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The mammalian nervous system is comprised of a seemingly infinitely complex
network of specialized synaptic connections that coordinate the flow of information
through it. The field of connectomics seeks to map the structure that underlies
brain function at resolutions that range from the ultrastructural, which examines the
organization of individual synapses that impinge upon a neuron, to the macroscopic,
which examines gross connectivity between large brain regions. At the mesoscopic
level, distant and local connections between neuronal populations are identified,
providing insights into circuit-level architecture. Although neural tract tracing techniques
have been available to experimental neuroscientists for many decades, considerable
methodological advances have been made in the last 20 years due to synergies between
the fields of molecular biology, virology, microscopy, computer science and genetics. As
a consequence, investigators now enjoy an unprecedented toolbox of reagents that
can be directed against selected subpopulations of neurons to identify their efferent and
afferent connectomes. Unfortunately, the intersectional nature of this progress presents
newcomers to the field with a daunting array of technologies that have emerged from
disciplines they may not be familiar with. This review outlines the current state of
mesoscale connectomic approaches, from data collection to analysis, written for the
novice to this field. A brief history of neuroanatomy is followed by an assessment of the
techniques used by contemporary neuroscientists to resolve mesoscale organization,
such as conventional and viral tracers, and methods of selecting for sub-populations
of neurons. We consider some weaknesses and bottlenecks of the most widely
used approaches for the analysis and dissemination of tracing data and explore the
trajectories that rapidly developing neuroanatomy technologies are likely to take.

Keywords: neuroanatomy, viral tracers, anterograde tracer, retrograde tracers, synaptic contacts, connectome
analysis

INTRODUCTION

The relationship between structure and function is a central theme in the field of biology. In the
same way that deciphering the crystal structure of DNA propelled research toward the mechanics
of inheritance in the 20th century (Watson and Crick, 1953), it is widely believed that elucidation
of the structural architecture of the brain will fundamentally alter neuroscience in the 21st
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(Rubinov and Bullmore, 2013; Lerner et al., 2016; Mikula,
2016). Here, we review the approaches used by contemporary
neuroscientists to identify connectivity patterns between
components of neural circuits, the trajectories that rapidly
developing neuroanatomy technologies are likely to take, and
some bottlenecks that may hinder this mission.

It is unknown at what point in history the brain
was first recognized as the control center for the body.
Although sometimes attributed to Hippocrates and Galen
around 2,000 years ago, the association between traumatic
brain injury and distinct functional deficits was clearly
understood by Egyptian physicians 30 centuries before that
(Stiefel et al., 2006), and archeological evidence indicates
widespread neurosurgical practice in diverse cultures since
time immemorial (Andrushko and Verano, 2008, reviewed
by Kshettry et al., 2007; Moghaddam et al., 2015). What
is clear is that the association between brain structure and
function is a relatively recent realization: this consensus
was only reached in the late 1800s after nearly 100 years
of disagreement between those who, like influential French
physiologist and child prodigy Marie-Jean-Pierre Flourens,
believed that the brain, like the mind, was indivisible (Pearce,
2009), and those like Frantz Joseph Gall who proposed that
the brain is composed of distinct functional compartments,
and that the relative contribution of each is to some
extent independent from the others [see Ferrier (1884) for
contemporaneous review].1

At the same time that Broca and others were cementing the
idea of cerebral localization at a macroscopic scale, the first
histologists were using the microscope to discover the delicate
structure of neural tissue and developing theories about the
cellular basis of brain function. The “neuron theory” developed
by Ramon y Cajal, Waldeyer-Hartz and others argued that
a particular cell type, the neuron, was the functional unit
of the nervous system, from which axons grew and relied
upon for nutrition; that neurons were discontinuous and
formed physical contacts at which communication occurred;
and that information flowed across neurons in one direction,
from the dendrite toward the axonal terminals (reviewed by
Fishman, 1994; Llinas, 2003; Guillery, 2005; Lopez-Munoz et al.,
2006). These central tenets are now universally accepted, with
caveats (Guillery, 2005), but spawned an acrimonious and
dogmatic battle between “reticularists” and “neuronists” that
persisted from the late 1870s until the invention of the electron
microscope and subsequent visualization of mammalian synapses
in the 1950s.2

1Ironically, despite having already been discredited as a serious science by then,
phrenology contributed to the general acceptance of this view by fostering the
notion that individual variation in discrete brain functions are reflected by skull
topography (summarized by Gross, 2009).
2Opponents to the neuronist school have been characterized as subscribing to
a chaotic and somewhat absurd view of the brain. Guillery (2005) makes a
compelling case for reassessment of this historical debate, highlighting discoveries
that were made after the description of the physical structure of the synapse (e.g.,
gap junctions, axo-axonic contacts) that fundamentally undermine some tenets of
the neuron theory. Guillery argues that both models were ultimately wrong, and
that a less dogmatic post-neuronist view is more appropriate.

THE FIELD OF CONNECTOMICS

Since then, generations of neuroscientists have used progressively
more selective labeling techniques and more powerful
microscopes to reveal the patterns of synaptic connectivity
that are thought to underlie the functional properties of neural
circuits. This effort has given rise to the field of “connectomics,”
a now standalone sub-discipline of neuroscience with the stated
aim of understanding the “structural architecture of nervous
system connectivity in all animals at all resolutions” (reviewed by
Hagmann, 2005; Sporns et al., 2005; Swanson and Bota, 2010;
Catani et al., 2013). Connectomics generates simplified circuit
diagrams at macroscopic (brain-wide), mesoscopic (circuit
level) or nanoscopic (synapse level) resolutions that classify
neurons in terms of their connectivity to each other (Figure 1:
discussed by Branco and Staras, 2009). However, these efforts
have been hampered by both the technical complexity involved
in accurately identifying synaptic connections and the sheer
magnitude of the task: full connectomic reconstruction of the
human brain would require the mapping of approximately 86
billion neurons (Azevedo et al., 2009; Herculano-Houzel, 2009)
and the identification of the thousands of inputs and outputs that
connect each one (Nimchinsky et al., 2002).

As a result of this complexity, the only entire connectomes
thus far cataloged belong to tiny animals: the first (nearly)
complete map of the entire nervous system of an individual
species was made by White et al. (1986) from reconstructed serial
electron micrographs of the roundworm Caenorhabditis elegans
(later completed by Varshney et al., 2011), and more recently
larval and adult Drosophila melanogaster (Ohyama et al., 2015;
Zheng et al., 2018) and the larval sea-squirt Ciona intestinalis
(Ryan et al., 2016). The “nanoscale” approach used to map these
connectomes offers comprehensive knowledge of every neuronal
connection, and is well-suited to components of relatively small
local circuits such as in the retina, in which the inputs and outputs
are understood (Briggman et al., 2011; Denk et al., 2012).

However, ultrastructural strategies are poorly suited to the
interrogation of large or dispersed circuits because of the
enormous investments of time and infrastructure required to
acquire and handle the data (Lichtman and Denk, 2011; Wanner
et al., 2015). These technical limitations seem unlikely to be
resolved in the foreseeable future; despite recent innovations such
as the development of serial block-face and Focused Ion Beam
electron microscopy, which have reduced the acquisition time
for a cubic millimeter of tissue from ∼18 to ∼1.5 years (Wanner
et al., 2015; Xu et al., 2017), obstacles to the analysis and even the
storage of high resolution microscopy data remain. For example,
the raw dataset for a single human brain would require ∼175
exabytes of storage space, costing 2–8 billion Euros (Mikula,
2016). By comparison, the entire storage capacity of the planet
in 2011 was∼295 exabytes (Hilbert and Lopez, 2011).

These limitations have provided a stimulus for the
development of genetically modified viral tracers that can
be used to identify components of a given neuronal circuit
without requiring direct visualization of synaptic contacts. The
major advantages of this approach are its compatibility with light
microscopy, greatly reducing the imaging, analysis and storage
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FIGURE 1 | Macro-, meso-, and microscale connectomics. Schematic diagram illustrating connectome analysis at macroscale (top), mesoscale (purple inset), and
nanoscale resolutions (blue inset). Macroscale approaches (top) examine communication between regions of the brain on a global level, using approaches such as
diffusion-weighted magnetic resonance imaging. Mesoscale connectomics interrogates neural circuitry at the cellular level, employing light microscopy to map the
distribution of synaptically linked neurons, in this case monosynaptic inputs to putative sympathetic premotor neurons (see Menuet et al., 2017, modified with
permission). Nanoscale connectomics assesses individual synaptic contacts using electron microscopy. Nanoscale image shows electron micrograph of synapses
and polysialyic acid immunoreactivity: see Bokiniec et al. (2017).

burden inherent to ultrastructural analysis, and its applicability
to mapping networks that are dispersed throughout the brain.

ANTEROGRADE AND RETROGRADE
TRACERS

Early tracing approaches involved the physical or electrical lesion
of a region of interest, which rendered the degenerating axons
differentially susceptible to impregnation with metallic silver
(Hoff, 1932). Although crude, this approach was eventually
refined to the point where terminal boutons could be resolved
(Glees, 1946; Nauta, 1952; Fink and Heimer, 1967). Visualization
of Wallerian degeneration was replaced by approaches that
did not require destructive lesions, relying instead on the
axonal transport of injected/applied materials from the site
of injection to either the cell body (retrograde tracers) or
axonal processes (anterograde tracers; Figure 2). The earliest
of these tracers were radiolabeled amino acids such as tritiated
leucine and proline that were injected into neural tissue then

incorporated into polypeptides in the soma and transported
to axons and terminal processes where they were identified
by autoradiography (Grafstein, 1967; Cowan et al., 1972).
These tracers were soon surpassed by materials that could be
detected with conventional light microscopy via histological or
immunohistochemical (IHC) processing, intrinsic fluorescence,
or conjugation with a fluorophore or enzymatically active probe.
This variety of tracer constitutes what are now referred to
as “conventional tracers” (in contrast to viral tracers). The
variety and utility of conventional tracing techniques are broad
and have been extensively reviewed elsewhere (Köbbert et al.,
2000; Vercelli et al., 2000; Lanciego and Wouterlood, 2011):
here, we provide a simple overview of some of the most
popular conventional tracers for comparison with the viral tracers
discussed in upcoming sections.

Conventional (Mainly) Retrograde
Tracers
The glycoprotein and enzyme horse radish peroxidase (HRP)
was found in the early 1970s to be an effective retrograde tracer,
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FIGURE 2 | Anterograde and retrograde labeling with static and trans-synaptic tracers. Tracers are categorized as anterograde or retrograde based on their direction
of travel within neurons. Anterograde tracers (green) are taken up by neuronal cell bodies at the injection site and travel down the axon to terminal processes.
Retrograde tracers (blue) are taken up by terminals and travel back to the cell body. Static tracers remain within the first neurons they enter, while other tracers can
spread trans-synaptically and may or may not be monosynaptically restricted. CTb: cholera toxin B subunit; H1291TK: tyrosine kinase-deleted H129 herpes;
PHA-L: Phaseolus vulgaris-leucoagglutinin; PRV: pseudorabies virus; SAD1G(EnvA): glycoprotein-deleted EnvA-pseudotyped rabies.

having been taken up into neurons non-selectively by passive
endocytosis (Kristensson and Olsson, 1971; LaVail and LaVail,
1972; Köbbert et al., 2000; Vercelli et al., 2000). HRP is visualized
as it catalyzes, together with hydrogen peroxide, the oxidation
of chromogenic substrates such as 3,3′-diaminobenzidine and
tetramethylbenzidine. The resultant staining is limited to the
cell soma and primary dendrites (Köbbert et al., 2000) and,
on its own, HRP demonstrates a relatively low sensitivity due
to inefficient uptake by neurons at the injection site. However,
conjugation of HRP to the plant lectin wheat germ agglutinin
(WGA), itself a neuronal tracer, significantly improved both
uptake and transport within neurons (Staines et al., 1980;
Köbbert et al., 2000). WGA binds to N-acetylglucosamine and the
plasma membrane-bound sugar sialic acid, and is rapidly actively
transported in both the anterograde and retrograde directions,
providing more extensive (but not complete) labeling of the
neuron compared to HRP (Schwab et al., 1978; Dumas et al.,
1979; Levy et al., 2017). WGA-HRP conjugates are also capable
of limited trans-synaptic travel (Goshgarian and Buttry, 2014;
Sillitoe, 2016), introducing some ambiguity to the interpretation
of data. WGA is now available in a fluorophore-conjugated
preparation, eliminating the need for immunohistochemical
processing for visualization.

Cholera toxin subunit B (CTb) was introduced as a retrograde
tracer in 1977 (Stoeckel et al., 1977; Vercelli et al., 2000).
Trojanowski et al. (1981, 1982) then sought to improve the
sensitivity of HRP using CTb-HRP conjugates, and found
that when the number and detail of labeled neurons was
compared, CTb-HRP significantly out-performed free HRP.
They attributed this to the GM1 ganglioside (sugar) mediated
uptake of CTb in comparison to the non-specific endocytosis
of HRP (Trojanowski et al., 1981; Trojanowski et al., 1982;
Lanciego and Wouterlood, 2011). Unconjugated CTb can be
detected via immunohistochemistry, however, the development
of CTb-conjugated fluorophores (Conte et al., 2009a,b) or even
magnetically opaque labels visible to MRI (Wu et al., 2011) has
extended the scope of CTb. The signal strength of fluorescently
conjugated CTb, its rapid transport (2–7 days), low toxicity, and
ease of use also makes it suitable for identification of neurons
for subsequent electrophysiological recordings in vitro (Korim
et al., 2014; Bou Farah et al., 2016) or in vivo (Yamashita and
Petersen, 2016), and has elevated fluorescently conjugated CTb
variants as a go-to retrograde tracer for many researchers (Parker

et al., 2015; Zhao et al., 2017), although it should be noted
that, like most conventional tracers, CTb transport is to some
extent bidirectional (Noseda et al., 2010). In our experience,
CTb-conjugated fluorophores can suffer quenching when used
in conjunction with in situ hybridization, and as the fluorophore
prevents binding of anti-CTb antibodies, quenched signal cannot
be boosted with anti-CTb IHC, so for dual labeling of mRNA and
CTb the unconjugated form is preferable.

A number of inorganic tracers are also widely used.
Hydroxystilbamidine (FluoroGoldTM) is a fluorescent inorganic
compound directly visible with fluorescence microscopy.
Following uptake into nerve terminals by fluid phase endocytosis,
FluoroGoldTM is transported retrogradely to cell bodies in
vesicles and accumulates in the cytoplasm, where it remains
detectable for months (Köbbert et al., 2000; Lanciego and
Wouterlood, 2011). The intense, bleach-resistant labeling
achieved using FluoroGoldTM, and the availability of anti-
FluoroGoldTM antibodies for further amplification, has resulted
in it becoming the “gold-standard” tracer in rodents, against
which newly developed tracers are compared (Lanciego and
Wouterlood, 2011; Tervo et al., 2016).

Other noteworthy inorganic fluorescent tracers are Fast Blue,
Diamidino Yellow, True Blue and the carbocyanines DiI and
DiO (Bentivoglio et al., 1980; Bonhoeffer and Huf, 1980; Kuypers
et al., 1980; Puigdellivol-Sanchez et al., 1998; Schofield, 2008;
Yu et al., 2015). Although no longer widely used for tracing
projections in the central nervous system, they (along with
organic tracers such as CTb, WGA, etc.) remain popular choices
for the identification of autonomic, motor or sensory innervation
of peripheral targets, into which they can be injected in relatively
large volumes (Furukawa et al., 2008; Zele et al., 2010; Yu et al.,
2015; Pidsudko et al., 2019; Rytel et al., 2019). Interestingly,
because they are not dependent on active transport, inorganic
dyes may also be used for identification of projections in fixed
tissue post mortem. Typically applied as crystals to the surface of
formalin-fixed tissue blocks, highly lipophilic dyes such as DiI
(red) and DiO (green) move evenly throughout cells in both
anterograde and retrograde directions via the lipid portion of
neuronal membranes, resulting in complete labeling of the soma
and dendritic tree (Thanos et al., 1991, 1992; Köbbert et al.,
2000; Boon et al., 2019; Trivino-Paredes et al., 2019). However,
the lipophilic nature of carbocyanine dyes makes them difficult
to use in conjunction with standard IHC protocols that use
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lipid-solubilizing detergents to facilitate antibody penetration
(Elberger and Honig, 1990; Matsubayashi et al., 2008).

Fluorescent latex microspheres 30–90 nm in diameter
(RetrobeadsTM) were recognized as retrograde tracers in the
mid-1980s (Katz et al., 1984; Katz and Iarovici, 1990) and, like
FluoroGoldTM, are highly resistant to fading and offer long-
term labeling. Although somewhat difficult to use, based on their
tendency to clump in the injection pipette, latex beads offer
stable fluorescence with minimal diffusion from the injection site,
exclusive retrograde travel with minimal entry to undamaged
fibers of passage, and are non-toxic to neurons so can be used
in long duration experiments (Köbbert et al., 2000; Vercelli et al.,
2000; Lanciego and Wouterlood, 2011). Their distinctive bright
punctate appearance makes them easy to distinguish, meaning
they can be mixed with an anterograde tracer of the same
color [e.g., to simultaneously identify retro- and anterograde
projections from a single brain region (Turner et al., 2013)].

Conventional (Mainly) Anterograde
Tracers
Phaseolus vulgaris-leucoagglutinin (PHA-L) is one of the
earliest and most widely used anterograde tracers (Gerfen and
Sawchenko, 1984; Köbbert et al., 2000) and, like WGA, PHA-
L binds to membrane bound carbohydrates to gain cell entry
(in this case N-acetyl D-glucosamine and mannose). PHA-
L is detected using IHC, revealing detailed cell morphology,
including axon terminal branches to the level of terminal boutons
(Lanciego and Wouterlood, 2011; Wouterlood et al., 2014).
PHA-L requires longer post-injection survival times to achieve
transport compared other conventional tracers, typically 10 to
20 days (Vercelli et al., 2000).

Emerging in the mid-1980s, dextran-amines (DAs) were
rapidly adopted and remain widely used as conventional axonal
tracers (Gimlich and Braun, 1985; Glover et al., 1986; Brandt and
Apkarian, 1992; Veenman et al., 1992; Wouterlood et al., 2014).
DAs enter injured neurons at the injection site and spread evenly
throughout the entire neuron via diffusion, resulting in a Golgi-
like level of staining detail (Glover et al., 1986; Fritzsch, 1993;
Glover, 1995; Köbbert et al., 2000; Lanciego and Wouterlood,
2011; Wouterlood et al., 2014).

Despite the common perception that DAs are preferential
anterograde tracers, many studies indicate bidirectional travel
(Schmued et al., 1990; Fritzsch, 1993; Glover, 1995; Zhang et al.,
2017), including the original description of their axonal transport
by Glover et al. (1986). Their retrograde capabilities have been
exploited both for conventional tracing (Sivertsen et al., 2014,
2016; Lunde et al., 2019) and for delivery of calcium-sensitive
indicators for optical recording of neurons selected by axonal
trajectory (O’Donovan et al., 1993; McPherson et al., 1997).

There is a perception that the molecular weight of DA-
conjugates contributes to their directional selectivity, with
smaller molecules exhibiting superior performance as a
retrograde tracer (Reiner et al., 2000; Lanciego and Wouterlood,
2011). However, the influence, if any, of molecular weight on
directional specificity is probably overstated, and may instead
reflect differences in speed of transport, which is distinctly

faster for smaller compounds (Fritzsch, 1993), combined with
differences in volume of synaptic terminals compared to cell
bodies (Glover, personal communication).

Like CTb, fluorophore-labeled dextran amine variants are now
widely used instead of or in addition to biotinylated versions
that require histological processing for visualization, and we
and others have used tetramethylrhodamine-conjugated dextran
for juxtacellular labeling during electrophysiological recordings
(Noseda et al., 2010; Dempsey et al., 2015).

Limitations of Conventional Tracers
Despite their ongoing popularity, the major limitations of
conventional tracers are worthy of consideration:

(1) Conventional tracers can be taken up by fibers of passage
(Dado et al., 1990; Chen and Aston-Jones, 1995; Conte
et al., 2009a), which can lead to incorrect identification of
projections. [Notably, canine adenovirus (CAV) can also be
taken up by fibers of passage (Schwarz et al., 2015)].

(2) The spread of many conventional tracers around the
injection site results in intense and diffuse labeling that
may reflect deposition in the extracellular matrix or take-
up by neurons or glia. Such non-specific labeling makes
it difficult to reliably identify labeled neurons within
∼1 mm of the injection site. Thus the historical use
of conventional tracers has probably overemphasized the
relative significance of distant inputs/outputs compared to
those originating from local interneurons; contemporary
connectomic studies indicate that long-distance projections
are relatively rare compared to short-distance connections
(Oh et al., 2014; Henriksen et al., 2016; van den Heuvel et al.,
2016; Dempsey et al., 2017).

(3) Tracer uptake relies predominantly on sugars that are
located on the glycocalyx of most, if not all neurons,
or on common mechanisms such as endocytosis.
Consequently, restricted uptake by functionally or
neurochemically/genetically homogeneous neuronal
populations is not possible.

(4) The direction of axonal transport is rarely exclusive, which
complicates circuit analysis; the archetypal retrograde
and anterograde tracers, CTb and BDA respectively,
both label axons traveling in the “wrong” direction
(Luppi et al., 1987; Schmued et al., 1990; Fritzsch, 1993;
Glover, 1995; Angelucci et al., 1996; Noseda et al., 2010;
Zhang et al., 2017).

VIRAL TRACERS

Recombinant viral vectors that drive the expression of fluorescent
“reporter” proteins in transduced neurons have been widely
adopted by neuroscientists because of their directional specificity,
the high (in most cases permanent) levels of reporter expression
obtained, and the absence of transduction of fibers of passage
(comprehensively reviewed by Callaway, 2005; Luo et al., 2008;
Betley and Sternson, 2011; Nassi et al., 2015). Here, we will
examine some widely used variants and consider the extent to
which they address the limitations of conventional tracers.
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Viral tracers may be divided into two distinct classes: static
vectors that remain locked within the targeted cell population
and essentially function like conventional tracers, which are
usually replication-deficient, and vectors that spread through
linked circuits via trans-synaptic travel, which are almost always
replication-competent. Each class contains vectors that can be
used to label selectively in an antero- or retrograde direction.

Static Viral Tracers
Recombinant vectors derived from human immunodeficiency
virus (HIV), herpes simplex virus type 1 (HSV-1), human
and canine adenoviridae (Ad), adeno-associated virus (AAV),
semliki forest virus, sindbis virus (SIN), and rabies have all
been developed as alternatives to conventional chemical tracers
(Chamberlin et al., 1998; Furuta et al., 2001; Wickersham et al.,
2007a; Junyent and Kremer, 2015; Lerner et al., 2016; Jia et al.,
2017; Farmer et al., 2019). A detailed review of the biology of
each is beyond the scope of the current article; the following
resources provide useful overviews of the most commonly used
replication deficient viral vectors (Ad: Akli et al., 1993, AAV: Kuo
et al., 1995; Drouin and Agbandje-McKenna, 2013; Junyent and
Kremer, 2015, HIV: Lundberg et al., 2008; Murlidharan et al.,
2014, HSV-1: Neve, 2012). HIV, HSV, Ad, SIN, and AAV vectors
differ in their maximum genetic payload, whether transgenes are
integrated into the host genome, and the onset and duration
of gene expression, but share common features: the wild-type
virus is modified to remove genes required for viral replication
and replaced with a genetic sequence that encodes a reporter
protein under the control of a ubiquitous (e.g., cytomegalovirus,
CaMKII), pan-neuronal (e.g., neuron-specific enolase, synapsin)
or cell-type specific (e.g., PRSx8, GAD1) promoter or, if used in
transgenic animals (reviewed by Wang et al., 2011), genetically
restricted expression systems such as Cre-LoxP or FLP-FRT
(Blomer et al., 1997; Hwang et al., 2001; Jakobsson et al., 2003;
Schnutgen et al., 2003; Gofflot et al., 2011; Liu et al., 2013; Fenno
et al., 2014; Luo et al., 2018). In contrast, glycoprotein-deleted
rabies is a static retrograde vector that retains its capacity for
replication, but has been modified so that it can no longer spread
trans-synaptically (Larsen et al., 2007; Wickersham et al., 2007a).
This has the advantage of self-amplification, resulting in very high
levels of reporter expression, but results in cytotoxicity within
a few weeks of infection and, as transcription is not promoter-
dependent, cannot be targeted to particular cell types without
further genomic alterations (discussed below). Furthermore,
as the rabies genome is RNA based, strategies for selective
recombination within subpopulations of infected neurons (e.g.,
Cre-LoxP) are not possible.

The mode of use of static viral tracers is similar to
conventional tracers; vectors are injected in small volumes
into the region or organ of interest under anesthesia, and
experimental animals are allowed to recover with appropriate
post-operative care. Following a period sufficient for transgene
translation, the animal is euthanized and perfused with fixative,
and the CNS removed for histological processing, which may
include IHC amplification of reporter signal, followed by
imaging. The major differences compared to conventional tracers
lie in the duration of recovery (although reporter expression

is visible within 12 h of HSV or rabies injections, protein
transcription is typically optimal 10–20 days after transduction
by AAV and lentiviral vectors), the volume of injectate, which
is typically larger for conventional tracers (300–1000 nl vs. 20–
100 nl for CNS injections, 1–5 µl for peripheral injections into
target organs), and the level of biological containment required.
When injected into the periphery, a further consideration is the
age of the animal; in our experience peripheral injections of rabies
and HSV-1 vectors do not result in detectable neuronal labeling
when administered to mice older than post-natal day 7, perhaps
reflecting the immaturity of the innate and adaptive immune
responses in the early post-natal period.

Like conventional tracers, cell entry is mediated via
interactions between glycans or proteins expressed on the
cell membrane and components of the viral vector (Lykken et al.,
2018). The tendency of a given vector to label in an anterograde
or retrograde direction therefore reflects the cellular distribution
of cognate receptors to its particular surface proteins; binding
with receptors expressed on the soma results in anterograde
labeling (e.g., AAV serotype 2, 5, 7, 8, and rh.10, human
adenovirus), whereas binding with receptors preferentially
expressed at the axon terminal results in retrograde labeling
(e.g., HSV-1, rabies and canine adenovirus) (Frampton et al.,
2005; Berges et al., 2007; Salinas et al., 2009; Penrod et al.,
2015; Castle et al., 2016; Hirschberg et al., 2017; Sathiyamoorthy
et al., 2017; Farmer et al., 2019). Note that viral titer may
also play a role in the direction of travel; human adenovirus
becomes a retrograde tracer at high titers as the recruited
immune response limits their efficacy (Howorth et al., 2009).
Perhaps unsurprisingly, variation of viral surface proteins
by natural selection or human manipulation can alter their
affinity for cellular binding partners, changing the tropism
for different cell types (e.g., neuronal versus non-neuronal)
or different neuronal compartments (e.g., pre-synaptic versus
post-synaptic) (Kanaan et al., 2017; Lykken et al., 2018). The
diverse capsid sequences found in the dozen or so naturally
occurring primate AAVs that have been developed as vectors for
gene transfer exhibit dramatically different tropisms for different
cell types (reviewed by Drouin and Agbandje-McKenna, 2013;
Castle et al., 2016) and hosts (Watakabe et al., 2015). When
injected into the rodent central nervous system, most result in
anterograde labeling, but the AAV1, 5 and 9 serotypes exhibit
both anterograde and retrograde transport, with the degree of
retrograde tropism varying according to the region studied and
construct used (Rothermel et al., 2013; Castle et al., 2016). Altered
directional tropism can also be conferred by pseudotyping viral
vectors with chimeric envelope proteins from other viruses;
this approach has been used with success to switch between
anterograde and retrograde tropism in HIV-1 and vesicular
stomatitis virus vectors, and to generate rabies variants that can
gain cellular access at the soma instead of the axon terminal
(Blomer et al., 1997; Wickersham et al., 2007b; Kato et al., 2011;
Beier et al., 2011, 2013).

Many different viruses have been developed as potential
vehicles for gene delivery, but in recent years AAV vectors have
emerged as front-runners (Kanaan et al., 2017). Although the
maximum size of the AAV payload is limited compared to
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lentiviral, adenoviral and HSV vectors, they are easy to work
with, have low toxicity and immunogenicity, and result in rapid
(∼14 days) and permanent transgene expression in post-mitotic
cells such as neurons (reviewed by Chamberlin et al., 1998; Betley
and Sternson, 2011; Sun and Schaffer, 2018). These properties
have made AAV vectors attractive candidates in gene therapy
for cancer, metabolic, and neurological diseases (Weinberg et al.,
2013; O’Connor and Boulis, 2015; Santiago-Ortiz and Schaffer,
2016; Grimm and Buning, 2017), stimulating investment in
AAV production and targeting technologies that are likely to
further accelerate their development. AAV capsids have been
manipulated to improve their transduction ability for both gene
therapy and neuroanatomical applications (Tervo et al., 2016;
Chan et al., 2017). Of particular relevance to the neuroscientist
is the recent development of a synthetic AAV capsid that drives
retrograde transduction with particularly high efficiency and
selectivity (Tervo et al., 2016). This capsid, known as AAV-retro,
results in transduction profiles that closely resemble conventional
retrograde tracers such as FluoroGoldTM (Tervo et al., 2016), is
compatible with small injection volumes, and is not associated
with significant toxicity (Sun et al., 2019). These features, and
the fact that it can be made in any viral production facility that
produces conventional AAV vectors, indicate that the popularity
of AAVs will continue to increase.

The AAV-retro variant, and other synthetic AAV capsids,
were made using in vivo directed evolution, a process in which
error-prone PCR is used to introduce mutations to the cap gene
(Drouin and Agbandje-McKenna, 2013). Mutant viral particles
are then injected into organoids or animal models and the
tissue of interest is harvested, from which AAV variants are
isolated and sequenced to identify mutations with the desired
tropism (Kotterman and Schaffer, 2014; Sun and Schaffer,
2018). In producing AAV-retro, AAV variants with different cap
mutations were injected into either the substantia nigra or the
cerebellar cortex and harvested from the striatum or inferior
olive, respectively, revealing candidate capsid sequences with
high selectivity for retrograde transport (Tervo et al., 2016).
Given the many dozens of unstudied capsid subtypes that lie
within the 13 major groups of primate AAV (Gao et al., 2004),
the many thousands of potential capsids that lie within putative
ancestral primate AAV libraries (Santiago-Ortiz et al., 2015), and
the perhaps millions of capsid variants yet to be isolated and
characterized from non-primate AAVs (Smith et al., 2016), it
seems likely that AAV capsids with useful tropisms will continue
to be discovered and developed for neuroscience applications.
This may even lead to development of capsid variants with
selectivity for particular neuronal cell types, bypassing the need
for recombinase-driving transgenic animals or cell-type specific
promoters, the Achilles’ heel of AAV due to its small payload
size (although the selectivity of synthetic AAV promoters is also
rapidly improving: see Jüttner et al., 2019), with obvious benefits
to both research and gene therapy applications.

Identification of Synaptic Contacts
Irrespective of whether anterograde labeling is achieved by
conventional tracers or vector-mediated reporter expression, the
identification of terminal appositions under light microscopy

remains a challenge because of their small size (Burette
et al., 2015). The development of vectors that selectively
label presynaptic terminals (e.g., synaptophysin-GFP or
synaptophysin-mRuby) makes disambiguation of terminals from
axons and fibers easier (Li et al., 2010; Oh et al., 2014; Beier
et al., 2015; Lerner et al., 2015), but the fact remains that <50%
of “close appositions” constitute functional synapses (Pilowsky
et al., 1992; Descarries and Mechawar, 2000; da Costa and
Martin, 2011), and so their presence needs to be interpreted with
caution. In recent years a number of elegant approaches have
been developed to circumvent this limitation, the ultimate of
which is GRASP (GFP Reconstitution Across Synaptic Partners),
a dual vector system where each vector drives the expression of
one half of a GFP-derived dimer that only becomes fluorescent
when both halves bind. When presynaptic neurons are targeted
with one and post-synaptic neurons with the other, the only
place at which the two components can become physically close
enough to bind is the synaptic cleft, and so GFP fluorescence
denotes synaptic contact (Feinberg et al., 2008; Kim et al., 2011).
The interested reader is directed to recent reviews that considers
alternative methods for synaptic complementation (Wickersham
and Feinberg, 2012; Luo et al., 2018).

TRANS-SYNAPTIC CIRCUIT TRACING

Replication-deficient viral vectors that drive reporter expression
are ideal anterograde tracers, because they can target genetically
restricted cells in circumscribed brain regions and result in
unambiguous labeling of the entire neuron and/or its synaptic
terminals. However, for the reasons outlined above, such fine
detail is not easy to extract across whole brains and, moreover,
anterograde labeling experiments are generally conducted in
an effort to determine the post-synaptic targets of a given
population of neurons, not to map the distribution or number
of synaptic contacts arising from them. For the purposes of
identifying post-synaptic targets, a better solution would be a
tracer that labels the entire post-synaptic cell, which can be
unambiguously and rapidly detected using light microscopy
under relatively low magnification instead of the high-resolution
methods required to reliably detect individual synapses. One
approach that can achieve this exploits the trans-synaptic
trafficking of Cre recombinase that occurs when expressed at
high levels by replication-deficient viral vectors. Zingg et al.
(2017) found that AAV-mediated Cre recombinase expressed
in presynaptic neurons could drive Cre-dependent transgene
expression in post-synaptic neurons, and that the degree of
post-synaptic transgene expression, which presumably reflects
the degree of Cre recombinase trafficking, varies depending on
AAV serotype. This provides a useful tool for identification and
manipulation of post-synaptic neurons, although the approach
is somewhat confounded by the partial retrograde tropism of
the AAV1 and AAV9 serotypes (Rothermel et al., 2013; Castle
et al., 2016), which coincidentally produced the highest Cre
recombinase trafficking (Zingg et al., 2017), leading to ambiguity
over whether tagged neurons represent post- or pre-synaptic
network components.
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Another strategy that avoids having to identify individual
synapses is to infect target populations with a replication-
competent neurotrophic virus and to trace circuit components via
the trans-synaptic infection of viral progeny (comprehensively
reviewed by Nassi et al., 2015). This approach, initially developed
using wild-type viruses that exhibit selectively retrograde (rabies,
pseudorabies) or anterograde tropism (HSV-1 strain H129)
(Strack et al., 1989b; Zemanick et al., 1991; Card and Enquist,
1995; Ugolini, 1995; Aston-Jones and Card, 2000; Kelly and
Strick, 2000), represents a significant advance over static tracers
in the sense that labeling can be safely interpreted as indicating
synaptic contact. However, tracing using intact replication-
competent viruses suffers two major drawbacks: first, it is
never clear whether connections are mono- or polysynaptic,
because the replicating virus continues to propagate along
the synaptic hierarchy. Second, wild-type replication-competent
viruses cannot be used to selectively target groups of neurons
embedded in the CNS; direct injection of these vectors gives
rise to non-selective infection, and so their use is best restricted
to circuits that begin (i.e., sensory) or end (i.e., motor)
in the periphery.

Anterograde Trans-Synaptic Tracing via
HSV-1 Strain H129
Investigators have attempted to sidestep the drawbacks listed
above by modifying viral constructs to alter their tropisms (so
that target populations of neurons can be selectively infected
following central injection), by comparing the results of viral
and conventional tracing studies (to gain insight into which
projections are likely to represent monosynaptic connections),
and by performing detailed time-course studies to map the
likely hierarchy of neuronal connections. All of these approaches
have been performed with H129, a strain of HSV-1 that
was originally isolated from a patient who died from acute
necrotizing encephalitis (Dix et al., 1983) and is notable for
its predominantly anterograde direction of trans-synaptic travel
(Archin and Atherton, 2002; Wojaczynski et al., 2015). H129
has been used for the mapping of neural circuits for over
20 years (Sun et al., 1996; Garner and LaVail, 1999; Labetoulle
et al., 2000); it exhibits rapid replication and spread, with
reporter-driving variants producing detectable fluorescence at
the site of primary infection within 24 h of innoculation. In our
hands, H129 produces detectable trans-synaptic labeling of visual
pathways within 48 h of intraocular injection, and the progression
of labeling suggests another synapse is “jumped” every 48 h
thereafter, although signal strength is variable and benefits from
IHC amplification.

As infection progresses, H129 causes cytopathic changes in cell
morphology and, if left unchecked, eventual death of the animal,
imposing ethical and practical constraints on the duration of
experiments (Lo and Anderson, 2011; McGovern et al., 2012b,
Wojaczynski et al., 2015). Inoculated rodents begin to show signs
of neurological disease that may include hemiparesis, ataxia and
drastic weight loss, which varies in its onset time, severity, and
prevalence depending on the site of initial infection (Archin
and Atherton, 2002; Rinaman and Schwartz, 2004; McGovern

et al., 2012a). Interestingly, a significant proportion of rodents
inoculated with H129 never develop any detectable infection:
in our hands intraocular infection fails to “take” in almost half
of cases, similar to the 36% failure rate reported by Lo and
Anderson (2011), who also found a surprisingly high failure rate
following direct brain injection (18%). The transient nature of
the primary viral infection and host defense mechanisms may
contribute to variability in uptake and differences in reported
strength of labeling.

The specificity of H129 for tracing subpopulations of neurons
has been improved by modification of the viral genome: Lo
and Anderson (2011) produced a H129 strain dependent on
Cre recombinase for replication and transcription of a red
reporter. This was achieved by the insertion of a floxed STOP
cassette upstream of the tdTomato and TK genes (the TK gene
being necessary for replication). Infection of Cre-containing
neurons therefore results in permanent removal of the STOP
cassette, restoration of viral replication and transcription of the
reporter gene, whereas initial infection is unable to take hold
in neurons that do not synthesize Cre recombinase. Reporter
expression therefore indicates that a neuron either contains Cre
recombinase or lies downstream from a Cre-containing neuron,
allowing the identification of post-synaptic circuit components.
A similar strategy was devised by McGovern et al. (2015b), in
which the H129 genome was modified to encode a floxed GFP
lying upstream of a red reporter gene (H129-HCMV-loxP-EGFP-
HCMVpA-loxP-tdTomato-SV40pA, Figure 3). In this case the
GFP gene is expressed in naïve neurons but is excised by
Cre, resulting in a switch in reporter color in Cre-synthesizing
neurons and their (polysynaptic) downstream partners. These
modifications allow H129 to be targeted to subpopulations of
central neurons, allowing identification of connected circuits,
but these variants are still compromised by ambiguity regarding
the number of synapses that link labeled neurons to the
originally targeted population and the systemic illness that results
from unrestricted central infection. These limitations have been
recently overcome by deletion of a gene required for viral
replication, tyrosine kinase (TK), which arrests the spread of
H129. When supplied by a helper vector in trans, TK transiently
restores the ability of H129 to replicate and to spread into
monosynaptically connected neurons. As these do not contain
TK, the H129 becomes trapped and so viral reporter expression
can be safely interpreted as denoting monosynaptic spread (Zeng
et al., 2017; Li et al., 2018).

Retrograde Poly-Synaptic Viral Tracers
Rabies and pseudorabies virus (PRV, a member of the alphaherpes
virus family) were developed as retrograde trans-synaptic tracers
in the latter decades of the 20th century (Strack et al., 1989a;
Ugolini, 1995). PRV, HSV-1 and other alphaherpes viridae rely
on interactions between the viral envelope glycoprotein complex
and cell surface receptors to gain intracellular access (reviewed
by Frampton et al., 2005; Sathiyamoorthy et al., 2017); in
neuronal tissue, nectin-1, a synaptic adhesion molecule that
is predominantly expressed on the presynaptic membrane and
colocalizes well with synaptophysin, is the primary mediator of
cell entry and infection, without which little neuronal infection
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FIGURE 3 | H129 tracing of a polysynaptic pathway. Demonstration of H129 infection of a polysynaptic pathway from the retina, through the deep superior colliculus
(dSC), to the locus coeruleus (LC). (A) Intravitreal injections of H129-HCMV-loxP-EGFP-HCMVpA-loxP-tdTomato-SV40pA initially infected retinal ganglion cells,
driving EGFP expression in retinorecipient nuclei and downstream neurons. When AAV-Cre was injected into the dSC prior to H129 infection (yellow boundary in B)
the genomes of H129 virions passing through the dSC were cleaved, resulting in tdTomato expression in post-synaptic neurons. Red neurons in downstream
regions, such as LC (Low power micrograph in C, magnified view in D’), can therefore be interpreted as being part of a pathway passing through the dSC.
Co-expression of tdTomato and EGFP was common (see merged image, D”) and may indicate incomplete H129 cleavage or multiple pathways converging on the
same region. LGN: lateral geniculate nucleus; sSC: superficial layer of the superior colliculus.

occurs (Geraghty et al., 1998; Campadelli-Fiume et al., 2000;
Mizoguchi et al., 2002; Takai et al., 2008). In addition to the
nectin-1- pathway, it is understood that direct cell-to-cell transfer
can occur via non-synaptic mechanisms, and that direction of
transport may be bi-directional, particularly in wild-type PRV
strains, although this confound is reduced in the PRV-Bartha
laboratory strain (Card et al., 1998, 1990, 1991, 1999; Pickard

et al., 2002; Ugolini, 2011). As a result, PRV experiments are often
limited to short incubations and low viral doses in an attempt to
reduce the incidence of non-synaptic release of viral particles via
cytotoxic cell death.

PRV spreads rapidly, causing observable transgene expression
within 6 h in vitro, 1 day in vivo, and demonstrating trans-
synaptic travel within 2 days in vivo (Card et al., 1990;
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Kobiler et al., 2010). The speed and directional selectivity
of PRV has made it the historical tracer of choice for both
peripheral and central tracing studies (Martin and Dolivo, 1983;
Strack et al., 1989a; Jansen et al., 1995; Smith et al., 1998; DeFalco
et al., 2001) although, due to its polysynaptic nature, PRV poses
the same challenge as H129 – the differentiation of mono- and
polysynaptic connections. As with H129, time-course analyses
have sought to address this issue, as well as co-injection of PRV
with conventional tracers to identify regions sequentially labeled
along polysynaptic pathways (Card et al., 1990; Smith et al., 1998;
Kim et al., 1999; Aston-Jones and Card, 2000; DeFalco et al., 2001;
Card and Enquist, 2014). Replicating PRV viruses cause neuronal
damage and ultimately death of the animal within 5 to 6 days
following peripheral injections and 4 days following intracerebral
injections (Ugolini et al., 1987; Card et al., 1990, 1992; Card and
Enquist, 2014; Oyibo et al., 2014). A less virulent strain has been
developed in which the only immediate early gene of PRV, IE80,
has been deleted (“IE80-null PRV,” Oyibo et al., 2014). Neurons
infected with IE80-null PRV have been reported to maintain
physiological properties similar to non-infected neurons up to
6 months post infection, with injected mice surviving the same
period of time, demonstrating a promising reduction in toxicity.

As with H129 (McGovern et al., 2015a), strains of PRV
encoding different transgenes have been used in dual-tracing
experiments in which the aim is to assess whether two
populations of neurons receive input from a common, third
region (Jansen et al., 1995; Banfield et al., 2003). For example,
Jansen et al. (1995) used two strains of PRV-Bartha encoding
different viral antigens, one encoding the viral glycoprotein gC,
and the other encoding β-galactosidase. One strain was injected
into the stellate ganglion, while the second was injected into
the adrenal gland and IHC used to identify single- and double-
labeled neurons. While dual tracing studies appear deceptively
simple, a number of important factors must be taken into
consideration when selecting the viral vectors to use. The core
issue is “superinfection inhibition”; the limited capacity of a
single neuron to be infected by more than one virus (Kobiler
et al., 2010; Card and Enquist, 2014). Alterations to the viral
genome, including the transgene expressed and the location of
its insertion, influence the virulence and efficiency of expression,
which may place a vector at a disadvantage compared to a “fitter”
strain (Kobiler et al., 2010; Card and Enquist, 2014), and so
isogenic strains of viruses should be used to minimize these
differences (Smith et al., 2000; Banfield et al., 2003). The speed of
travel and therefore time of arrival of a virus to the population
of interest is also critical; Banfield et al. (2003) compared the
dual-infection of rat dorsal root ganglion neurons in vitro by
PRV152 and PRV614 introduced asynchronously. They found
that when the vectors were added simultaneously, almost all
neurons were double-labeled, but that a delay of 2 h between
injections reduced double-labeling by ∼70%, and that a 4-h
delay resulted in almost none. Furthermore, there is a limit
to the number of copies of a transgene that a neuron can
produce: Kobiler et al. (2010) injected three isogenic strains of
PRV that expressed the “Brainbow” cassette and, based on the
combinations of fluorophores expressed, estimated that no more
than seven genomes could be expressed in each cell. Therefore,

vectors should be chosen that are as closely matched as possible
for genomic sequence, virulence, speed of transduction and
transgene expression, and should arrive at the common region
of interest at as close a timepoint as possible.

Retrograde Trans-Synaptic Tracing via
Glycoprotein-Deleted Rabies
The evolution of the TK-deleted H129 virus parallels the
development of glycoprotein-deleted rabies, the first virus to
be developed as a genetically restricted monosynaptic tracer
(reviewed by Luo et al., 2008, 2018; Callaway and Luo, 2015). It
was developed from the Street Alabama, Dufferin B19 (SADB19)
strain of rabies, a virus isolated from a symptomatic dog in
the 1930s and maintained on cultured rodent tissue for decades
thereafter, over which time it became rodent-specific, attenuated,
and incapable of horizontal or vertical transmission (Vos et al.,
1999; Beckert et al., 2009). These features make recombinant
SADB19 not only a safer option as a research tool, but also led to
its development as a live oral vaccine for wild foxes across central
Europe, with over 50 million doses airdropped since the 1980s
(Geue et al., 2008).

Genetically modified SADB19 has provided a new generation
of tracing tools that avoid the shortcomings of classic replication-
competent neurotrophic viruses. At the heart of this technology
is the key role the rabies glycoprotein plays in the infection
and exclusively retrograde trans-synaptic spread of rabies, which
occurs through still-undefined mechanisms (Lentz et al., 1982;
Mebatsion et al., 1996; Etessami et al., 2000; Schnell et al.,
2010; Ugolini, 2010). Deletion of the glycoprotein gene renders
the virus, so-called SAD1G, incapable of spreading from one
neuron to another but does not affect its capacity for replication
(Mebatsion et al., 1996; Etessami et al., 2000; Wickersham et al.,
2007a), meaning that SAD1G variants becomes trapped inside
infected neurons.

The key insight made by Wickersham et al. (2007b) is that
SAD1G’s ability to trans-synaptically migrate can be transiently
restored by expression of the rabies glycoprotein in infected
neurons in trans (Marshel et al., 2010). For example, when
motoneurons are induced to express rabies glycoprotein using
an AAV vector, subsequent infection of those neurons by
intramuscular injection of SAD1G results in retrograde infection
of monosynaptic input neurons in the spinal cord and brainstem
(Esposito et al., 2014).

This approach was further refined by restricting initial access
of SAD1G to targeted populations of neurons by pseudotyping
glycoprotein-deleted rabies with the envelope protein of a virus
that is unable to infect naïve mammalian neurons, avian sarcoma
and leukosis virus (EnvA). Infection by pseudotyped SAD1G,
notated as SAD1G(EnvA), can be controlled by selective
expression of its cognate receptor, TVA, on target neurons
(Wickersham et al., 2007b; Marshel et al., 2010). The starting
point for monosynaptic retrograde tracing strategies that use
SAD1G(EnvA) can be defined by co-expression of the genes that
encode TVA and the rabies glycoprotein in target neurons, often
referred to as “seed” or “starter” neurons. Direct CNS injection of
SAD1G(EnvA) selectively infects seed neurons at the injection
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FIGURE 4 | Monosynaptically restricted retrograde tracing using glycoprotein-deleted rabies. (A) Experimental strategy: the starting point is co-expression of genes
that encode TVA and the rabies glycoprotein in target neurons, in this case delivered by a lentiviral vector that targets putative sympathetic premotor neurons in the
ventrolateral medulla (Lv-PRSx8-YFP-TVA-G). Subsequent infection of TVA/G-expressing neurons by SAD1G(EnvA) microinjection leads to trans-synaptic infection
of pre-synaptic (“input”) neurons. Panel (B) shows low power micrograph with infected neurons concentrated in the ventrolateral medulla (boxed region, enlarged in
C) “Seed” neurons may be distinguished from “input” neurons by co-expression of the reporters contained in the lentiviral (C’) and rabies constructs (C”), which
appear white in the merged image (C”’, denoted by blue arrowheads). Modified with permission from Menuet et al. (2017).
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site, wherein virions replicate, incorporate the glycoprotein, and
spread to monosynaptically connected pre-synaptic (“input”)
neurons. To distinguish input neurons from seed neurons, a
reporter that differs in color from that contained in the SAD1G
genome is by convention included within the TVA/glycoprotein
cassette (Figure 4).

In theory, this approach could be used to identify
monosynaptic inputs to any population in which it is possible to
selectively drive TVA and the rabies glycoprotein. Investigators
from diverse branches of neuroscience have used innovative
approaches to limit seeding to their populations of interest,
using transgenic mice (Takatoh et al., 2013), lentiviral, AAV
or HSV-1 viral vectors (Brennand et al., 2011; Liu et al., 2013;
Yonehara et al., 2013; Dempsey et al., 2017; Menuet et al.,
2017), and even in vivo transfection of single functionally
identified neurons (Rancz et al., 2011; Velez-Fort et al., 2014;
Wertz et al., 2015).

SAD1G(EnvA) represents a current state-of-the-art
technique for interrogation of circuit structure; its promise
is reflected by its rapid adoption by diverse branches of
neuroscience, high citation rates of studies that use it, and
the continued investment in its refinement. However, it is not
without its limitations: first, the proportion of monosynaptic
input neurons labeled by SAD1G(EnvA) is low and subject to
variability, with the ratio of input neurons per starter neuron
ranging from less than 10 to several hundred (Rancz et al., 2011;
Velez-Fort et al., 2014; Stornetta et al., 2016). Although some
of this variability reflects actual differences in the numbers of
afferent neurons that converge upon different cell types (Velez-
Fort et al., 2014), as discussed at length by Callaway and Luo
(2015), the strength of glycoprotein/TVA expression on the target
neuron, the titer of SAD1G(EnvA) (and therefore initial number
of replicating virions within starter cells), and the duration of the
experiment also interact to determine labeling efficiency. Efforts
to improve labeling efficiency have focussed on modification of
the rabies glycoprotein, resulting in a codon-optimized chimera
of the SADB19 and Pasteur G glycoproteins known as “oG” (Kim
et al., 2016), or generation of glycoprotein-deleted variants of
other rabies strains (Reardon et al., 2016), both of which have
improved the efficiency of the original system.

A second caveat to the use of glycoprotein-deleted rabies
variants lies in uncertainty regarding potential biases in its
tropism. Although validation of trans-synaptic infection of
excitatory and inhibitory neurons was included in the initial
description of this system (Wickersham et al., 2007b), the
potential for differential selectivity according to proximity
or phenotype has been raised by a number of investigators
(Callaway and Luo, 2015; Reardon et al., 2016). Recent work
by Sun et al. (2019) has confirmed these concerns, showing
differential labeling of neurons by AAV-retro, SAD1G and
conventional tracers, as well as by polysynaptic strains of
rabies and pseudorabies, which they speculate reflects variable
expression of cognate receptors to viral proteins in different
neuronal populations.

A third weakness of the SAD1G system is its neurotoxicity,
which is low compared to H129 but nonetheless results in
microglial infiltration, gene dysregulation, and cell death within

a few weeks of infection (Wickersham et al., 2007a; Sun et al.,
2019), and is a major barrier to its integration with functional
tools. Again, the development of glycoprotein-deleted versions of
other rabies strains has been reported to reduce toxicity (Reardon
et al., 2016), and much has been made of a self-inactivating form
that clears infected neurons of histotoxic elements shortly after
infection (Ciabatti et al., 2017), although a recent early report by
Wickersham et al. throws the validity of this approach into doubt
(preprint by Matsuyama et al., 2019). Perhaps more promising
is the development of so-called “double-deletion rabies” variants
(SAD1GL), in which the “L” gene responsible for transcription
and replication of the viral genome is deleted in addition to
that of the glycoprotein, resulting in a virus with negligible
gene transcription and toxicity but which can nonetheless drive
expression of recombinase proteins at levels sufficient to drive
site-specific recombination in transgenic animals (Chatterjee
et al., 2018). Although the recent work by Chatterjee et al.
(2018) supports the suitability of SAD1GL as an alternative to
AAV-retro, the applicability of this system as a monosynaptically
restricted tracer is still unknown.

Finally, in contrast to PRV and H129, the cellular mechanisms
responsible for the transmission of rabies are yet to be
comprehensively delineated, resulting in some skepticism
regarding its supposed retrograde trans-synaptic exclusivity
(eloquently summarized in a recent blog by Svoboda, 2019). The
strongest evidence in favor of the exclusivity of this mechanism
is broad coherence between the results of rabies tracing,
ultrastructural, and electrophysiology studies (considered
extensively by Ugolini, 2011), and in particular the absence
of rabies virions from the extracellular space (which would
indicate non-synaptic transmission). However, as pointed out
by Svoboda, without a complete understanding of the rabies
life cycle it remains difficult to account for discrepancies in
connectivity schemes suggested by the results of viral tracing
and electrophysiological mapping studies, and so some caution
should be exercised in the interpretation of these data.

IMAGING, ANALYSIS AND
PRESENTATION OF CONNECTOMIC
DATA

The repurposing of viral vectors as instruments for scientific
research has transformed the field of neuroanatomy in less than
20 years. The mass production of viral vectors by commercial
“vector cores” has lowered economic barriers to their adoption
by researchers, while the development of technologies that permit
high-throughput manipulation of viral genomes and selection of
useful traits, such as directed evolution and genetic barcoding,
has made it easier than ever for vector biologists to prototype
new viral tools. These factors, coupled with the scientific merit
of the approach, will drive innovation in this space for the
foreseeable future.

It is therefore surprising that the technologies used by
researchers to capture, analyze and present anatomical data have
changed so little over the same period: with few exceptions,
researchers continue to present their data in terms of the numbers
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of labeled neurons that lie within each region of the brain,
averaged across replicates and estimated by comparing images
of histological sections to plates from a 2-D reference atlas. As
we have argued before (Dempsey et al., 2017), expressing rich
datasets in such crude terms precludes their independent analysis
by other researchers, while potential future reclassification of
brain taxonomy threatens the shelf-life of the data. Moreover,
it is a laborious and error-prone process, because accuracy is
contingent on cutting histological sections in perfect alignment
with the reference atlas while maintaining correct ordering and
orientation. This task sounds straightforward but is hard to
achieve in reality – it took George Paxinos over 50 attempts to
get a perfect example for the original Paxinos and Watson rat
brain atlas (G. Paxinos, personal communication) – and small
deviations from the orthogonal make correct alignment with the
reference atlas impossible; for example, if a section through the
widest part of the rat brain is cut at 5◦ mediolateral from true
coronal alignment, the lateral border of the cortex on one side of
the brain will lie 1.4 mm rostral to the other.

How should this problem be addressed? In our view, it will
not be resolved by improving imaging technologies per se – if
one’s objective is to simply map populations of labeled neurons,
then improvements in optical resolution are unlikely to help
much (although the lowered cost, improved speed and spectral
sensitivity of modern microscopes present benefits of their own).
Nor are recently developed tissue processing techniques that
permit continuous imaging of thick volumes of brain likely to
provide a simple solution (Chung et al., 2013; Renier et al., 2014;
Tomer et al., 2014): although useful for imaging small volumes of
brain, they are slow, labor- and resource-intensive, and inherently
difficult to align to a reference atlas. Instead, a new generation of
tools is required that can automate and standardize the analysis
of tracing data by automatically registering histological tissue
into 3-d volumetric brain atlases, extracting the locations of
labeled neurons and expressing them in Cartesian co-ordinates
as well as identifying the regions in which they reside. This
development would simplify analysis, reduce variability, and
permit the sharing and independent analysis of connectivity
data. Although a number of investigators have highlighted the
importance of this mission (Osten and Margrie, 2013; Renier
et al., 2016; Furth et al., 2018; Puchades et al., 2019), to date the
tools available are hard to use and far from intuitive.

CONCLUSION

Connectomic data will not, by itself, explain how brains work:
connectivity is but one parameter in an overlapping spectrum
of classifications used by neuroscientists to bracket neurons.
However, when combined with electrophysiological properties,
synaptic strength, neurotransmitter content, receptor expression

and developmental lineage, connectivity data may provide clues
to the processes that underlie the function of specific brain
circuits and provide insights into the general rules that underlie
brain circuit formation, growth and plasticity (Rockland, 2015).

Nevertheless, controversy about the utility of extensive
connectomic data remains unresolved (Carandini, 2012; Denk
et al., 2012; Rockland, 2015; Jonas and Kording, 2017)
(interested readers are also encouraged to watch the debates
between Anthony Movshon and Sebastian Seung hosted by
Neuwrite at Columbia University in 20123 and between
Anthony Movshon and Moritz Helmstaedter, held as part of
the Cognitive Neuroscience Society annual meeting in 20164).
Similar skepticism characterized the early years of the Human
Genome Project: the scientific value of sequencing the whole
human genome, the exploratory nature of the Project, the
seemingly insurmountable technical challenges and high cost
projections were a cause for concern for scientists, politicians
and tax-payers alike (reviewed by Gannett, 2016). However, the
completion of the Human Genome Project not only dramatically
advanced sequencing techniques (e.g., personal genealogical
genotyping is now commercially viable), but also accelerated the
incorporation of genetic technologies to biology at large and
spawned gene therapy (Lander, 2011). Whether the discoveries
that emerge from the contemporary neuroscience equivalents of
the Human Genome Project will lead to analogous translational
technologies remains to be seen, but the connectomic movement
has already transformed neuroscience.
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