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Invasive brain-computer interfaces yield remarkable performance in a multitude of

applications. For classification experiments, high-gamma bandpower features and linear

discriminant analysis (LDA) are commonly used due to simplicity and robustness.

However, LDA is inherently static and not suited to account for transient information

that is typically present in high-gamma features. To resolve this issue, we here present

an extension of LDA to the time-variant feature space. We call this method time-variant

linear discriminant analysis (TVLDA). It intrinsically provides a feature reduction stage,

which makes external approaches thereto obsolete, such as feature selection techniques

or common spatial patterns (CSPs). As well, we propose a time-domain whitening

stage which equalizes the pronounced 1/f-shape of the typical brain-wave spectrum.

We evaluated our proposed architecture based on recordings from 15 epilepsy

patients with temporarily implanted subdural grids, who participated in additional

research experiments besides clinical treatment. The experiments featured two different

motor tasks involving three high-level gestures and individual finger movement. We

used log-transformed bandpower features from the high-gamma band (50–300 Hz,

excluding power-line harmonics) for classification. On average, whitening improved the

classification performance by about 11%. On whitened data, TVLDA outperformed LDA

with feature selection by 11.8%, LDA with CSPs by 13.9%, and regularized LDA with

vectorized features by 16.4%. At the same time, TVLDA only required one or two internal

features to achieve this. TVLDA provides stable results even if very few trials are available.

It is easy to implement, fully automatic and deterministic. Due to its low complexity,

TVLDA is suited for real-time brain-computer interfaces. Training is done in less than

a second. TVLDA performed particularly well in experiments with data from high-density

electrode arrays. For example, the three high-level gestures were correctly identified at a

rate of 99% over all subjects. Similarly, the decoding accuracy of individual fingers was

96% on average over all subjects. To our knowledge, these mean accuracies are the

highest ever reported for three-class and five-class motor-control BCIs.

Keywords: brain-computer interface, electrocorticography, movement decoding, linear discriminant analysis,

spectral whitening

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00901
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00901&domain=pdf&date_stamp=2019-09-26
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gruenwald@gtec.at
https://doi.org/10.3389/fnins.2019.00901
https://www.frontiersin.org/articles/10.3389/fnins.2019.00901/full
http://loop.frontiersin.org/people/608014/overview
http://loop.frontiersin.org/people/696017/overview
http://loop.frontiersin.org/people/72375/overview
http://loop.frontiersin.org/people/549659/overview
http://loop.frontiersin.org/people/175450/overview
http://loop.frontiersin.org/people/1735/overview


Gruenwald et al. Time-Variant Linear Discriminant Analysis

1. INTRODUCTION

A brain-computer interface (BCI) establishes a communication
pathway from a person’s mind to the environment via brain
activity alone (Wolpaw et al., 2002; Wolpaw and Wolpaw, 2012).
BCIs operate on brain waves that are usually recorded from the
electroencephalogram (EEG), the electrocorticogram (ECoG), or
depth electrodes. Many types of task-related information (or
features) can be extracted from brain waves, depending on the
specific experimental protocol and expected neurophysiological
activation pattern. Prominent examples include event-related
potentials (ERP) (Blankertz et al., 2011), steady-state evoked
potentials (SSEP) (Prueckl and Guger, 2009), event-related
(de-)synchronization (Pfurtscheller and Lopes da Silva, 1999),
and high-gamma activation (Miller et al., 2009; Kapeller et al.,
2018). The latter refers to power changes in frequencies above
50 Hz, which can only be computed from invasively recorded
data, such as from ECoG or depth electrodes. Invasive BCIs that
operate on high-gamma based features have gained considerable
attention and are subject to intensive research. For example, this
encompasses real-time passive functional mapping in the course
of surgery planning (Ogawa et al., 2014), visual categorization
tasks (Kapeller et al., 2018), or the development of BCI prototypes
for prosthetic limb, hand, or finger control (Shenoy et al., 2007;
Kubánek et al., 2009; Onaran et al., 2011; Yanagisawa et al., 2011;
Pistohl et al., 2012; Chestek et al., 2013; Kapeller et al., 2014; Xie
et al., 2015; Bleichner et al., 2016; Hotson et al., 2016; Branco et al.,
2017; Jiang et al., 2017; Li et al., 2017; Pan et al., 2018).

It is known that high-gamma based invasive BCIs can yield
very high classification accuracies, depending on the complexity
of the experiment, the electrode location and density, and the
processing methods and parameters. For example, Yanagisawa
et al. (2011) classified hand movement vs. rest in one patient
with an accuracy of 79.6%. Pistohl et al. (2012) achieved an
average accuracy of 87.8% over three subjects for two different
types of grasp movements. In another study, two high-level hand
gestures were correctly identified at an average rate of 95.5%
over four subjects (Xie et al., 2015). All these results entailed
standard ECoG grids. Performance increases considerably when
high-density electrode arrays are employed. Among others, this
was shown by Jiang et al. (2017), who achieved 100% accuracy for
two subjects in a two-class experiment involving hand gestures.

Three or more different hand gestures can also be identified
by high-gamma based BCIs. Yanagisawa et al. (2011) reported
68.3% in one subject for three different hand postures. For the
same experiment, Kapeller et al. (2014) published accuracies
up to 95.9% averaged over two subjects, and Li et al. (2017)
scored on average 80.0% in three subjects. In a similar setup,
Xie et al. (2015) obtained correct classification rates of 92.7%
over three hand gestures in four subjects on average. Whereas,
these experiments were obtained from standard ECoG grids,
several studies with hand posture classification were conducted
with subjects having high-density grids implanted. Using both
high-density and standard electrode arrays, Chestek et al. (2013)
conducted experiments to discriminate four hand postures and
rest at an accuracy rate of 77.7% on average over three subjects.
Using only high-density grids, Pan et al. (2018) reported up to

90% for three different hand gestures over 5 subjects. Involving
four different hand gestures, Bleichner et al. (2016) achieved
85.5% accuracy over two subjects, and Branco et al. (2017)
attained 85.0% over five subjects.

Many efforts have also gone into decoding individual finger
movements. Using standard ECoG grids, Shenoy et al. (2007)
achieved an average accuracy of 77.0% for classifying each of the
five fingers over six subjects. Kubánek et al. (2009) reported 80.3%
over five subjects for the same experiment, whereas Onaran et al.
(2011) got 86.3% over three subjects. Four fingers vs. rest were
correctly decoded at a rate of 79.3% in three subjects by Chestek
et al. (2013). One subject with high-density electrodes implanted
achieved 96.5% accuracy for each finger in a study conducted by
Hotson et al. (2016).

Table 1 summarizes these results and provides a
comprehensive overview of the state of the art.

A variety of classifiers for both offline and real-time BCIs
exist. Besides linear programmingmachines (Shenoy et al., 2007),
Bayesian approaches (Chestek et al., 2013), pattern matching
(Bleichner et al., 2016; Branco et al., 2017; Kapeller et al., 2018),
neural networks (Pan et al., 2018), and support vector machines
(Onaran et al., 2011; Yanagisawa et al., 2011; Li et al., 2017), linear
discriminant analysis (LDA) is widely used for both non-invasive
and invasive BCI and all types of features (Bostanov, 2004;
Scherer et al., 2004; Blankertz et al., 2008, 2011; Hoffmann et al.,
2008; Prueckl and Guger, 2009; Onaran et al., 2011; Yanagisawa
et al., 2011; Pistohl et al., 2012; Kapeller et al., 2014; Xu et al., 2014;
Lotte et al., 2015; Xie et al., 2015; Hotson et al., 2016; Gruenwald
et al., 2017a; Jiang et al., 2017; Li et al., 2017). LDA is robust, has
low complexity due to linearity and performs well in line with
more sophisticated methods (Garrett et al., 2003; Lee et al., 2005;
Lotte et al., 2007).

If the dimension of the feature space is high, a spatial filter
must be employed to reduce the number of features and to
prevent the classifier from overfitting. The most straightforward
approach is feature selection, either manual from a-priori data
inspection or automatized via statistical algorithms (Kapeller
et al., 2014; Xie et al., 2015; Bleichner et al., 2016; Hotson et al.,
2016; Li et al., 2017; Pan et al., 2018). Another approach for
feature reduction in invasive and non-invasive bandpower-based
BCIs is common spatial patterns (CSPs), a linear projection
scheme that optimizes class separation within a pre-defined
window (Blankertz et al., 2008; Onaran et al., 2011; Wu et al.,
2013; Kapeller et al., 2014, 2018; Lotte et al., 2015; Gruenwald
et al., 2017a).

To underline the popularity of the aforementioned methods,
5 out of 14 setups as listed in Table 1 utilize LDA while scoring
top results, and all feature reduction approaches (9 out of 15) are
either selection-based or CSP-based.

Despite their striking advantages, all of the three outlined
techniques (LDA, CSP, and feature selection) suffer from
substantial drawbacks.

First of all, LDA is inherently static, since it is designed to
operate on two multidimensional point clouds. However, the
trials of (synchronous) BCIs are usually given as spatiotemporal
feature matrices that also contain transient information. This
transient information cannot be exploited by LDA in a
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TABLE 1 | State-of-the art summary of hand-motor decoding experiments involving high-gamma based invasive BCIs.

Reference No. of

subjects

Electrode

spacinga
Frequency

bands (Hz)

Feature

reductionb
Classifierc Trial

alignment

Trial

length (s)d
Protocole Classesf Mean

accuracy

(%)

Shenoy et al., 2007 6 Macro 11− 40

71− 100

101− 150

None LPM None Not reported Finger 5 77.0

Kubánek et al., 2009 5 Macro 8− 12

18− 24

75− 115

125− 159

159− 175

None LMD Data glove [−1.0,+1.0] Finger 5 80.3

Onaran et al., 2011 3 Macro 65− 200 CSP SVM Data glove [−0.75,+1.0] Finger 5 86.3

Yanagisawa et al.,

2011

1 Macro 1− 8

25− 40

80− 150

None SVM None n/a (online) Move

RPS

1+ 1

3

79.6

68.3

Pistohl et al., 2012 3 Macro 2− 6

14− 46

54− 114

None rLDA Data glove [−1.0,+0.5] Grasp 2 87.8

Chestek et al., 2013 3 Mixed 66− 114 None NB Data glove [−0.5,+1.5] Gesture

Finger

4+ 1

4+ 1

77.7

79.3

Kapeller et al., 2014 2 Macro 60− 90

110− 140

160− 190

FS

CSP

LDA None [−0.5,+1.5] RPS 3 83.8

95.8

Xie et al., 2015 4 Macro Auto FS LDA None Various Gesture 2

3

95.5

92.7

Bleichner et al.,

2016

2 Micro 70− 125 FS PM Data glove [−1.0,+2.0] Gesture 4 85.5

Hotson et al., 2016 1 Micro 72− 110 FS LDA Data glove [−0.4,+1.0] Finger 5 96.5

Branco et al., 2017 5 Micro 70− 125 None PM High-gamma [−1.0,+2.6] Gesture 4 85.0

Jiang et al., 2017 2 Micro 60− 200 CSP LDA Not reported [−0.15,+0.35] Gesture 2 100.0

Li et al., 2017 3 Macro 4− 12

70− 135

FS SVM None [±0.0,+0.9] RPS 3 80.0

Pan et al., 2018 5 Micro 4− 12

12− 40

40− 70

70− 135

135− 200

FS RNN Data glove [±0.0,+0.5]

[±0.0,+1.2]

RPS 3 ≈ 80

≈ 90

aMacro, standard ECoG grid; Micro, high-density ECoG grid; Mixed, standard and high-density ECoG grids.
bCSP, common spatial patterns; FS, algorithm-based or manual channel/feature selection.
cLPM, linear programming machine; LMD, linear multivariate decoder; SVM, support vector machine; (r)LDA, (regularized) LDA; NB, naive Bayes; PM, pattern matching; RNN, recurrent

neural network.
dSpecified relative to cue, movement onset, or high-gamma onset (depending on trial alignment).
eFinger, finger movement or tapping; Move, movement vs. rest; RPS, rock-paper-scissors; Gesture, arbitrary hand gestures.
f Inclusion of a resting-state class denoted by “+1”.

straightforward manner. Sometimes, it is feasible to vectorize
the feature matrices and apply LDA on the resulting vectors.
This approach however inflates the dimension of the feature
space dramatically. It therefore requires a large amount of trials
to maintain statistical robustness, which are only available in
particular BCI protocols (such as in P300-based experiments;
Hoffmann et al., 2008). If the statistics are too weak for this
approach, a regularized version of LDA may be used. In the
current context of invasive BCIs for motor control, this approach
was followed by Li et al. (2017), whose feature space was spanned
by the vectorized power samples from the time × frequency ×

channel cube. Another attempt to explicitly account for feature

transients was pursued by Pan et al. (2018), who employed
recursive neural networks. In general, however, LDA is usually
employed such that it is applied to the features at a given point
in time within the trial that promises to yield good performance.
In turn, this creates the challenge of robustly identifying this time
point. Furthermore, the features are usually temporally smoothed
to enhance performance—the appropriate smoothing level must
thus be found empirically as well.

To reduce the dimension of the feature space, feature selection
is straightforward and seems to deliver satisfying performance.
However, the nature of selecting a feature entirely dismisses
information in unselected features. Moreover, feature selection
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is unable to combine joint information from coherent features,
leading to redundancy in the final feature set. The search for
the optimal set of features may be computationally demanding,
if statistically robust results should be obtained. In any case, not
only identifying the features themselves, but also determining the
appropriate number of features is an additional degree of freedom
of this method that must be properly taken care of.

In contrast to feature selection, CSPs inherently overcome
the two main issues of feature selection, such as information
redundancy and feature dismissal. However, finding the optimal
location and size of the CSP window may be challenging and
requires manual intervention. To the best of our knowledge,
no automatized approaches thereto exist. As well, the optimal
number of features to be selected for optimal performance needs
to be determined in advance.

In view of the shortcomings of state-of-the art methods
delineated above, we here present a novel classification method
for machine-learning systems with spatiotemporal features in
general, and for high-gamma based invasive BCIs for motor
control in particular. Our method extends LDA such that it
accounts for the time-varying nature of features, we thus name
it time-variant linear discriminant analysis (TVLDA). Since
TVLDA is applied to one trial as a whole, it avoids the need
of estimating the optimal time point for classification as was
necessary for LDA. We will also describe an intrinsic property
of TVLDA that allows for straightforward and powerful feature
reduction via principal component analysis (PCA). Additionally,
we investigate the impact of a simple time-domain spectral
whitening stage during preprocessing. The resulting system is
still linear and of low complexity, which enables it for future
real-time experiments. We quantitatively assess and compare the
performance of our method by means of recordings from 15
subjects with temporarily implanted ECoG electrodes.

2. MATERIALS AND METHODS

2.1. Subjects
2.1.1. Original Study
In the original study conducted for this publication, we evaluated
data from six epilepsy patients undergoing surgical treatment at
Asahikawa Medical University, Asahikawa, Japan. For surgery
planning, the patients had a variety of ECoG grids of different
types, sizes, and channel counts implanted over the course of
several weeks. Besides the standard clinical procedure, all of them
volunteered to participate in additional research experiments.
The study was approved by the institutional review board of
Asahikawa Medical University and received certificate number
245 in June 2012. Written informed consent was obtained from
each patient before participating in the study.

Table 2 summarizes the most important data and recordings
from the patients, which we subsequently refer to as subjects S1
through S6. Their ages ranged between 17 and 37 years at the
day of electrode implantation. S1 and S4 (one third) are female,
whereas S2, S3, S5, and S6 are male. S4 is the only left-handed
subject. Covered hemispheres are left for S3 and S4 and right for
the others.

From the total number of implanted ECoG grids, we only
used the ones covering sensorimotor areas for further evaluation.
These were standard 20-channel grids (UniqueMedical Co., Ltd.,
Tokyo, Japan; diameter 3 mm, spacing 10 mm, geometry 4 × 5)
for S1 and S6, and 60-channel high-density ECoG grids (Unique
Medical Co., Ltd.; diameter 1.5 mm, spacing 5 mm, geometry 6×
10) for the others. Based on MRI and CT scans, we reconstructed
a three-dimensional model of the brain via FreeSurfer (Martinos
Center for Biomedical Imaging, Harvard University) and co-
registered electrode locations. Based on this and a functional
parcellation of the brain, we roughly estimated the electrode
coverage on the primary motor cortex and the somatosensory
cortex. At this stage, it turned out that the electrodes of S5 were
actually only covering somatosensory areas. Figure 1 provides an
overview of the electrode placement.

2.1.2. Public Dataset
In order to make our analyses reproducible by other researchers,
we also evaluated the publicly available fingerflex dataset1 from
Kai Miller.

2.1.2.1. Ethics statement
All patients participated in a purely voluntary manner,
after providing informed written consent, under experimental
protocols approved by the Institutional Review Board of
the University of Washington (no. 12193). All patient data
was anonymized according to IRB protocol, in accordance
with HIPAA mandate. These data originally appeared in
the manuscript Human Motor Cortical Activity Is Selectively
Phase- Entrained on Underlying Rhythms published in PLoS
Computational Biology in 2012 (Miller et al., 2012).

This dataset contains nine subjects, which we integrate as
S7 through S15 in this context. A brief summary is given in
Table 3. All subjects used implanted platinum arrays (Ad-Tech
Medical Instrument Corporation, Wisonsin, USA) with 2.3 mm
exposed surface and 10mm inter-electrode distance. The datasets
comprised a variable number of channels, which all seemed to
contain good ECoG data. In contrast to the data from our study
in Asahikawa, it was difficult to assess the exact coverage of S7–
S15; we thus used all channels for further processing. Please
see the original publication for more details regarding the exact
electrode locations.

We recognized that the recordings from S7 to S9 are
identical with Subject 1–3 from the BCI Competition IV,
respectively, which is another highly popular public ECoG
dataset (Tangermann et al., 2012).

2.2. Experiments
Table 2 summarizes the conducted experiments, which all
relate to hand motor functions at different abstraction levels.
The rock-paper-scissors (RPS) experiment addresses high-level
gestures, whereas the finger-tapping experiment aims at decoding
individual finger movement. The latter is divided into the two
variants palm down (FTPD) and palm up (FTPU). We will use

1https://stacks.stanford.edu/file/druid:zk881ps0522/fingerflex.zip
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TABLE 2 | Subjects S1–S6 and experiment overview of the original study conducted in Asahikawa, Japan.

ID Age Gender
Handed- Covered Electrode Electrodes Electrodes Coverage Coverage

Protocolc
Trials

ness hemisphere spacinga total selected motorb somatosensoryb per class

S1 35 Female Right Right Macro 98 20 7–8 5–7 RPS 30

26 Male Right Right Micro 140 60 26–32 19–24
FTPU 40

S2
RPS 40

S3 26 Male Right Left Micro 187 60 29–36 22–26 FTPU 20

17 Female Left Left Micro 164 60 29–37 12–17

FTPD 75

FTPU 86S4

RPS 65

FTPU 97
S5 22 Male Right Right Micro 158 60 5–7 27–34

RPS 76

S6 37 Male Right Right Macro 100 18 7–9 4–7 RPS 60

aMacro, standard ECoG grid; Micro, high-density ECoG grid.
bEstimated number of electrodes, based on Figure 1.
cRPS, rock-paper-scissors; FTPD, finger tapping, palm down; FTPU, finger tapping, palm up.

FIGURE 1 | Electrode placement overview. Electrodes reported in Table 2 are highlighted in red. Not all of the remaining electrodes in the top row are visible due to

occlusion. In the close-up view, the central sulcus is indicated in yellow and the identified gyri are shaded in respective colors.

TABLE 3 | Subjects S7–S15 and experiment overview of the public ECoG dataset (S7–S9 are identical with Subject 1–3 from the BCI Competition IV, respectively).

ID
Patient BCI

Age Gender
Handed- Covered Electrode No. of

Protocolc
Trials

codea comp. IV ness hemisphere spacingb electrodes per class

S7 bp Subject 1 18 Female Right Left Macro 46 FTPU 28

S8 cc Subject 2 21 Male Right Right Macro 63 FTPU 28

S9 zt Subject 3 27 Female Right Left Macro 61 FTPU 28

S10 jp 35 Female Right Left Macro 58 FTPU 18

S11 ht 26 Male Right Left Macro 64 FTPU 27

S12 mv 45 Female Right Left Macro 43 FTPU 6

S13 wc 32 Male Right Left Macro 64 FTPU 28

S14 wm 19 Female Right Right Macro 38 FTPU 14

S15 jc 18 Female Right Left Macro 47 FTPU 23

aAs stated in the dataset documentation.
bMacro, standard ECoG grid.
cFTPU, finger tapping, palm up.
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FIGURE 2 | Setup of the rock-paper-scissors experiment.

the terms finger movement and finger tapping interchangeably
throughout this publication.

All experiments were conducted at the bedside of the
patient. Before each experiment, the patients received and
confirmed all necessary instructions to successfully perform it.
The respective tasks were triggered by a visual cue, shown
on a computer monitor placed in front of the patient. A
data glove (5DT Inc., Florida, USA) was used to capture
the hand movements of all subjects. In all experiments, the
contralateral hand relative to the implantation site carried out the
movements. Figure 2 gives a visual impression of the setup. The
experiments conducted with S1–S6 were repeated over the course
of several days, depending on the condition and motivation of
the subjects.

In the following, we describe the individual experiments more
in detail.

2.2.1. Rock-Paper-Scissors
The different hand poses involved in this experiment were
inspired by the well-known hand game rock-paper-scissors (RPS),
constituting a three-class experiment. The visual cues were shown
on the screen for one second, interleaved by a scrambled picture
distractor of randomized duration between 1.5 and 2.5 seconds.
The subjects were instructed to form the requested gesture with
their hand once the stimulus appeared, and to return into a
relaxed hand position once the distractor showed up. One run
included 20 trials per class. The rock-paper-scissors experiment
was only conducted with S1–S6.

2.2.2. Finger Tapping, Palm Down and Palm Up

2.2.2.1. Original study (S1–S6)
Here, the subjects were asked to perform two taps with the finger
indicated on the screen for one second. Between the cues, a
scrambled picture was shown for a randomized duration between
1.7 and 2.5 seconds, indicating that the subject should stay at rest.
In the easier version, the palm-up version (FTPU), the subjects

executed two repeated finger flexions, whereas in the palm-down
version (FTPD), the subjects performed actual taps on a solid,
planar surface. One run of this five-class experiment consisted of
10 trials per class. The palm-down version turned out to require
a certain level of fine motor skills that was not present in all
subjects, so only S4 completed it successfully.

Due to misunderstanding of the task instructions, S3 executed
this experiment differently: instead of executing two discrete taps,
he kept flexing the finger until a new instruction showed up on
the screen. As described below, this required some additional
processing steps to obtain usable data.

2.2.2.2. Public dataset (S7–S15)
As described in Miller et al. (2012), the subjects were
cued with a word shown on a bedside monitor, indicating
which finger to move. Each task lasted for two seconds,
during which the subjects typically performed between two
and five repeated finger flexions. A blank screen, shown for
another two seconds, was interleaved between each task as
a resting trial. Only the palm-up variant of the experiment
was performed.

2.3. Data Acquisition
2.3.1. Original Study (S1–S6)
We captured the raw ECoG data with the g.HIamp biosignal
amplifier (g.tec medical engineering GmbH, Austria) and used
Simulink (The MathWorks, Inc., Massachusetts, USA) as the
recording environment. Depending on the overall number of
channels, we set the sampling rate to either 1.2 or 2.4 kHz.
We used the g.HIsys Highspeed Online Processing toolbox (g.tec
medical engineering GmbH) for the stimulus presentation
and synchronous data acquisition and storage. The recorded
data were saved on a hard drive and re-processed offline in
MATLAB (The MathWorks, Inc.) for this study as described in
this section.

2.3.2. Public Dataset (S7–S15)
As communicated by Miller et al. (2012), the ECoG data were
recorded with the Synamps 2 biosignal amplifier (Compumedics
Neuroscan, North Carolina, USA) at a sampling rate of 1 kHz
and internal bandpass-filter from 0.3 to 200 Hz. The general-
purpose software environment BCI2000 was used for stimulus
presentation and synchronous data acquisition.

2.4. Preprocessing and Feature Extraction
This subsection closely follows the concept of Gruenwald et al.
(2017b), which outlines optimal bandpower estimation for real-
time BCIs. If not otherwise mentioned, we processed data from
all subjects regardless of their origin in the exactly same manner.

After excluding channels that were notably bad due to
high impedance, we re-referenced the data by the common
average. After that, a notch-filter cascade (recursive 6th-order
Butterworth, bandwidth: 5 Hz) up to the 6th harmonic was
used to remove interference peaks from the spectrum at integer
multiples of the power line frequency.

Next, an optional spectral whitening filter (Oppenheim
and Schafer, 2010) was applied to each channel. While the
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concept of whitening (or spectral equalization) is frequently
used in time-frequency analysis (Miller et al., 2009; Yanagisawa
et al., 2011; Pistohl et al., 2012), it is less known that it
can also be performed in time domain by a simple finite-
impulse response filter. This enables whitening for real-
time applications, where time-frequency transformation is not
an option.

The underlying principle of a whitening filter is that the
input signal can be modeled as a Pth-order autoregressive (AR)
process, e.g.,

P
∑

p = 0

apy[n− p] = v[n] (1)

with v[n] ∼ N(0, σ 2
v ) i.i.d. being a zero-mean white Gaussian

noise with variance σ 2
v . In this publication, we use the tilde

notation to link a random variable with its particular distribution
and the term i.i.d. to indicate independent and identically
distributed samples. The AR coefficients ap can be determined by
the Yule-Walker equations that are applied to a sufficiently long
signal fragment of y[n] (e.g., a few seconds). Equation 1 can now
be seen as a linear time-invariant filter with impulse response ap:

ȳ[n] =

P
∑

p = 0

apy[n− p] . (2)

It is intuitive that the filter output ȳ[n] resembles the white noise
v[n] and therefore has a flat spectrum.

The positive effect of whitening on the signal-to-noise
ratio of ECoG bandpower features was anticipated previously
(Gruenwald et al., 2017b). Figure 3 provides an illustration,
where the dynamic range of the signal within the cut-off
frequencies can be roughly estimated to 25 dB. Whitening
equalizes the pronounced 1/f -shape of the spectrum, which
balances the frequency-specific contributions to the overall
bandpower and thus increases signal fidelity.

Since an ECoG spectrum is rather smooth in absence of
interference peaks, the filter order can be low. In practice, we
found a 10th-order whitening filter sufficient.

After the optional whitening stage, we band-passed the signal
(recursive 6th-order Butterworth) to our high-gamma frequency
band of interest. We assessed several bands with respect to
classification performance, and finally chose 50 to 300 Hz as our
target. This may seem inappropriate in view of the fact that the
data of S7–S15 was pre-filtered by a bandpass between 0.3 and
200 Hz. However, we observed that the whitening procedure was
able to recover high-gamma components well above 200 Hz.

Given the bandpass signals, we then estimated the bandpower
via a sliding variance window of 50 ms length, without overlap.
A log-transform was appended, to improve signal stationarity
and Gaussianity.

Then, the data were triggered, i.e., cut into signal fragments
for each trial and class. Since S3 and S7–S15 exhibited a large
movement onset jitter, we applied a trial-based correction. To this
end, we used the signals captured by the data glove for aligning
the individual trials of S3. Likewise, we corrected the onset jitter

FIGURE 3 | Illustration of the whitening procedure by means of power spectral

densities of the preprocessed bandpass signals (S6, RPS, exemplary channel).

To illustrate the benefits of whitening, the two conditions rest vs. movement

(any class) are shown separately. Upper and lower corner frequencies of the

bandpass filter are indicated by the vertical dashed lines.

of S7 to S15 by a movement trigger already contained in the
data. For the other subjects (S1, S2, and S4–S6), no explicit trial
alignment was performed, since the onset jitter was already small
enough for good classification results. However, we compensated
for the systematic reaction and execution latency by shifting the
grand average high-gamma onset to the center of the trial to
guarantee symmetry.

We set our trial length to 0.75 seconds pre- and post-onset,
respectively. Trials that were contaminated with pathological
brain activity (such as inter-ictal spiking) were removed. No
further trial exclusion was performed.

At this point, it is reasonable to establish a mathematical
model that facilitates subsequent methodological derivations. To
this end, we refer to the number of samples and channels as
NS and NCh, respectively. The preprocessed and triggered data

then constitute spatiotemporal feature matrices Y
(i)
c ∈ R

NS×NCh

for trials i and classes c. Both trials and classes are expected to
stem from a pool of NT trials and NC classes, respectively, e.g.,
T = {1, . . . ,NT} and C = {A,B,C, . . . } with |C| = NC. For the
typical machine-learning scenario, we are further partitioning the
set of trials into a training set TTrain (with known class labels) and
a test set TTest (with unknown class labels), which are disjoint.
Formally, these sets can be expressed as

YTrain =
{

Y
(i)
c

∣

∣ c ∈ C, i ∈ TTrain

}

(3)

YTest =
{

Y
(i)
c

∣

∣ c ∈ C, i ∈ TTest

}

. (4)

Toward mathematical tractability, we decompose Y
(i)
c into row

vectors y
(i)
c [n] with discrete-time index n:

(

Y
(i)
c

)

n,·
= y

(i)
c [n], n ∈ {0, 1, . . . ,NS − 1} . (5)

2.5. Feature Reduction (Standard)
The number of recorded channels may be high, particularly
in ECoG experiments. This increases the computational
demands and the risk of classifier overfitting. Consequently,
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a feature projection or selection stage usually precedes the
classifier. Especially for ECoG, this can decrease dimensionality
tremendously without losing information, since (1) only a limited
amount of channels significantly contributes to class separation
and (2) correlation across contributing channels may be high.
Mathematically, this feature projection is implemented by a
generic matrix P ∈ R

NCh×NF with NF ≪ NCh, such that

x
(i)
c [n] = y

(i)
c [n]P . (6)

Following a likewise decomposition as in (5), we denote the

contracted spatiotemporal featurematrices byX
(i)
c ∈ R

NS×NF and
write for the training and test sets

XTrain =
{

X
(i)
c

∣

∣ c ∈ C, i ∈ TTrain

}

(7)

XTest =
{

X
(i)
c

∣

∣ c ∈ C, i ∈ TTest

}

. (8)

The subsections below describe strategies how to populate the
projection matrix P.

2.5.1. Common Spatial Patterns
Common spatial patterns (CSPs) are the de-facto standard for
dimension reduction in EEG signal processing (Blankertz et al.,
2008; Lotte et al., 2015) and are also popular in ECoG signal
processing (Onaran et al., 2011; Kapeller et al., 2014; Xie et al.,
2015; Jiang et al., 2017). This approach expects multivariate
distributions of two classesA andBwith covariances6A and6B,
respectively. The CSP transformationmatrix then simultaneously
diagonalizes both6A and6B, where the element-wise ratio along
the diagonals is strictly monotonic. Consequently, the first and
the last CSP component maximize the variance for one class,
while minimizing it for the other. Additional CSP components
further contribute to this.

In the given context, CSPs operate on the triggered
bandpass data within a pre-defined window, i.e., before power
computation. For all datasets, we have located the peak of
the grand high-gamma activation over trials and classes, and
centered the CSP window about this peak. We set the window
length to 0.3 seconds, since this yielded the best classification
results. Denoting the CSP transformation by R ∈ N

NCh×NCh ,
the projection matrix PCSP is then column-wise populated with
the first ⌈NF/2⌉ and the last ⌊NF/2⌋ columns of R. As will be
discussed in section 2.8, we computed CSPs pairwise for each
binary classification in a multi-class scenario.

2.5.2. Feature Selection
Another common approach to reduce the dimensionality is
a discrete feature (or channel) selection process. While the
individual implementations differ considerably, feature selection
is heavily used in the ECoG community (Kapeller et al., 2014; Xie
et al., 2015; Bleichner et al., 2016; Hotson et al., 2016; Li et al.,
2017; Pan et al., 2018).

Here, we use a straightforward approach for feature selection.
First, we compute an activation score for each class and channel,
which is the trial-averaged relative band-power increase from
baseline (before high-gamma onset) to activation (after high-
gamma onset). For each pair of classes, we then calculate the

absolute difference of this activation score for each channel
and sort the result in descending order. This way, the channels
exhibiting the largest high-gamma activation difference for the
two classes are ranked top. Consequently, the projection matrix
PFS (which ismore a selectionmatrix now) is established such that
its NF columns logically index the first NF channels in the given
ranking, respectively.

2.6. Classification
We now assume that, for each class, the feature matrices X

(i)
c

comprise a unique underlying activation pattern that is identical
over trials. However, each repetition is subject to noise, most
prominently from imperfect task execution and the uncertainty
of feature estimation. We thus employ a multivariate Gaussian
distribution to describe these components as follows:

x
(i)
c [n] ∼ N

(

µc[n],6c[n]
)

i.i.d. (9)

In general, µc[n] ∈ R
1×NF and 6c[n] ∈ R

NF×NF are not known.
The independence constraint is expected to hold over samples

n, trials i and classes c. While this requirement is intuitively hold
over trials and classes, in fact it may be violated over samples. We
have shown in Gruenwald et al. (2017b) that the signal processing
pipeline yields high-gamma features with estimation noise that
can be considered white; however, imperfect trial execution may
impose temporally correlated noise on the data. We will also
address this issue in section 4.

2.6.1. Linear Discriminant Analysis
A standard tool to separate features of two classes is linear
discriminant analysis (LDA). In a nutshell, LDA expects
multivariate Gaussian distributions from two classes A and B

and finds a projection vector that simultaneously maximizes the
mean distance whilst minimizing the individual variances of the
projected populations (Bishop, 2006). LDA-based classifiers are
optimal in the maximum-likelihood sense if the two distributions
are homoscedastic.

For convenience and if applicable, we hereafter use the generic
class label c ∈ {A,B} to denote either of the two classes. In case
we know the class associated with a particular variable, we denote
this by subscript notation.

A common approach to classify spatiotemporal features with
LDA is the training of several LDA instances over time and
selecting the classifier which yields best performance. Thus, after
introducing the well-known difference of means and pooled
covariance matrix

1µ[n] = µB[n]− µA[n] (10)

6[n] = 1
2

(

6A[n]+ 6B[n]
)

, (11)

the standard LDA projection vector equates to

w[n] = 1µ[n]6−1[n] . (12)

Given an arbitrary input x(i)[n], the symmetric LDA score p(i)[n]
is computed as

p(i)[n] = w[n]x(i)[n]T − d[n] , (13)
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where the superscript ( · )T denotes matrix transposition and
the offset

d[n] = 1
2w[n] (µA[n]+ µB[n])

T (14)

centers the two projected class populations about zero.
This can be verified by equating the means µpc [n] =

E{p
(i)
c [n]} via Equations (13) and (14), where E{·} denotes

the expectation operator over trials. It is now evident that
µpA [n] = −µpB [n], since

µpA [n] = − 1
2w[n]1µ[n]T (15)

µpB [n] = + 1
2w[n]1µ[n]T . (16)

2.6.1.1. Training
There are different approaches to apply an LDA classifier to
spatiotemporal features. The most common strategy is to smooth
the features over time, train the LDA classifier for each point
in time, and then select the one which gives best performance.
In the present context, best performance for LDA was achieved
if the features within a trial were symmetrically smoothed by
three samples in each direction. Toward the decision which
classification time point to use, we investigated several options.
Most robust results were obtained by adaptively selecting the
time point of maximum high-gamma activation over all classes
and trials. We subsequently denote this time point as nLDA.

Summarizing the LDA training procedure, the sample means

µ̂c[nLDA] and covariances 6̂c[nLDA] are computed first, given

labeled training data X
(i)
c ∈ XTrain. Via Equations (10), (11),

(12), and (14), the set {ŵ[nLDA], d̂[nLDA]} then constitutes the
LDA classifier.

2.6.1.2. Test
Given a test trial X(i) ∈ XTest and {ŵ[nLDA], d̂[nLDA]} as the
classifier, the LDA score p̂(i) is simply computed analogously
to (13):

p̂(i) = ŵ[nLDA]x
(i)[nLDA]

T − d̂[nLDA] . (17)

Since the two classes in question lead to LDA scores symmetric
about zero, the natural threshold for classification is zero as well:

ĉ
(i)
LDA =

{

A p̂(i) < 0

B p̂(i) ≥ 0
. (18)

2.6.2. Regularized Linear Discriminant Analysis
Computing the LDA weight vector requires the inversion of
the pooled covariance matrix. This can become numerically
unstable if the number of samples is not much larger than the
feature dimensionality. To overcome this problem, a regularized
LDA (rLDA) can be used where only the main diagonal of
the sample covariance matrices is accounted for (also known
as shrinking). Since this allows stable inversion even in high-
dimensional feature space, rLDA is particularly appealing when

applied to vectorized features x
(i)
c ∈ R

1×NSNF , such that

x
(i)
c =

[

x
(i)
c [0], x

(i)
c [1], . . . , x

(i)
c [NS − 1]

]

(19)

∼ N
(

µc,6c

)

i.i.d. (20)

to account for all spatiotemporal information at once.

2.6.2.1. Training
Training the rLDA classifier is straightforward. After computing
sample means and sample covariance matrices from the
vectorized training data, the off-diagonal elements of the sample
covariance matrices are set to zero. Equations (10), (11), (12),

and (14) yield the rLDA classifier {ŵ⋆, d̂⋆}. Note that the temporal
index n has now vanished.

2.6.2.2. Test
Applying the rLDA classifier {ŵ⋆, d̂⋆} to test data follows
analogously to section 2.6.1.2.

2.6.3. Time-Variant Linear Discriminant Analysis
The major improvement of time-variant linear discriminant
analysis (TVLDA) over standard LDA is that it utilizes
information of all individually trained LDA classifiers over the
whole trial, which makes it inherently time-variant. To derive the
concept of TVLDA mathematically, we first interpret p(i)[n] (13)
as an NS-dimensional vector:

p(i) =
[

p(i)[0], p(i)[1], . . . , p(i)[NS − 1]
]T

. (21)

In this notation, each class establishes the multivariate
Gaussian distribution

p
(i)
c ∼ N

(

µpc ,6pc

)

i.i.d. (22)

with means µpc ∈ R
NS×1 and covariances 6pc ∈ R

NS×NS

equating to

µpc =
[

µpc [0],µpc [1], . . . ,µpc [NS − 1]
]T

(23)

6pc = diag
{[

σ 2
pc
[0], σ 2

pc
[1], . . . , σ 2

pc
[NS − 1]

]}

. (24)

The assumed temporal independence of the feature noise (cf. (9))
implicates the fact that 6pc must be diagonal. The elements of
µpc are given by Equations (15) and (16), and the elements of
6pc are obtained after short calculus as

σ 2
pc
[n] = w[n]6c[n]w[n]

T . (25)

We now want to separate the two class populations
{

p
(i)
A

}

and
{

p
(i)
B

}

again in the LDA-sense. Consequently, the difference of
means and pooled covariance are given as

1µp = µpB
− µpA

(26)

6p = 1
2

(

6pA + 6pB

)

. (27)

To find an expression for the LDA projection vector6
−1
p 1µp, we

trace back Equations (23) and (24), Equations (15), (16), and (25),
and Equations (11) and (12), to finally arrive at the elegant result

6
−1
p 1µp = 1 . (28)

In other words, the overall TVLDA score, denoted by z(i), is
simply the sum of all intermediate LDA scores (13):

z(i) =

NS−1
∑

n = 0

p(i)[n] . (29)
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It is evident that µpB [n] − µpA [n] = 1µ[n]6−1[n]1µ[n]T,
which can be shown by inserting (12) into Equations (15) and
(16). Consequently, the difference of the expected TVLDA scores
yields via (29)

E

{

z
(i)
B

}

− E

{

z
(i)
A

}

=

NS−1
∑

n = 0

1µ[n]6−1[n]1µ[n]T , (30)

which is the accumulated Kullback-Leibler divergence of the
classes A and B under the homoscedasticity assumption of the
(TV)LDA.

2.6.3.1. Training

From the training data X
(i)
c ∈ XTrain, the TVLDA parameters

{ŵ[n], d̂[n]} are computed based on the sample means µ̂c[n] and

covariances 6̂c[n] via Equations (10), (11), (12), and (14).

2.6.3.2. Test
For a test trial X(i) ∈ XTest and a set of TVLDA parameters

{ŵ[n], d̂[n]}, the TVLDA score ẑ(i) follows according to
Equations (29) and (13):

ẑ(i) =

NS−1
∑

n=0

ŵ[n]x(i)[n]T − d̂[n] . (31)

Evidently, also the TVLDA score is symmetric about zero, which
leads to the classification scheme

ĉ
(i)
TVLDA =

{

A ẑ(i) < 0

B ẑ(i) ≥ 0
. (32)

2.7. Feature Reduction (TVLDA-Specific)
We here resume section 2.5 by proposing a novel feature
dimensionality reduction approach that is intrinsic to TVLDA,
based on principal component analysis (PCA).

We can interpret the time-variant TVLDA weight vector as
a spatiotemporal weight matrix W ∈ R

NS×NF , whose rows are
given by w[n]:

(

W
)

n,·
= w[n] . (33)

Motivated by the nature of PCA, we now restrict the generic
transformation matrix P to be orthogonal, i.e., P ∈ R

NCh×NF with
NF = NCh and P−1 = PT. Consequently, any transformation of

y
(i)
c [n] by P transparently affects the TVLDA weight matricesWx

andWy:

x
(i)
c [n] = y

(i)
c [n]P ⇒ Wx = WyP , (34)

where the subscripts indicate which variableW is associated with.
This relationship can be shown by substituting the projection
scheme into the computation of the weight vector (12) via
Equations (10) and (11).

The idea now is to find P, such that the weights in Wy

are compressed into very few columns of Wx. Only these
columns of Wx are then kept, leading to an effective reduction
in dimensionality.

FIGURE 4 | Column-wise visualization of the original and PCA-transformed

spatiotemporal weight matrices Wy (left) and Wx (right), respectively. As

illustrated in the right subplot, only few principal components with large

amplitudes remain. This allows for substantial dimension reduction, as detailed

in the text.

The standard solution to this problem is PCA, which we
implement as a singular value decomposition (SVD) of Wy. In

short, we factorize Wy = USVT where U ∈ R
NS×NS and

V ∈ R
NCh×NCh are orthogonal matrices, and S ∈ R

NS×NCh

is a matrix with zeros, except for the non-negative, decreasing
singular values on the diagonal. The desired scores in the
principal-component space of Wx are now given by the product
US, such that we require

Wx = USVTP
!
= US (35)

and obtain simply

P = V . (36)

Since V establishes an orthonormal projection, which
can be seen as a rotation in high-dimensional space,
all information is preserved. The principal components
are ordered by their impact, so the projection matrix
PPCA is simply populated by the first NF columns of V.
Figure 4 provides an example of the PCA-based feature
reduction method.

Importantly, the number of channels may be too high to
yield invertible covariance matrices (i.e., NCh ≫ NT). Even if
the covariance matrices are nonsingular, their inversion may be
numerically unstable. To find a robust PCA decomposition and
unless many more trials than channels are available, we therefore
recommend smoothing the sample means and covariances over
time before computing the weight matrix Wy that is subject
to the SVD. In our case, we used bidirectional averaging of
two samples in each direction to obtain the best results. For
datasets comprising many trials, this bidirectional averaging
did not impair results, and hence we recommend using it
whenever applicable.

The number of trials may be extremely low, and thus even
temporal averaging does not yield a usable PCA decomposition.
In this case—and only in this case—we suggest adding a certain
level of regularization to PCA: here, the off-diagonal elements
of the TVLDA sample covariances are weighted with a factor
between 0 and 1, where 0 is identical to complete diagonalization.
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We have observed that setting this factor to 0.75 (which equals
a regularization of 25%) can substantially improve results,
especially for datasets with particularly low trial count and a small
number of channels capturing task-related activation. We will
address this issue further in section 4.

Note that the proposed temporal averaging and regularization
only apply for computing the initial Wy, but not for Wx

after transformation.

2.8. Multi-Class Extension
So far, we have only addressed binary classification problems.
Since many experiments entail more than two classes, the
decision rules defined in Equations (18) and (32) must be
extended. We do so by employing a one-vs.-one classification
scheme. Consequently, each class is tested against each other
class, yieldingNC(NC−1)/2 binary classification results. It would
be straightforward to implement a voting approach that elects the
winner based on the most votes; however, this approach would
lead to frequent ties. Moreover, the quantitative information in
the (TV)LDA scores would be lost.We thus propose to use amin-
max approach formulti-class discrimination. First, we refer to the

(TV)LDA score for class cp vs. cq as ẑ
(i)
cpcq

(cp, cq ∈ C, cp 6= cq).

The smaller this value gets, the more certain (TV)LDA is that
trial i belongs to class cp rather than to class cq. Taking the worst

score over all classes (i.e., the maximum of ẑ
(i)
cpcq

over all q) then

indicates how likely it is that trial i stems from class cp, relative to
all other classes (the lower the more likely). Finally, the class that
minimizes this score is elected:

ĉ
(i)
(TV)LDA = argmin

cp

{max
p6=q

{ẑ
(i)
cpcq

}} . (37)

Evidently, the feature-reduction techniques discussed in
sections 2.5 and 2.7 follow this one-vs.-one scheme as well.

2.9. Performance Evaluation
Here, we describe our framework for performance evaluation.

2.9.1. Cross-Validation
We performed 20 repetitions of a randomized 10×10 cross-
validation to assess the expected performance of the system. All
components (such as feature reduction and classification) were
subject to this cross-validation to ensure that testing was done on
completely unseen data.

2.9.2. Assessed Method Variants
In this publication, we mainly want to investigate the potentials
of our proposed improvements, such as (1) spectral whitening,
(2) PCA-based feature reduction instead of CSP and feature
selection, and (3) TVLDA instead of LDA or rLDA. To this end,
we identified seven method variants (or simply methods) that
logically follow this path: for LDAwith CSP and feature selection,
we investigate the effect of whitening. Then, for whitened data,
we incorporate rLDA and PCA as a feature reduction technique
for LDA. Finally, for whitened data and PCA-based feature
reduction, LDA is switched to TVLDA to arrive at the complete
set of proposed improvements.

2.9.3. Performance Quantification
We quantify the performance of the respective methods by
means of accuracy rates (or simply accuracies). This is the true
positive rate, defined as the ratio between correctly classified
trials and total number of trials, averaged over all classes.
Since our evaluation framework is of statistical nature, a
rigorous comparison between methods by means of accuracies
is inappropriate. To resolve this, we here define a margin, within
which we consider two methods to perform equal. Intuitively, we
set this margin to 1/NT [%], since this represents the accuracy
range that relates to one trial per class. This in turn is the actual
quantization level of the respective dataset, and we hereafter refer
to it as the quantization margin.

To facilitate interpretation and comparison further, we also
introduce the term representative accuracy. The representative
accuracy is an acceptable trade-off between classification
accuracy and number of features needed. Since, at some
point, increasing NF may only marginally contribute to better
performance, we chose the smallestNF whose corresponding (i.e.,
representative) accuracy still lies within the quantization margin
of the best result.

3. RESULTS

In this section, we present the results of the classifier performance
evaluation. For the most comprehensive comparison, we
included the number of features NF from 1 to 15 and evaluated
the accuracies for each method variant and dataset.

Figure 5 gives a qualitative overview of the performance
evaluation for S1–S6. At this stage, it is already evident
that whitening dramatically improves decoding performance,
regardless of the feature reduction technique. For CSP and
feature selection, a gradual improvement can be observed inmost
datasets as NF increases. This is plausible as new information
is added to the system. It is remarkable that this characteristic
is different for PCA-based feature reduction: more features only
slightly improve performance, if there is any improvement at all.
For many datasets, the best performance is already achieved for
very few PCA components and degrades as more are added to the
system. The representative accuracy is indicated by the large dots.
Note that the concept of representative accuracy does not apply
to rLDA, since it directly operates on the vectorized feature space.

Table 4 lists the representative mean accuracies, standard
deviations, and respective number of features versus methods
and datasets. For better reading, we ordered the presentation by
protocol and electrode grid density. Below, we summarize the
most important findings. For brevity, we refer to TVLDA with
PCA-based feature reduction and whitening just as TVLDA.

3.1. Relative Performance
As summarized in Table 4, the accuracies increase systematically
from the standard methods to TVLDA. Whitening already has
a dramatic impact on the performance. For CSP and LDA, the
improvement peaks at +22.9% (S6, RPS) with +12.3% on average.
A similar trend can be observed for feature selection and LDA,
where we improved by up to +20.3% (S6, RPS) and +10.4%
on average.
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FIGURE 5 | Classification accuracies versus number of features NF for selected finger-tapping (left) and rock-paper-scissors (right) datasets. Results for rLDA are

not shown since NF does not apply. The dots represent the average of 20 repetitions of the randomized cross-validation, and the shaded area indicates the standard

deviation. The pronounced dots relate to the representative accuracy, which is defined in the text. Feature selection is abbreviated by “FS” in the legend. The

quantization margin is abbreviated by “QM”.
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TABLE 4 | Performance overview of all assessed methods on all datasets.

No Whitening Whitening

Dataset LDA
rLDAc LDA TVLDA

CSP Channel Sel. CSP Channel Sel. PCAd PCAd

Protocola Gridsb ID Acc. (%) NF Acc. (%) NF Acc. (%) Acc. (%) NF Acc. (%) NF Acc. (%) NF Acc. (%) NF

RPS Macro S1 63.8± 3.0 2 52.2±3.1 4 68.8±2.5 73.8±2.0 1 69.1±0.9 1 65.4± 1.5 1 82.4±2.0 1

RPS Macro S6 53.6± 2.2 3 57.3±1.5 9 79.9±0.8 76.5±1.4 8 77.6±1.0 8 79.2± 0.8 1 91.3±0.9 2

Average 58.7± 2.6 2.5 54.7±2.4 6.5 74.4±1.9 75.2±1.7 4.5 73.4±0.9 4.5 72.3± 1.2 1.0 86.9±1.6 1.5

RPS Micro S2 75.9± 1.7 4 77.3±2.2 8 89.2±1.0 91.7±1.2 3 82.0±2.4 11 91.6± 0.8 1 99.0±0.3 1

RPS Micro S4 77.4± 2.3 6 79.8±1.2 4 67.8±1.5 90.7±1.0 11 90.3±1.0 13 92.5± 0.7 2 98.9±0.2 1

RPS Micro S5 87.4± 1.8 5 89.0±1.1 7 96.3±0.4 95.0±0.6 4 95.7±0.6 5 98.4± 0.3 1 99.0±0.4 1

Average 80.2± 2.0 5.0 82.0±1.6 6.3 84.4±1.1 92.5±1.0 6.0 89.4±1.5 9.7 94.2± 0.7 1.3 99.0±0.3 1.0

FTPU Macro S7 54.9± 3.6 4 60.2±3.0 7 79.3±1.7 65.3±3.5 2 65.6±2.3 4 76.0± 2.1 1 89.4±1.3 1

FTPU Macro S8 56.6± 1.7 1 63.5±2.3 4 71.8±1.9 75.6±2.4 2 79.4±1.6 5 69.1± 2.2 1 82.8±1.2 1

FTPU Macro S9 53.5± 3.4 1 70.8±3.6 7 83.3±1.1 72.9±2.1 2 75.4±2.1 3 78.6± 2.3 1 85.7±1.2 1

FTPU Macro S10 55.8± 3.2 4 62.8±2.1 2 60.8±1.6 57.7±1.9 1 73.9±1.8 2 71.0± 1.9 1 77.3±2.0 1 ⋆

FTPU Macro S11 27.0± 2.9 1 38.0±2.5 3 50.4±1.6 39.3±2.1 1 50.8±2.7 5 50.4± 1.9 1 64.5±3.2 1

FTPU Macro S12 40.0± 0.0 1 53.3±0.0 1 70.0±0.0 60.0±0.0 1 63.3±0.0 1 80.0± 0.0 1 90.0±0.0 1 ⋆

FTPU Macro S13 49.9± 2.7 3 57.4±2.0 1 74.6±1.8 66.0±1.5 1 72.4±1.8 3 68.1± 2.8 1 80.1±1.7 2

FTPU Macro S14 55.7± 0.0 2 67.1±0.0 2 71.4±0.0 60.0±0.0 3 64.3±0.0 5 78.6± 0.0 1 81.4±0.0 1 ⋆

FTPU Macro S15 53.5± 1.7 1 58.9±2.3 2 58.9±2.0 68.7±1.4 1 68.9±1.8 2 70.9± 1.4 1 77.5±1.7 1 ⋆

Average 49.6± 2.8 2.0 59.1±2.6 3.2 68.9±1.7 62.8±2.2 1.6 68.2±2.1 3.3 71.4± 2.1 1.0 81.0±1.9 1.1

FTPU Micro S2 77.8± 1.5 5 80.9±1.4 4 80.2±1.3 79.8±1.7 7 85.3±1.2 7 87.5± 1.1 1 97.2±0.6 1

FTPU Micro S3 93.3± 1.8 2 83.8±1.1 3 85.8±1.2 95.3±0.6 2 93.1±0.7 3 91.0± 1.4 2 93.8±1.4 1

FTPD Micro S4 67.7± 2.4 12 65.3±1.3 8 50.5±0.9 85.3±0.9 5 85.0±0.7 10 89.3± 0.5 1 97.9±0.3 1

FTPU Micro S4 71.0± 1.1 7 75.0±0.9 5 51.7±1.0 89.0±0.7 4 88.8±0.6 9 89.2± 0.6 1 96.6±0.3 2

FTPU Micro S5 58.1± 1.5 12 55.4±1.0 9 68.2±0.9 64.3±1.1 8 65.2±0.9 12 70.6± 0.8 1 85.3±0.8 2

Average 73.6± 1.7 7.6 72.1±1.2 5.8 67.3±1.1 82.7±1.0 5.2 83.5±0.9 8.2 85.5± 0.9 1.2 94.2±0.8 1.4

The table is organized in four blocks, such that the rock-paper-scissor experiments with standard and high-density electrode grids are clustered in the first and second block, respectively. Likewise, the finger-tapping experiments with

standard and high-density electrode grids are presented in the third and fourth block, respectively. Accuracies and corresponding number of features NF are representative values, as described in the text. The percentages are given

as means ± standard deviation over 20 cross-validation repetitions. If the standard deviation is missing, it was zero due to the low number of trials. Emphasized values are considered the best for each dataset, which lie within the

quantization margin of the best result (cf. section 2.9.3).
aRPS, rock-paper-scissors; FTPD, finger tapping, palm down; FTPU, finger tapping, palm up.
bMacro, standard ECoG grid; Micro, high-density ECoG grid.
crLDA operates on vectorized features, so NF is not applicable (cf. section 2.6.2).
dFor rows marked with an asterisk (⋆), a regularization of 25% was used for PCA (cf. section 2.7).
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For whitened data, rLDA performed worst on average with
71.5%. LDA with CSP and feature selection was slightly better
with 74.0 and 76.1% on average. LDA with PCA was the best
on average with 78.8%. At the same time, PCA turned out to
be the most efficient feature reduction technique by far, needing
only 1.1 components on average instead of 3.5 (CSP), 5.7 (feature
selection), or the whole vectorized feature space (rLDA).

Overall, the best results were seen for whitened data and
TVLDA, where TVLDA outperformed rLDA by +16.4%, LDA
and CSP by +13.9%, and LDA and feature selection by +11.8% on
average. Investigating the impact of using TVLDA instead of LDA
for PCA-based feature reduction and whitened data, we obtained
an improvement of +9.1% on average. To assess the robustness
of each evaluated method, we computed the standard deviation
of the accuracies over 20 repetitions of the randomized cross-
validation. For the non-whitened data and LDA, we obtained
an average standard deviation of ±2.2 and ±2.0% for CSP and
feature selection, respectively. Whitening decreased these values
to ±1.6% and ±1.5%, respectively, whereas rLDA showed an
overall standard deviation of ±1.4%. TVLDA slightly diminished
the overall standard deviation further to ±1.3%.

3.2. Absolute Performance
TVLDA performed best not only on average, but for every single
dataset (within the quantization margin relative to the overall
maximum). Only one or two PCA features (1.1 on average)
are needed to achieve top performance. For the subsequent
discussion, we thus refer to the results yielded by TVLDA.

Combining the results of the rock-paper-scissors experiment
for the subjects with standard ECoG grids implanted, an overall
accuracy of 86.9% was achieved. In contrast, the accuracy
increases tremendously for subjects with high-density grids
implanted, who scored 99.0% on average.

S7–S15, all with standard electrode grids implanted, scored
81.0% on average in the finger-tapping experiments. In general,
all these data comprised fewer trials; for S12, even only 6 trials
were available. The entries marked with an asterisk in Table 4

were thus obtained with a regularized PCA to avoid overfitting
(cf. section 2.7).

For the patients with high-density grids implanted, the
classification accuracy in the finger-tapping experiment was
94.2% over all subjects. Accounting only for the subjects with
substantial sensorimotor coverage (thus excluding S5), the
overall score increased to 96.4%.

4. DISCUSSION

4.1. Classification Performance
Spectral whitening during the preprocessing stage has a
tremendous impact on decoding performance. On average, the
accuracy rises by +12.3% for CSP and LDA and by +10.4% for
feature selection and LDA. Figure 3 illustrates the reason for
this huge leap: whitening balances the information with respect
to frequency and therefore substantially increases the signal-to-
noise ratio. Employing multi-band features in the high-gamma
band (Shenoy et al., 2007; Kubánek et al., 2009; Kapeller et al.,
2014; Pan et al., 2018) may have a similar positive effect on the

classification performance as whitening, but this comes at the cost
of an expanded feature space.

When ECoG signals are offline analyzed in the time-frequency
domain, spectral whitening is well established (Miller et al.,
2009). Yanagisawa et al. (2011) and Pistohl et al. (2012) directly
extracted bandpower features for classification from a time-
frequency signal representation (such as short-time Fourier or
wavelet transforms). However, this approach is computationally
demanding and may not meet real-time constraints. We
therefore strongly promote the proposed time-domain whitening
filter to save valuable resources.

The evidence that TVLDA outperforms LDA on high-
gamma features is overwhelming: for every single dataset,
TVLDA delivers the best results. The grand average accuracy
improvement relative to standard methods is +16.4% (vs. rLDA),
+13.9% (vs. CSP and LDA) and +11.8% (vs. feature selection and
LDA). These results were obtained with mostly one (sometimes
two) internal PCA components for TVLDA, whereas CSP and
feature selection require 3.5 and 5.7 components, respectively.
Performance thus not only gets better, but is also achieved
at lower system complexity. The fact that only few PCA
components are necessary to achieve maximum performance
leads to remarkable robustness against overfitting; TVLDA with
PCA delivers 10×10 cross-validation results with a standard
deviation of ±1.3% on average. If very few trials are available,
a regularization term to PCA as discussed in section 2.7 can be
applied to further enhance stability.

Before putting our results into the context of state-of-the art
research, we want to emphasize that it was not our focus to
maximize the absolute performance of our system, but rather to
investigate the impact of structural and methodological advances
proposed in this manuscript. In other words, we did not employ
multiple frequency bands or add other features to improve overall
performance, unlike other studies to which we compare our
results. We did not reject badly or differently executed trials
from the datasets. In view of good responsiveness of a real-time
BCI, we kept our trial window short (±0.75 seconds, relative to
movement onset), whereas longer trials would have increased
classification accuracies for some datasets most certainly.

The three-class rock-paper-scissors experiment with standard
electrodes yielded an average accuracy of 86.9%. In view of the
experiment settings, this compares best to 68.3% (Yanagisawa
et al., 2011), 83.8% and 95.8% (Kapeller et al., 2014), 92.7%
(Xie et al., 2015), and 80.0% (Li et al., 2017). Whereas the cited
reference results relate to the same protocol in general, they
were obtained from multi-band features and substantially longer
trial durations. Xie et al. (2015) also used alternative features
besides bandpower.

For the rock-paper-scissors experiment with high-density
electrodes, TVLDA delivered almost perfect accuracies of 99.0%
on average over three subjects. A similar experiment was recently
conducted by Pan et al. (2018), who reported an accuracy of up
to 90%. Bleichner et al. (2016) achieved 85.5% and Branco et al.
(2017) attained 85.0% accuracy with high-density grids, but for
an experiment involving four gestures.

For standard electrode grids and the finger-tapping
experiment, TVLDA scored 81.0% on average over all subjects.
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This is well in line with state-of-the art results, such as such
as 86.3% (Onaran et al., 2011), 80.3% (Kubánek et al., 2009),
and 77.0% (Shenoy et al., 2007). For solid differentiation of five
individual fingers, however, the spatial sampling of standard-
sized grids may be too coarse. In particular, we observed
considerable confusion between the ring finger and little finger,
which are in fact difficult to move independently. Combining
these two classes improved decoding performance to 88.1% in
a four-class scenario, which seems a more usable setup in this
context. Interestingly, this result with 88.1% is higher than the
86.9% we obtained for only three classes. We thus suspect that
the electrode coverage of S1 was not particularly fortunate for
the rock-paper-scissors experiment, or the movements were
not executed consistently or pronounced enough. Based on our
experimental evidence, we believe that the rock-paper-scissors
experiment with proper sensorimotor coverage of standard-sized
electrodes and good subject participation should yield around
90% accuracy and above with TVLDA (as in S6).

The finger-tapping experiment with high-density
sensorimotor coverage resulted in 96.4% on average. This
is comparable to Hotson et al. (2016), who scored a maximum of
96.5% in a single subject, but with posterior selection of the best
LDA evaluation time point. With both standard and high-density
electrodes implanted, Chestek et al. (2013) reported 79.3% in a
similar experiment.

TVLDA with PCA has further advantages beyond high
classification accuracy. The architecture needs only minor
extensions compared to standard LDA. Additionally required
components encompass a time-domain whitening filter for
preprocessing, the summation over several LDA scores, temporal
smoothing of sample means and covariances for PCA, and an
SVD of the spatiotemporal TVLDA weight matrix. All of these
elements are strictly deterministic and can be implemented easily.
Training a system that implements TVLDA is fully automatic
and done in less than a second. Moreover, all shortcomings and
difficulties of CSPs and feature-selection approaches disappear,
since no external feature reduction is required. TVLDA is more
robust than any other assessed approach, even when only few
trials are available. With only one or two PCA components,
TVLDA already attains maximum performance.

4.2. Extensions, Limitations, and Outlook
Choosing the optimal number of principal components for
TVLDA may be straightforward in the given context, where
performance vs. number of features was evaluated via cross-
validation. In fact, one could have chosen just the first principal
component for all datasets with still very good results. TVLDA
may however be applied to more complicated datasets, where
more than one principal component is required. In this case,
cross-validation is still an option to determine the optimal
number of principal components. A more theoretical approach
that efficiently estimates the true number of underlying principal
components via Bayesian model selection was proposed by
Minka (2001).

We already mentioned that the temporal independence of
the noise as stated in (9) may be violated by inconsistent trial
repetitions of the subject. In this case, the assumptions of a

diagonal covariance matrix for TVLDA as in (24) is not justified
any more. In fact, a good estimate of the true covariance matrix
can be obtained from the training statistics of the LDA scores
(22) with considerable effort. We tested this option, but it did
not yield any improvements. On the contrary, TVLDA turned
out to become less stable. We therefore resorted to the variant
proposed in this manuscript, which can also be seen as a
form of regularization.

As evidenced by Figure 3, our high-gamma band of choice
covered several harmonics of the power-line frequency. Since
power-line interference can be huge, especially for ECoG data,
it must be addressed. Applying notch filters is a robust solution,
although they remove the complete signal within the specified
frequency band. As a consequence, we expect to have lost up
to 10% of the signal power (harmonic spacing: 50/60 Hz, notch
filter bandwidth: 5 Hz). In reality, it may be much less than 10%
though, since the filter cut-offs are not infinitely steep. A more
sophisticated interference cancelation approach that removes
only unwanted signal components could have maintained a
higher signal-to-noise ratio. This may have led to slightly better
performance, especially for whitened data.

Our evaluation is based on retrospective analysis of offline
data. However, since the signal processing pipeline is strictly
causal, we are confident that the whole system can be put to the
online context in a straightforward manner, yielding comparable
results. Based on the experimental evidence and our experience
with TVLDA, 20 trials per class for training should already
be enough for reasonable online classification performance,
provided that the coverage is good and high-density grids are
used. Of course, more training data can often improve results.

It should be noted that TVLDA is trial-based per se, so it needs
a trigger to perform classification. An interesting undertaking
would be the adaptation of TVLDA for asynchronous BCIs. For
training, triggered and labeled data will still be necessary (as for
most supervised classifiers). During a free run, the previously
trained, asynchronous TVLDA may then continuously process
the incoming data stream in sliding windows. This yields one
classification result at a time, including idle time periods. To
reduce this large number of produced false positives, we suggest
two strategies. First, the TVLDA scores themselves may be taken
into account, such that only scores that exceed a minimum of
certainty actually trigger a classifier output. This threshold may
be determined during training. As an alternative, a baseline class
could be added to the framework to explicitly account for the
idle state.

In any case, TVLDA is a window-based classifier and
thus requires a consistent spatiotemporal activation pattern for
successful classification. Truly continuous BCI control may be
difficult to implement with TVLDA.

In its design as proposed here, TVLDA requires each trial to
be completed until it is classified. For real-time applications, the
trial window should therefore be as short as possible. We can
imagine however an adaptive TVLDA that does not necessarily
accumulate the LDA scores over the whole trial. Rather, it would
raise a classification output whenever the accumulated LDA
scores up to the current time point exceed a certain threshold that
allows a reliable decision.
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TVLDA may also find usage in different application fields
apart from classification. For example, as shown in (30),
the TVLDA score relates to the accumulated Kullback-Leibler
divergence, which can be used for statistical evaluation such as
in trial-based functional brain mapping. Here, a particular task
is usually compared to a resting condition. Applying TVLDA at
each channel separately would then yield a robust measure how
much the respective channel is involved in carrying out the task.

Another potential use case of TVLDA would be the
reconstruction of task-related activation patterns. The PCA of
the TVLDA weight matrix readily provides a decoupled spatial
and temporal representation of the underlying cortical processes
that are specifically discriminating between the two classes. A
similar tool was published by Kobak et al. (2016), who proposed
a demixing PCA (dPCA). Here, PCA was extended with task-
related information to reduce data dimensionality and to reveal
unique activation patterns specific to each task. Unlike TVLDA,
dPCA was designed to simplify the analysis and visualization of
multi-dimensional neural recordings in animals, but it may also
be used for classification.

One fundamental assumption of TVLDA is that each trial
is the exact repetition of each other trial. While this leads to a
convenient signal model, it may not reflect reality. Most likely,
the overall amplitude of the underlying activation curve may
vary over trials due to adaptation, high-gamma attenuation,
learning, or fatigue. It may be worthwile to study a potential
extension of TVLDA that allows for these fluctuations or
trends. This may be inspired by Williams et al. (2018), who
have recently shown that tensor component analysis (TCA)—a
multilinear extension of PCA—provides a powerful framework
for decomposing triggered neural data into electrode factors,
time factors, and trial factors.

5. CONCLUSIONS

In this work, we have outlined a novel classification method for
invasive motor-control BCIs that extends LDA to account for
time-variant features. We named it TVLDA, for time-variant
linear discriminant analysis. At the same time, we proposed an
optimized feature extraction path for high-gamma bandpower
that utilizes time-domain whitening for improved performance.
We assessed the performance of TVLDA by evaluating data
from 15 epilepsy patients with implanted subdural grids. Based
on 19 experiments involving three high-level gestures and
individual finger movement, we systematically demonstrated the
superiority of TVLDA over several reference methods based
on LDA.

TVLDA establishes a new benchmark for invasive motor-
control BCIs, especially for those with high-density electrodes
implanted on sensorimotor areas. To our knowledge, 99.0%
for the recognition of three high-level gestures and 96.4%
for individual finger identification are the highest consistent
accuracies ever reported for these kinds of experiments.

Among the strengths of TVLDA is its ability to dramatically
reduce feature dimensionality through a novel projection scheme
based on PCA. This leads to robust performance, even for

experiments with very few trials. As a valuable consequence,
TVLDA makes any preceding feature reduction stage obsolete.
The implementation of TVLDA is straight forward and requires
only few adaptations compared to standard LDA.

It is evident that TVLDA is not limited to motor-
based classification tasks. Rather, it can be used for any
experimental setup that produces spatio-temporal activation
patterns for classification—potentially even in EEG or other non-
brain imaging approaches, such as electrooculography (EOG),
electrocardiography (ECG), electromyography (EMG), and the
like. TVLDA may also find use in different ECoG applications,
such trial-based functional brain mapping.

Overall, we believe that we have developed a valuable tool that
will open the door for invasive brain-computer interfaces with
almost perfect multi-class control in the near future. However,
additional work is necessary to further validate TVLDA with
different ECoG environments, as well as with EEG and other
imaging methods for clinical and scientific applications.
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