% EDTA trypsin,
blown into single cell suspensions, inoculated into 24-well plates
and cultured for 24 h. After removing the coverslips, washing
the cells three times with PBS, and removing the floating dead
cells, the rat BMECs were seeded into 6-well plates and cultured
in serum-free DMEM for 1 h upon reaching 70% confluence.
The cells were transfected with 100 pmol of anti-miR-126-3p (5′-
CGCAUUAUUACUCACGGUACGA-3′) or anti-miR-NC (5′-
CAGUACUUUUGUGUAGUACAA-3′) using LipofectamineTM

LTX Reagent and PLUSTM Reagent (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instruction
(n = 6 BMECs/group).

BMECs Permeability Assay
BMECs were seeded into Transwell chamber (Costar,
United States) at a density of 1 × 104 cells/chamber. After
cells were cultured for 72 h, the medium was discarded and
0.01% FITC-dextran 20 (TdB, Sweden) was added into the upper
chamber. The medium in the lower chamber was collected
at different time points (0, 30, 60, and 120 min after TdB
was added). The fluorescence intensity was determined by a
fluorescence microplate reader (M200 PRO, Tecan, Switzerland).
All measurements were performed in triplicates.

Western Blotting
Brain tissues were lysed and the samples were centrifuged
at 1000 × g for 10 min. BCA assay (Beyotime, Shanghai,
China) was performed to determine protein concentration. Forty
micrograms of protein samples were subjected to SDS-PAGE
and transferred to PVDF (polyvinylidene difluoride) membranes
(Millipore). The membranes were incubated with primary
antibodies against VCAM-1 (1:400 dilution) (Bioss, Beijing,
China), overnight at 4◦C. Horseradish peroxidase (HRP)-labeled
goat anti-rabbit IgG (1:5000 dilution) or HRP-labeled goat anti-
mouse IgG (1:5000 dilution) was used as the secondary antibody.
Then, the membranes were incubated with ECL (enhanced
chemiluminescence) reagent and exposed in a dark room. Optical
densities of the blots were analyzed using the Media Cybernetics
Gel-Pro Analyzer software (Rockville, MD, United States). All
measurements were performed in triplicates.

Real-Time Quantitative PCR (RT-qPCR)
The total RNA from the serum samples (humans and rats),
brain tissue specimens, and BMECs were extracted using Trizol
(Invitrogen, Carlsbad, CA, United States). After determination of
the RNA concentration using a Nanodrop2000 device (Thermo
Fisher Scientific, Waltham, MA, United States), 1 µg of total
RNA was reversely transcribed into cDNA using the PrimeScript
RT reagent kit with gDNA Eraser Kit (Takara Bio Inc., Otsu,
Japan). DNA removal was conducted at 42◦C for 2 min with the
addition of 5 × DNA Eraser Buffer and gDNA Eraser. RT-qPCR
was carried out on an ABI 7500 quantitative PCR instrument
(Applied Biosystems, Foster City, CA, United States) with the
SYBR R©PremixExTaq (TliRNaseHPlus) kits (Takara Bio Inc.,
Otsu, Japan). The amplification conditions were: 10 min at 95◦C;
10 s at 95◦C, 20 s at 60◦C and 30 s at 72◦C (40 cycles). U6 was
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used as the internal reference for miR-126-3p. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as the internal
reference for the other mRNAs. The 2−1 1 Ct method was used
to calculate the expression of the target gene in the experimental
group and the reference group (Livak and Schmittgen, 2001).
The primers were: looped reverse transcription primer, 5′-
GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGA
GCCAACCGCATT-3′; miR-126-3p, 5′-GCATCGTCGTACCGT
GAGTAAT-3′ (forward) and 5′-GTGCAGGGTCCGAGGTA
TTC-3′ (reverse); U6, 5′-CTCGCTTCGGCAGCACA-3′
(forward) and 5′-AACGCTTCACGAATTTGCGT-3′ (reverse);
VCAM-1, 5′-GAAATGACCTTCATCCCTAC-3′ (forward)
and 5′-GCTGACCAAGACGGTTGTAT-3′ (reverse); GAPDH,
5′-CCCACTCCTCCACCTTTGAC-3′ (forward) and 5′-
ATGAGGTCCACCACCCTGTT-3′ (reverse). The primers
were synthesized by Gemma Pharmaceutical Technology
Co., Ltd. (Shanghai, China). All measurements were
performed in triplicates.

Statistical Analysis
Statistical analyses were performed using SPSS 19.0 (IBM,
Armonk, NY, United States) and GraphPad Prism 6.0 (GraphPad
Software Inc., San Diego, CA, United States). Tests for normal
distribution (Kolmogorov-Smirnov test) and homogeneity of
variance (Levene’s test) were conducted. The data with normal
distribution were expressed as means± the standard error of the
mean (SEM) and analyzed by the Student t test (two groups) or
one-way analysis of variance (ANOVA) with the Tukey post hoc
test (more than two groups). The data with skewed distribution
were tested by non-parametric tests. A P < 0.05 was considered
statistically significant.

RESULTS

The Level of miR-126-3p Is
Down-Regulated in Serum of Patients
With ICH
To verify previous miRNA array data (Zhu et al., 2015),
we measured the levels of miR-126-3p in serum from ICH
patients and healthy subjects by RT-qPCR. Compared with
healthy subjects, the level of serum miR-126-3p in ICH patients
was 53.4% lower (P = 0.0072, ICH group vs. Control group)
(Figure 1A). This result confirmed the reduced levels of miR-126-
3p in the serum of ICH patients.

The Transcription Expression Levels
miR-126-3p in Serum, Edema Area, and
Hemorrhagic Area of the ICH Rats
Next, we explored whether a similar decline of miR-126-3p
levels could be detected in the rat model of ICH. As shown
in Figures 1B,C, ICH significantly decreased the level of miR-
126-3p expression in serum (P = 0.0092, ICH group vs. Sham
group) and hemorrhagic area (P = 0.013, ICH group vs. Sham
group) in rats. Whereas, the treatment with miR-126-3p mimic
significantly increased miR-126-3p levels in rat brain edema

area (P = 0.0004, miR-126-3p group vs. miR-NC group) and
hemorrhagic area (P = 0.0026, miR-126-3p group vs. miR-
NC group) (Figures 1C,D). However, no significant increase
of serum miR-126-3p was observed in rats administrated with
miR-126-3p mimic, compared with the rats treated with the
miR-NC (Figure 1B).

VCAM-1 Is a Direct Target of miR-126-3p
The binding site of miR-126-3p in the 3′UTR of VCAM-
1 was predicated by TargetScan (Figure 2A), and verified
by dual luciferase reporter assay. The results showed that
compared with VCAM-1-wt+ control mimics group, the relative
luciferase activity of cells in VCAM-1-wt + miR126-3p mimics
group decreased significantly (P = 0.0002) (Figure 2B), there
was no significant difference in relative fluorescence activity
between VCAM-1-mut + control mimics group and VCAM-
1-mut + miR126-3p mimics group (P > 0.05) (Figure 2B). It
showed that there is a targeting relationship between miR126-
3p and VCAM-1.

The ICH Rats Administrated With the
miR-126-3p Mimics Have
Down-Regulated Expression of VCAM-1
in Brain Perihematomal Tissues
Vascular cell adhesion molecule 1, an endothelial-specific marker,
can be regulated by abnormally expressed miR-126-3p in brain
endothelial cells in ICH-injured brain tissues (perihematomal
area) (Yousef et al., 2019). To explore the changes of VCAM-1
in ICH and the interaction between miR-126-3p and VCAM-1.
We determined whether the expression levels of VCAM-1 were
changed in the perihematomal tissues of rat brains by western
blotting. As shown in Figures 3A,B, ICH induced a significant
elevation of VCAM-1 protein expression in the perihematomal
area (P = 0.0011, ICH group vs. Sham group). Remarkably, the
presence of miR-126-3p mimic significantly reversed the low
expression of VCAM-1 caused by ICH (P = 0.0037, miR-126-3p
group vs. miR-NC group) (Figures 3A,B). Consistently, RT-
PCR analyses also indicated that the mRNA expression levels
of VCAM-1 had a similar pattern of change as its protein
expression levels among the four groups (P = 0.0056, ICH group
vs. Sham group; P = 0.0039, miR-126-3p group vs. miR-NC
group) (Figure 3C).

Validation of Rat BMECs by
Immunofluorescence Staining of Factor
VIII
Factor VIII is a marker generally used to identify human
BMECs (Unger et al., 2002). We validated the isolated cells
as BMECs by performing immunofluorescence staining for
Factor VIII (Figure 4A). The isolated BMECs were used as
an in vitro BBB model for the subsequent experiments. The
miR-126-3p levels in BMECs treated with the anti-miR-126-
3p were significantly decreased compared to the cells treated
with the anti-miR-NC (P = 0.0034, anti-miR-126-3p group
vs. anti-miR-NC group) (Figure 4B). This indicates that the
transfection procedure of anti-miR-126-3p and anti-miR-NC
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FIGURE 1 | The miR-126-3p levels in serum from patients with ICH and in serum, perihematomal edema, hematoma areas in a rat model of ICH. (A) The levels of
miR-126-3p in the serum of ICH patients (n = 38, within 48h after onset) and healthy subjects (n = 22) were determined by RT-qPCR. (B–D) Twenty-four hours
post-ICH, the levels of miR-126-3p in serum (B), perihematomal edema (C), and hematoma (D) areas were measured by RT-qPCR (n = 12 per group). All
measurements were performed in triplicates; values are indicated with error bars as mean ± SEM. #P < 0.05 and ##P < 0.01 versus Sham group; ∗∗P < 0.01
versus Control group, miR-NC group, FFP < 0.01 versus VCAM-1-wt + control mimics group.

were successful and that the transfected BMECs could be further
used to study the related molecular mechanisms. Notably, our
FITC-dextran 20 permeability experiments demonstrated that
the inhibition of miR-126-3p by treatment with anti-miR-NC
resulted in an obvious BMEC barrier leakage (P = 0.021(60 min)

and P = 0.0023(120 min), anti-miR-126-3p group vs. BMEC
group) (Figure 4C).

Inhibition of miR-126-3p Impairs BMECs
Barrier Permeability and Up-Regulates
VCAM-1 Expression Levels in vitro
To further validate the role of the miR-126-3p/VCAM-1
axis in BBB function, we tested the effects of in vitro miR-
126-3p inhibition on VCAM-1 expression in BMECs. As
shown in Figures 5A,B, the protein expression of VCAM-1
in the anti-miR-126-3p group was significantly up-regulated

compared to the anti-miR-NC group (P = 0.0045, anti-
miR-126-3p group vs. anti-miR-NC group), as a result
of miR-126-3p inhibition. Similarly, the relative mRNA
expression levels of VCAM-1 among the three groups
were consistent with the patterns of protein expression
levels (P = 0.0051, anti-miR-126-3p group vs. anti-miR-NC
group) (Figure 5C).

DISCUSSION

Intracerebral hemorrhage is a common type of stroke and
is among the leading causes of death in the world (Qureshi
et al., 2009). The expression of circulating miRNAs vary with
different stroke subtypes, and ICH causes the obvious changes
in expression levels of miRNA in brain tissue and blood in a
unique pattern (Martinez and Peplow, 2017). Several studies
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FIGURE 2 | Targeted binding between miR-126-3p and VCAM-1. (A) The prediction of the combination between miR-126-3p and VCAM-1 were by TargetScan.
(B) The targeted combination was validated by dual luciferase reporter assay (n = 3 per group). The measurement was performed in triplicates; values are indicated
with error bars as mean ± SEM. ∗∗P < 0.01 versus ICH group.

FIGURE 3 | The expression of VCAM-1 in the perihematomal area is down-regulated in the rat with ICH and administrated with miR-126-3p mimics. (A,B) The
relative protein expression levels of VCAM-1 in the perihematomal tissues of ICH rats were measured by western blotting. β-actin served as an internal control
(n = 12 per group). (C) The relative mRNA expression levels of VCAM-1 in the perihematomal tissues of ICH rats were measured by RT-qPCR (n = 12 per group). All
measurements were performed in triplicates; values are indicated with error bars as mean ± SEM. #P < 0.05, ##P < 0.01 versus Sham group; ∗∗P < 0.01 versus
miR-NC group, FFP < 0.01 versus ICH group as denoted.

have reported changes in the expression of miRNAs in the
brain of stroke patients compared with healthy people. These
studies have shown that miRNAs are pathogenic and pathological
intermediate products in ICH (Tan et al., 2011). Therefore,
circulating miRNAs could be used as stroke biomarkers. In the
present study, we first validated the down-regulation of miR-126-
3p in the serum of patients with ICH. Then, we focused on the
exploration of the related mechanisms involved in the protective
effects of miR-126-3p in ICH. Based on previous studies (Harris
et al., 2008; Bai et al., 2017), we predicted that miR-126-3p might
target VCAM-1. We validated the increased level of VCAM-1
expression and decreased level of miR-126-3p transcript in brain
hemorrhagic area of rats with ICH. In an in vitro primary rats
BMECs model that simulates BBB, through manipulation of miR-
126-3p expression by treatments with miR-126-3p mimics and
anti-miR126 in BMECs, we confirmed that miR-126-3p could
alleviate BBB disruption, which was associated with targeted
regulation of VCAM-1.

Many recent mechanistic studies have revealed the role of
different miRNAs in the pathogenesis of ICH. For example,

the down-regulation of miR-181b has been shown to increase
HSP5A, which is involved in reticulum endoplasmic stress,
resulting in secretion of inflammatory cytokines, brain edema,
and neurological injury (Wang et al., 2018). In addition to their
diagnostic uses, miRNA could also be used in the treatment of
ICH (Jeyaseelan et al., 2007). The over-expression of miR-144-
3p aggravates neurological injury after ICH through neuronal
apoptosis by the PI3K/AKT pathway (Fan et al., 2018). Moreover,
miR-23a-3p has been reported to promote edema formation
after ICH via ZO-1 (Hu et al., 2018). On the other hand, miR-
21, miR-27a-3p, and miR-590-5p have been unraveled to exert
neuroprotective effects after ICH (Guo et al., 2018; Xi et al., 2018;
Zhang et al., 2018). Hence, miRNAs play a wide variety of roles
after ICH, and through a number of mechanisms. A previous
study by our group strongly suggests that miR-126-3p has a
potential therapeutic effect on brain injury after ICH (Xi et al.,
2017). Two types of miRNA related therapeutics are currently in
exploration: miRNA mimics (miR-mimic) and miRNA inhibitors
(antagomir) (Xu et al., 2018). miRNA mimics can restore the loss
of beneficial miRNAs, while antagomirs help deplete detrimental
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FIGURE 4 | Inhibition of miR-126-3p by anti-miR-126 reduces the levels of miR-126-3p and causes membrane permeability in BMECs. (A) Identification of the
isolated cells as BMECs. Images show the fluorescence staining of Factor VIII (green), and cell nuclei were stained with DAPI (blue). Scale bar = 50 µm. (B) Rats
BMECs were isolated and transfected with anti-miR-NC or anti-miR-126. The levels of miR-126-3p were examined by RT-qPCR 24 h after transfection (n = 6 per
group). (C) The permeability of FITC-dextran 20 through a confluent BMECs layer was measured over 120 min (n = 6 per group). All measurements were performed
in triplicates; values are indicated with error bars as mean ± SEM. ∗P < 0.05 and ∗∗P < 0.01, both versus the anti-miR-NC group; #P < 0.05 and ##P < 0.01, both
versus the untreated BMEC group.

FIGURE 5 | In vitro down-regulation of miR-126-3p increases the expression of VCAM-1 in BMECs. (A,B) The relative protein expression levels of VCAM-1 in BMECs
were determined by western blotting 48 h after transfection of indicated anti-miRNAs. β-actin served as an internal control (n = 6 per group). (C) The relative mRNA
expression levels of VCAM-1 in BMECs were measured by RT-qPCR 24 h after transfection of indicated anti-miRNAs (n = 6 per group). All measurements were
performed in triplicates; values are indicated with error bars as mean ± SEM. ∗∗P < 0.01 versus anti-miR-NC group; ##P < 0.01 versus the untreated BMEC group.

miRNAs. Although the in vitro use of a miR-mimic or antagomir
is a well-established method to identify miRNA functions, so far
only a few of them have been successfully applied in clinical.

The BBB is composed of pericytes, astrocytes, endothelial
cells, basement membrane, and extracellular matrix. The BBB can

resist harmful components from the blood to enter into brain
tissues and protect the brain from invasion (Bertrand et al., 2016).
Inflammation directly destroys the BBB, resulting in brain edema
(Schlunk et al., 2016). We successfully isolated BMECs and used
immunofluorescence staining to verify the presence of factor VIII
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(Unger et al., 2002). Then, we cultured these cells and obtained a
monolayer of cell membrane structure. Subsequent experiments
with FITC-dextran 20 verified that miR-126-3p regulated the
permeability of this BBB structure, as inhibiting miR-126-3p
with anti-miR-126 significantly increased the permeability of the
monolayer membrane. Therefore, it is plausible that the decrease
of miR-126-3p may also lead to the destruction of the BBB in vivo,
resulting in further tissue damage.

VCAM-1 is a target gene of miR-126 (Harris et al., 2008).
Studies have shown that miR-126 inhibits vascular inflammation
and promotes angiogenesis in rat models of spinal cord injury
by reducing the expression of VCAM-1 (Hu et al., 2015). The
leukocyte inflammatory chemotaxis process is inseparable from
the regulation of adhesion molecules expressed by endothelial
cells (Nieto-Lima et al., 2018). First, the rotational movement
of leukocytes is mediated by a selection and its glycoprotein
ligands (Luo et al., 2007). Secondly, leukocytes and endothelial
cells are activated by cytokines and chemokines, promoting the
expression of adhesion molecules and integrin ligands, which
in turn mediate the tight leukocyte adhesion and binding to
endothelial cells (Salmi and Jalkanen, 2005). Eventually the
leukocytes break through the endothelial barrier and reach
lesion site. Under normal physiological conditions, endothelial
cells are inactive and do not express adhesion molecules,
but under pathological conditions (such as BBB damage), a
large number of exogenous cytokines are generated and the
endothelial cells are activated, so that VCAM-1 is expressed
(Park et al., 2018). VCAM-1 on the surface of endothelial
cells mediates leukocyte adhesion through its interaction with
VLA-4, which consists of CD49d (α4) and CD29 (β1). VLA-
4 is expressed on most leukocytes and activated neutrophils
(Tissino et al., 2018). Although endothelial cells do not express
VCAM-1 normally, cytokines or bacterial products can stimulate
endothelial cells to express VCAM-1 within 4–12 h. It is generally
believed that the expression of VCAM-1 is regulated at the
initial transcription stage, and a series of transcription factors
regulate the expression of VCAM-1 through the interaction
between them and its interaction with the VCAM-1 gene
(Davel et al., 2017).

Recently, studies have confirmed that miR-126 in endothelial
cells can inhibit the expression of VCAM-1 (Harris et al.,
2008), therefore, regulating endothelial cell adhesion and vascular
inflammation. In addition, it has been recently demonstrated
that the expression of miR-126 is stimulated by blood flow
and is regulated by the zinc finger transcription factor klf2a
(Nicoli et al., 2010; Mondadori dos Santos et al., 2015). The
present study serves as a proof-of-concept investigation showing
that the miR-126-3p mimic reduces the expression of VCAM-
1 following ICH in vivo. This indicates that miR-126-3p can
reduce the degree of cerebral hemorrhage by targeted inhibition
of VCAM-1. The in vitro blocking of miR-126-3p results in
the up-regulated expression of VCAM-1 protein and mRNA,
suggesting that miR-126-3p directly inhibits the expression
of VCAM-1. The reduction of miR-126-3p following ICH is
probably directly related to the up-regulated expression of
VCAM-1 and exacerbated infiltration of inflammatory cells.
Nevertheless, VCAM-1 is probably not the only molecule that

is responsible for the functional loss of BBB. Additional studies
are required to further elucidate the exact mechanisms and other
actors involved.

The dysregulation of miRNAs in ICH suggest that
miRNAs may be used as biomarkers for the diagnosis
and prognosis of ICH (Martinez and Peplow, 2017). The
regulatory network of miRNAs and their target genes is
very complicated. Therefore, understanding the mechanisms
of the occurrence and development of ICH depends on a
more comprehensive understanding of the role of different
miRNAs in the disease. A more in-depth understanding of
miRNAs can also reveal potential pharmacological targets for
new drugs to promote the treatment of ICH. The current
investigation has several weaknesses and limitations. First,
future studies will be needed to examine the effects of the
miR-126-3p mimic in animals without ICH, which could reflect
the potential toxcicity of the miR-126-3p mimic. Second, the
effect of miR-126-3p over expression on BMECs permeability
or VCAM-1 expression should be verified in the future.
Third, due to ethical issues, we only measured the levels of
serum miR126-3p in patients with ICH. Even though this
experiment was somehow representative, it would be more
convincing if brain tissue specimens from ICH patient were
collected during surgery.

CONCLUSION

We confirmed that serum miR-126-3p level is lower in patients
with ICH than that in healthy control subjects. The in vivo
administration of miR-126-3p minics in the rat ICH model
and in vitro treatment of BMECs with anti-miR126 alleviated
BBB disruption, which was demonstrated to be associated
with VCAM-1 regulation. Our work suggests that the miR-
126-3p/VCAM-1 axis is a potential therapeutic target for
patients with ICH.
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