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Background: Parkinson’s disease (PD) is a prevalent long-term neurodegenerative
disease. Though the criteria of PD diagnosis are relatively well defined, current diagnostic
procedures using medical images are labor-intensive and expertise-demanding. Hence,
highly integrated automatic diagnostic algorithms are desirable.

Methods: In this work, we propose an end-to-end multi-modality diagnostic framework,
including segmentation, registration, feature extraction and machine learning, to analyze
the features of striatum for PD diagnosis. Multi-modality images, including T1-weighted
MRI and 11C-CFT PET, are integrated into the proposed framework. The reliability of this
method is validated on a dataset with the paired images from 49 PD subjects and 18
Normal (NL) subjects.

Results: We obtained a promising diagnostic accuracy in the PD/NL classification
task. Meanwhile, several comparative experiments were conducted to validate the
performance of the proposed framework.

Conclusion: We demonstrated that (1) the automatic segmentation provides accurate
results for the diagnostic framework, (2) the method combining multi-modality images
generates a better prediction accuracy than the method with single-modality PET
images, and (3) the volume of the striatum is proved to be irrelevant to PD diagnosis.

Keywords: Parkinson’s disease, multi-modality, image classification, U-Net, striatum

INTRODUCTION

Parkinson’s disease (PD) is the second-most prevalent long-term neurodegenerative disease
characterized by bradykinesia, rigidity and rest tremor (Postuma et al., 2015). At present, PD is
responsible for about 346,000 deaths per year and is thus one of the major concerns of neuroscience
community (Roth et al., 2018). The diagnosis of PD mainly refers to the Movement Disorder
Society Clinical Diagnostic Criteria for Parkinson’s disease (MDS-PD Criteria) (Postuma et al.,
2015). According to the MDS-PD criteria, the motor symptoms of PD are linked with the loss
of dopaminergic neurons, which mainly affects the anatomical regions of the striatum (SARs).
Therefore, SARs, which include the caudate nucleus, the putamen and the pallidum, are commonly
explored (Strafella et al., 2017).
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Functional neuroimaging of the presynaptic dopaminergic
system is highlighted according to the MDS-PD criteria (Liu
et al., 2018). Positron-emission tomography (PET) is one of the
neuroimaging modalities that indicate the regional activity of
the tissues. Accordingly, PET tracers are developed to observe
the activity of the dopamine transporter (DAT) in early stage of
PD, such as 11C-CFT, which is a biomarker of the presynaptic
dopaminergic system with high sensitivity (Kazumata et al., 1998;
Ilgin et al., 1999; Wang et al., 2013). However, due to the low
resolution of the PET images, the anatomical and structural
information related to the brain that PET can provide is limited.
Therefore, the structural neuroimaging methods, such as T1-
weighted magnetic resonance imaging (T1-MRI), are introduced
to assist the multi-modality diagnosis of PD (Ibarretxe-Bilbao
et al., 2011). Bu et al. (2018) worked on the subtypes of multiple
system atrophy (MSA) utilizing T1-MRI and 11C-CFT PET.
Huang et al. (2019) combined these two modalities with 18F-FDG
PET and analyzed Rapid Eye Movement (REM) Sleep Behavior
Disorder research. In both of their studies, T1-MR images were
registered to PET images to identify the region of interest (ROIs)
in the PET images.

Recently, researchers attempt to improve the accuracy in
diagnostic methods with the help of machine learning algorithms,
for example, the support vector machine (SVM) has been widely
used. Long et al. (2012) used SVM to distinguish early PD patients
from NL subjects utilizing resting-state functional MRI, and
obtained an accuracy of 86.96%. Haller et al. (2012) used SVM
and reached an accuracy of 97% when classifying PD from other
atypical forms of Parkinsonism by combining Diffusion Tensor
Imaging (DTI) and 123I ioflupane Single-Photon Emission
Computed Tomography (SPECT). These works combining
multi-modality imaging have proved the reliability of artificial
intelligence (AI)-assisted PD diagnosis, while few works are
reported including 11C-CFT PET, to the best of our knowledge.

In this work, we proposed an end-to-end multi-modality
diagnostic framework for PD combining T1-MR and 11C-CFT
PET images. In the framework, MR images were segmented by a
U-Net (Ronneberger et al., 2015; Wong et al., 2018). The resulting
segmentation was then used to locate the SARs of the PET images
by registration. Finally, features extracted from these SARs were
used to diagnose PD. Our main contributions include:

(1) We have shown that the automatic segmentation
provides accurate results for the proposed diagnostic
framework of PD.

(2) We have shown that MR images provide important
information to obtain the SAR information
in the PET images.

(3) We have demonstrated that the volume feature of the
striatum is irrelevant to PD diagnosis.

METHODOLOGY

The proposed framework is shown in Figure 1. It contains
three major steps: (1) segmentation, (2) registration, and
(3) feature extraction and prediction. In the first two

steps, MRI-assisted PET segmentation is performed by
MRI segmentation and MRI-PET registration, and in the
subsequent step, only information of PET images is considered
for PD diagnosis.

Striatum Segmentation via Deep Neural
Network
To obtain the fine structure of the brain tissues, a 3D deep neural
network, i.e., U-Net (Ronneberger et al., 2015; Wong et al., 2018),
is implemented to segment the striatum in the MR images. The
obtained segmentation is used as a reference for SAR localization
and extraction in the subsequent procedures.

Figure 2 shows the network architecture for the segmentation,
which outputs a mask indicating the segmented labels of the
input image. The network further incorporates the idea of deep
supervision introduced by Mehta and Sivaswamy (2017) for
faster training convergence. Specifically, the network comprises
encoding and decoding paths. The encoding path captures
contextual information by residual blocks and max-pooling
operations at different resolutions, while the decoding path
sequentially recovers the spatial resolution and object boundaries.
Besides, skip connections between the upsampled feature maps
in the decoder and the corresponding feature maps in the
encoder are employed for the combination of local and contextual
information. Moreover, the deep supervision scheme is adopted
to allow more direct backpropagation to the hidden layers for
faster convergence. A final 1 × 1 × 1 convolution layer with
a softmax function produces the segmentation probabilities.
Gaussian blurring and dropout operations are adopted to avoid
overfitting. A loss function is defined to handle the relatively
small anatomical structures of labels for accurate segmentation,
i.e.,

L = wDLDice + wCLCross, (1)

where, wD and wC denote the weights of LDice and LCross,
respectively; LDice denotes the Dice-related loss, and LCross
denotes the cross-entropy. They are respectively, given by

LDice = Ei
[(
− lnDicei

)γ]
, (2)

with

Dicei =
2
(∑

x δil (x) · pi (x)
)∑

x
(
δil (x)+ pi (x)

) , (3)

and
LCross = Ex

[
− ln pl (x)

]
. (4)

In Eq. (3), δil (x) is the Kronecker delta, which equals to 1 if
the segmentation label i (x) equals to the ground-truth label l (x)
at the voxel position x, and 0 otherwise; pi (x) is the probability of
voxel x being labeled as i. In our implementations, we chosewD =

0.8,wC = 0.2 and γ = 0.3 for the loss function and pretrained the
model using an Adam optimizer with a learning rate of 1 × 10−3

for 10 epochs (Kingma and Ba, 2014). Due to the computational
limitations, an ROI of MR images with a size of 96 × 96 × 96
voxels was cropped, which contains the whole structure of SARs.
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FIGURE 1 | The architecture of the proposed framework.

FIGURE 2 | The proposed segmentation network architecture. Each block is represented by (n, k, r), where n, k, and r denote number of channels, number of
layers, and the dropout probability, respectively.

We employ T1-MR brain images from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI1) database for pretraining, for
the size of the clinical data used in this work is far from being
enough for the U-Net training. Note that the information related
to AD or other modality data is not used in this study, namely we
solely employ the 1859 brain T1-MR images to assist the U-Net
training. The ADNI MR images are segmented by the multi-atlas
label propagation with the expectation-maximization (MALP-
EM2) framework (Ledig et al., 2015). The manual segmentation
of the caudate nucleus, the putamen and the pallidum are chosen
to be the gold standards in the pretraining stage.

1adni.loni.usc.edu
2https://biomedia.doc.ic.ac.uk/software/malp-em/

Combining Two-Modality Images via
Image Registration
We propose to combine two-modality images for the
automatic diagnosis of PD, where T1-MRI provides the
morphological information of SARs, and 11C-CFT offers
pathological information related to PD. The extraction of
the SAR information from the MR images is achieved by
the DNN segmentation method, as described in Section
“Striatum Segmentation via Deep Neural Network.” With this
information, one can extract the shape or substructure features
from each of anatomical regions. For the combination of the
two-modality images, we propose to use image registration,
which propagates the anatomical and structural information of
SARs in the MRI to the PET.
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The registration in the multi-modality diagnostic framework
is achieved via the zxhproj3 platform (Zhuang et al., 2011).
Firstly, the image with prior label information is registered to the
target PET image. The resulting transformation is then used to
propagate the prior label information to the PET, which results in
the automatic localization of the SARs for the target PET image.
Since the MRI and PET images are from the same subject at the
same acquisition session, we propose to use a rigid registration.
By registration, the caudate nucleus, the putamen and the
pallidum, as well as the parieto-occipital regions are labeled.

For comparisons, we propose a single-modality diagnostic
framework using solely PET images. To achieve the fully
automated diagnosis, we propose to achieve the anatomical
information in the PET images via the same registration method
used for the multi-modality scheme. In this scenario, the image
with prior label information is defined using a pre-labeled PET
template, and the registration between the template and the
target PET is achieve via an affine registration following a pre-
rigid registration.

Feature Extraction and Prediction
To extract adequate features from the SARs, the caudate nucleus
and the putamen are further divided into three substructures
using a k-means algorithm (Ng et al., 2006). After clustering,
statistics of image intensity are calculated to represent the feature
information in each region, including maximum, minimum,
median, 1st and 3rd quantile, and mean of PET intensity. Several
studies characterize radioactive uptake by the striatal-to-occipital
ratio (SOR), as the parieto-occipital region is widely considered of
lacking CFT uptake (Ma et al., 2002; Carbon et al., 2004; Huang
et al., 2007). In this work, the SOR, which is defined as (striatum-
occipital)/occipital, is calculated with each kind of intensity value.
Meanwhile, the volumes of the six anatomical SARs are included
into the feature set. In all, 90 features are generated (for a list of
specific features, see Supplementary Table S1).

After feature extraction, a t-test is performed to analyze
the significance of each feature. Setting significance level α =

0.01, features with a p-value less than 0.01 are considered as
being statistically significant. Only significant features would be
regarded as the arguments of the machine learning models.

Consequently, the SVM classifier is trained to classify the
subjects (Haller et al., 2012; Long et al., 2012). Furthermore, to
estimate the generalization ability and stability of the method,
the leave-n-out cross-validation strategy is employed to evaluate
the performance of the models. In addition, we implement the
random forest algorithm to calculate the importance of the
features (Gray et al., 2013).

EXPERIMENTS

The following parts in this section are organized as follows.
Section “Data Acquisition” describes the data used in this
work; Section “Evaluation of Automatic Striatum Segmentation”
validates the reliability of the automatic segmentation method;

3http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/zxhproj/

Section “Advantages of Multi-Modality Images” investigates the
advantages of combining multi-modality images; and Section
“Efficacy of Volume Features” explores the efficacy of the volume
features of SARs for the diagnostic of PD.

Data Acquisition
Data used in this study was collected from the Department
of Neurology, Huashan Hospital, Fudan University. It contains
paired 11C-CFT PET and T1-MR images of PD patients and
healthy participants. MR images were acquired by a 3.0-T MR
scanner (DiscoveryTM MR750, GE Healthcare, Milwaukee, WI,
United States). Each MR image was visually inspected to rule
out motion artifacts (Bu et al., 2018; Huang et al., 2019). PET
images were acquired by a Siemens Biograph 64 PET/CT scanner
(Siemens, Munich, Germany) in three-dimensional (3D) mode.
A CT transmission scan was first performed for attenuation
correction. Static emission data were acquired 60 min after the
intravenous injection of 370 MBq of 11C-CFT and lasted for
15 min. All subjects were scanned in a supine position with
a dimly lighted and noise-free surrounding (Bu et al., 2018;
Huang et al., 2019). The synchronous MRI data were acquired
using a T1-weighted 3D inversion recovery spoiled gradient
recalled acquisition (IR-SPGR) with the following parameters:
TE/TR = 2.8/6.6 ms, inversion time = 400 ms, flip angle = 15◦,
matrix = 256 × 256 × 170, field-of-view = 24 cm, and slice
thickness = 1 mm. MR and PET images acquisition for each
subject had a time interval of no more than 3 months.

Forty-nine patients with PD and 18 age-matched normal
control (NL) subjects were recruited. All subjects were screened
and clinically examined by a senior investigator of movement
disorders before entering the study and were followed up for
at least 1 year. The diagnosis of PD was made referring to the
MDS-PD Criteria. The Unified Parkinson’s Disease Rating Scale
(UPDRS) and Hoehn and Yahr scale (HY) were assessed after
the cessation of oral anti-parkinsonian medications (if used) for
at least 12 h. The following exclusion criteria were used for the
NL subjects’ recruitment: (1) being tested positive by the REM
Sleep Behavior Disorder Single-Question Screen (Postuma et al.,
2012), (2) a history of neurological or psychiatric illness, (3) a
prior exposure to neuroleptic agents or drugs, (4) an abnormal
neurological examination. The data are summarized in Table 1.
In this study, gender proportion differences between groups
could be ignored, as previous studies have shown no significant
difference in DAT bindings between genders (Eshuis et al., 2009).
The research was approved by the Ethics Committee of Huashan

TABLE 1 | Summary for the studied dataset.

Subject HY Count Gender (M/F) Age UPDRS

NL 0 18 4/14 64.1 ± 6.7 –

PD 1 15 10/5 61.2 ± 7.6 14.3 ± 5.1

2 26 16/10 62.0 ± 7.9 21.6 ± 7.5

3 8 4/4 58.8 ± 5.9 34.6 ± 7.4

For gender, the expression means Male/Female, and for age and
Unified Parkinson’s Disease Rating Scale, the expression means
mean ± standard deviation.
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TABLE 2 | Average DSCs of the segmentation of each anatomy.

Right caudate Left caudate Right pallidum Left pallidum Right putamen Left putamen

DSCs 88.5 ± 6.3% 90.1 ± 7.2% 89.3 ± 11.4% 86.9 ± 13.0% 92.2 ± 5.0% 91.4 ± 5.5%

FIGURE 3 | Visualization of the segmentation results with slices of the axial view (top row) and the coronal view (bottom row). Case 1 and case 2 are two worst
segmentation results, and case 3, case 4 and case 5 are three median results. Values in the parentheses refer to the corresponding dice similarity coefficients. As for
the legends, the colored contours represent the automatic segmentation boundaries while the colored blocks are the corresponding ground truth masks.

Hospital. All subjects or legally responsible relatives signed
written informed consent in accordance with the Declaration of
Helsinki before the study.

After data acquisition, both sides of the caudate nucleus, the
putamen and the pallidum of each MR image were manually
labeled by an experienced clinician from the Department
of Neurology, Huashan Hospital. To ensure the qualities
of the segmentation results, boundaries of these anatomical
structures were double-checked by another clinician from the
same department.

Evaluation of Automatic Striatum
Segmentation
To test the performance of the segmentation network, three-fold
cross-validation was performed. The whole dataset was split into
three disjoint parts, and the model was fine-tuned for 5 epochs
on the union of every two disjoint subsets. Table 2 illustrates
the average Dice Similarity Coefficient (DSC) of each anatomical
region, and Figure 3 provides a visualization of the segmentation
results of five example cases. One can find that the left pallidum
(colored goldenrod in Figure 3) is worst segmented with the
maximal standard deviation while the right putamen (colored
olive drab in Figure 3) is best segmented with the minimal
standard deviation.

Figure 4 shows the average accuracy (ACC) and the
number of wrong predictions with leave-n-out cross-validation

of the different segmentation methods, i.e., automatically and
manually. Both accuracies reached 100% when n = 1, and
the accuracies and the numbers of wrong predictions of
the two experiments result in no significant difference in a
pairwise t-test (p-value = 0.1017). Furthermore, when training
classifiers using features of manually segmented images and
testing it using features of automatically segmented images,
we still obtained 100% accuracy. All results indicate that
the automatic segmentation provides accurate results for the
proposed diagnostic framework of PD.

Advantages of Multi-Modality Images
To evaluate the influence of multi-modality images, the single-
modality method using solely PET images was compared. In
the multi-modality scheme, the MR images provides accurate
anatomical and structural SAR information of the subject.
By contrast, in the single-modality method this information
is achieved by registering the PET images to a pre-labeled
Automated Anatomical Labeling (AAL) PET template. We
conducted the rest of the pipeline in the same way for
the two methods.

Figure 5 shows the results of the comparative experiments
with leave-n-out cross-validation. The results demonstrate that
with the assistance of MR images, the performance of the multi-
modality group is better than the single-modality PET group in
the PD/NL task. When n = 1, the accuracy of the multi-modality
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FIGURE 4 | The results for the leave-n-out cross-validation of the classification with automatic segmentation and manual segmentation. Panel (A) presents the
average ACC, and panel (B) presents the average number of wrong predictions. The horizontal axes in the two panels represent subjects numbers of the test set,
i.e., the n in the leave-n-out cross-validation.

FIGURE 5 | The results for the leave-n-out cross-validation of the classification by the multi-modality diagnostic method and the single-modality method. Panel (A)
presents the average ACC, and panel (B) presents the average number of wrong predictions. The horizontal axes in the two panels represent subjects numbers of
the test set, i.e., the n in the leave-n-out cross-validation.

TABLE 3 | Feature importance of groups with/without volume.

Feature Group with Volume Group without Volume

mean 0.2030 0.2006

median 0.2024 0.1965

3rd quantile 0.1961 0.1946

1st quantile 0.1825 0.1835

maximum 0.1443 0.1497

minimum 0.0715 0.0751

volume 0.0002 –

The importance values were calculated by the random forest algorithm.

group reached 100% in the PD/NL task, while the accuracy of the
single-modality PET group was 98.51%.

To test the uniformity of the classifiers based on the
different groups, we also trained the classifier using features of
multi-modality images and tested it using features of single-
modality PET, and the accuracy dropped to 88.05%, with 8
subjects misclassified.

TABLE 4 | Feature importance of groups with manual segmentation results and
automatic segmentation results.

Feature Manual segmentation Automatic segmentation

mean 0.2064 0.2031

median 0.2010 0.2025

3rd quantile 0.2008 0.1962

1st quantile 0.1654 0.1825

maximum 0.1660 0.1443

minimum 0.0605 0.0716

The importance values were calculated by the random forest algorithm.

Efficacy of Volume Features
In the feature extraction step, t-tests were performed to evaluate
the significances of all feature, and results indicated that the
features of the volume are not statistically significant with
α = 0.01 (see Supplementary Table S1 for more details). To
further evaluate the effects of the volume of SARs, we compared
the importance of different features based on groups with
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and without volume, as Table 3 shows. One can see that
the importance values of the two groups are similar. Hence,
the effect of volume to the model is negligible. Note that
the volume is calculated based on the original MR images
without downsampling.

DISCUSSION AND CONCLUSION

In this work, we proposed a fully automatic framework for PD
diagnosis. This method utilized two modalities, i.e., 11C-CFT PET
and T1-MR imaging, performed MRI-assisted PET segmentation,

selected features and employed SVM to give the predictions.
To validate the performance of the framework, we applied the
proposed method on the clinical data from Huashan Hospital.

One of the major differences between the proposed method
and the traditional methods is that the SARs are located
according to the labels of the automatic segmentation by U-Net.
To evaluate the performance of the U-Net, we calculated
the DSCs between automatic and manual segmentation. In
addition, we compared the proposed pipeline, whose SARs
were located according to the automatic segmentation, to the
method whose SARs were manually segmented. The leave-n-
out experiment shows the two methods performed comparably,

FIGURE 6 | The comparison of gold standard and wrongly placed SARs of the wrongly predicted subject. Panel (A) shows the segmentation result in gold standard,
and panel (B) shows the segmentation in the wrongly predicted subject. Images are in sagittal plane and have the same cursor position.

FIGURE 7 | The importance of the SARs in the proposed framework. One axial slice, one coronal slice and two sagittal slices (right and left side of the regions,
respectively) of three subjects are chosen to show the importance of the SARs.
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indicating that the automatic segmentation could provide
accurate results for the proposed diagnostic framework of
PD. Further investigation of the feature importance of the
two groups is illustrated in Table 4. It indicates that the
minimum has lower importance than the first five features.
Given that the striatum region has a higher uptake value
compared with its adjacent areas, voxels with minimal intensity
value are more likely to appear on the edge of the SARs.
Therefore, the inaccurate delineation of the anatomical boundary
as a potential result of the automatic segmentation could not
cause a significant decline in the performance of the overall
diagnostic framework.

An alternative way to locate SARs for subsequent feature
extraction is to apply a pre-labeled PET template by registration.
In Section “Advantages of Multi-Modality Images,” AAL
PET template was used as the PET template, and was
registered to PET images for the localization of SARs.
Experiments show that the diagnostic capability of this single-
modality PET group is worse than the proposed multi-modality
framework. Though the single-modality PET approach gives
a favorable prediction, the multi-modality approach performs
better. This is because the localization of the SARs occupies
a significant place in the diagnostic framework, and the
additional structural information from MR images can better
locate SARs. Figure 6 demonstrates that the single-modality
PET approach might be affected by the erroneous delineation
of the SARs. The error could be attributed to the ignored
inter-subject variations in brain structures when defining SARs
from a PET template.

To test the uniformity of the classifiers based on different
segmentation approaches, we trained classifiers using
features of manually segmented multi-modality images,
and tested it using features of other methods. When testing
with features of multi-modality automatic segmentation
method, we still obtained 100% accuracy, indicating
that the features of manual and automatic segmentation
are highly consistent. However, testing with the single-
modality method resulted in an accuracy of 88.05%. The
lower accuracy might be explained by the lack of adequate
extracted features due to the falsely located SARs. Hence,
compared with the multi-modality group, single-modality
PET group naturally needs more feature engineering and
better-designed algorithms.

In the feature extraction, features of volume were rejected
according to the t-test. This could be the reason why the
volume of SARs does not change significantly with the
progression of PD, as concluded from the literature (Ibarretxe-
Bilbao et al., 2011). Figure 7 shows the heatmaps of feature
distribution on the SARs, displaying the influence of each
subregion for the classification in the PD/NL task. The difference
of influence is expressed by the color scale. One can find
that the most relevant region influencing the separation of
PD/NL is localized in the middle and rear of the putamen,
then the pallidum, and the caudate nucleus reveals the least
significance on this task.

Several future studies could be completed explored based
on the current pipeline. Firstly, the classifiers can be trained

with Parkinsonian disorders (PDS) dataset to classify PD and
atypical PDS, such as MSA and Progressive Supranuclear
Palsy (PSP), which has important clinical values but is
with great challenges. Secondly, this framework only contains
medical imaging information currently, while other aspects
of information, such as age, gender, motor ratings and other
biomarkers are not included, which may further improve
the diagnostic accuracy. Future research could be undertaken
to incorporate additional multimodal data for better disease
prediction. Finally, the sample size of subjects in this work
is relatively small, and a bigger dataset is expected to
validate our experiment results and improve the performance
of the framework.

To conclude, we proposed a fully automatic framework
combining the two modalities for PD diagnosis. This framework
obtained a promising diagnostic accuracy in the PD/NL task.
In addition, this work also emphasized the high value of the
11C-CFT PET in the PD diagnosis.
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