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Chemotherapy-induced neuropathic pain (CINP) is one of the most severe side effects
of anticancer agents, such as platinum- and taxanes-derived drugs (oxaliplatin, cisplatin,
carboplatin and paclitaxel). CINP may even be a factor of interruption of treatment and
consequently increasing the risk of death. Besides that, it is important to take into
consideration that the incidence of cancer is increasing worldwide, including colorectal,
gastric, lung, cervical, ovary and breast cancers, all treated with the aforementioned
drugs, justifying the concern of the medical community about the patient’s quality of
life. Several physiopathological mechanisms have already been described for CINP,
such as changes in axonal transport, mitochondrial damage, increased ion channel
activity and inflammation in the central nervous system (CNS). Another less frequent
event that may occur after chemotherapy, particularly under oxaliplatin treatment, is
the central neurotoxicity leading to disorders such as mental confusion, catatonia,
hyporeflexia, etc. To date, no pharmacological therapy has shown satisfactory effect
in these cases. In this scenario, duloxetine is the only drug currently in clinical use.
Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear
receptors and are present in several tissues, mainly participating in lipid and glucose
metabolism and inflammatory response. There are three PPAR isoforms: α, β/δ and γ.
PPARγ, the protagonist of this review, is expressed in adipose tissue, large intestine,
spleen and neutrophils. This subtype also plays important role in energy balance,
lipid biosynthesis and adipogenesis. The effects of PPARγ agonists, known for their
positive activity on type II diabetes mellitus, have been explored and present promising
effects in the control of neuropathic pain, including CINP, and also cancer. This review
focuses largely on the mechanisms involved in chemotherapy-induced neuropathy
and the effects of the activation of PPARγ to treat CINP. It is the aim of this review
to help understanding and developing novel CINP therapeutic strategies integrating
PPARγ signalling.
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INTRODUCTION

Cancer is in the second position in the ranking of death causes
after heart diseases across the globe and despite the huge
efforts to implement novel chemotherapy strategies, the disease
remains one of the major concerns worldwide (Bray et al.,
2018). In 2012, the global number of new cases of cancer was
14.1 million, and the corresponding number of deaths was 8.2
million (Torre et al., 2015). For the year of 2018, according
to The International Agency for Research on Cancer (IARC),
18.1 million of new cancer cases were estimated, followed by
9.6 million of deaths (Bray et al., 2018). The growing incidence
and mortality of cancer is a result of population growth and
ageing, besides changes in reproductive factors and unhealthy
habits associated with economic development and urbanisation
(Ferlay et al., 2015).

Approximately one-half of the cancer cases and deaths
occurred in Asia, followed by Europe (23.4% of the cases and
20.3% of the deaths) and Northern America (21% of the cases
and 14.4% of the deaths) (Bray et al., 2018; Ferlay et al., 2019).
Lung, prostate and colorectal cancer were the most commonly
diagnosed types of cancer among men, and lung cancer is the
responsible for the greater number of deaths. The most frequent
types of cancer in women were breast, colorectal and lung
cancer, being breast cancer the top of five in cause of death
(Bray et al., 2018).

Although the improvement of cancer survival by the
aggressive treatments, new anti-cancer drugs are also responsible
for serious side-effects on daily life that can last for many years.
Cancer survivors suffer more from functional impairment,
involving reduced mobility, than individuals without cancer
history. The functional declines associated with cancer are linked
to limited survival (Winters-Stone et al., 2017). Neurotoxicity
to the peripheral (PNS) nervous system is an emerging side
effect of cancer chemotherapy with no existing effective
treatments (Brown et al., 2019). Chemotherapy-induced
peripheral neurotoxicity (or neuropathy) is the most
dose-limiting side effect of anti-cancer drugs, such as
paclitaxel, vincristine and oxaliplatin, drugs widely used
for treating several tumours. Peripheral neuropathy usually
manifests as painful symptoms, characterising a neuropathic
pain syndrome. However, it can progress to loss of sensory
perception in the most severe cases. Additionally, motor
and/or autonomic peripheral neuropathy can also occur
(Brown et al., 2019). Chemotherapy-induced neuropathic
pain (CINP) severally impairs the patient’s quality of life
and leads to dose reduction or even treatment cessation
(Miltenburg and Boogerd, 2014).

Recent pre-clinical studies have shown the efficacy of
activators of the peroxisome proliferator-activated receptor
gamma (PPARγ), known as glitazones, on neuropathic pain
models (Okine et al., 2019). Therefore, glitazones might become
new and effective pharmacological approaches to prevent CINP.
In the present review, we will address pathophysiological
mechanisms of CINP, its current pharmacological treatment
and the use of PPARγ activators as potential therapeutic
tools to manage CINP.

CHEMOTHERAPY

The novel insights into the biology of cancer have been translated
into improvements in clinical care at fast pace over the past 15
to 20 years. The introduction of sophisticated molecular tools,
which interrogate both cancer diseases and patients, has led to
a steady stream of new therapeutic interventions and altered
the natural history of several solid tumours and heamatopoietic
malignancies (Doroshow and Kummar, 2014).

The causes of cancer include damage and/or mutations in the
cells’ genetic material associated with environmental or inherited
factors, leading to uncontrolled cell proliferation. For cancers
with local and non-metastatic profile, surgery and radiotherapy
are the primary treatments choice. However, anti-cancer drugs,
mainly chemotherapy, are the choice for treating metastatic
cancers, since they are able to diffuse through the body (Hanahan
and Weinberg, 2011). Anticancer drugs are toxic for cancer
cells and inhibit their fast proliferation; however, they are not
selective and also inhibit the growth of normal cells, leading to
undesirable side effects commonly observed in cancer treatment.
Chemotherapy has progressed towards more effective treatments,
including the combination of drugs and new approved anticancer
drugs, such as platinum analogues, paclitaxel and other agents
(Perez-Herrero and Fernandez-Medarde, 2015).

The development of chemotherapy drugs began in animal
models in the twentieth century, but only during World War
II the first reports of curative effects appeared. Advances
in research and the recognition of oncology as a medical
specialty allowed the creation of the first protocol to treat
advanced cases of childhood leukaemia and Hodgkin’s disease
in the 1960s and 1970s (Devita and Chu, 2008). Figure 1
shows the timeline of the FDA approval for chemotherapies
over the last seven decades. The drug combination, using
doxorubicin, bleomycin, vinblastine and dacarbazine, remains
nowadays as the standard treatment for the management of
Hodgkin’s lymphomas. At the same time, other drugs, such
as methotrexate and cyclophosphamide, were included in the
profile of cancer treatments (Chabner and Roberts, 2005).
Chemotherapy included as adjunct to the surgical management
of breast and colorectal tumours also began to spread in the same
decade. With this new approach, the patient’s survival drastically
increased (Bonadonna et al., 1976).

In the 1980s, the use of cisplatin (first-generation platinum)
was started for the treatment of testicular cancer. After a
good clinical response, its use was extended to ovarian,
lung, head and neck and uterine cervix tumours (Carozzi
et al., 2015). The main mechanism of action of cisplatin is
the formation of a DNA-cisplatin adduct, which distorts the
double helix of DNA and thus changes its structure. This
effect induces cell death by apoptotic and necrotic processes
(Jung and Lippard, 2007). Five years after the introduction of
cisplatin, carboplatin, a second-generation platinum, emerged
clinically. Carboplatin differs from cisplatin by the presence
of a carboxylate-type binder in its chemical structure. The
greater excretion through the urine, greater solubility in water
and lower reactivity confer the carboplatin less toxicity when
compared to the first-generation platinum (Wheate et al.,
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FIGURE 1 | Timeline showing the history of chemotherapy and cancer treatment and the first mention of CINP and its recommended treatment over the last
eight decades.

2010). Its efficacy in relation to cisplatin is seen mainly in
cases of lung carcinomas (Pasetto et al., 2006). Oxaliplatin is
the third-generation platinum which differs from cisplatin
by the presence of an oxalate leaving group and a DACH
(diaminocyclohexane) linker. Oxaliplatin is effective in cisplatin-
resistant tumours because the DNA repair system does not
recognise its adducts and is widely used in colorectal cancer
(Pasetto et al., 2006). Neves and Vargas (2011) pointed to
epidemiological data demonstrating a large scale of use of
platinum (monotherapy or in combination with other drugs)
in clinical oncology, ranging from 40 to 80% of the malignant
tumours described cases.

Paclitaxel, the taxanes prototype, was firstly isolated in
1971 as part of a National Cancer Institute programme
investigating a large range of plant extracts. It was initially
isolated from Taxus brevifolia bark. Docetaxel, from the same
class of anticancer drugs, was semi-synthetically obtained
and presents higher solubility in water than paclitaxel.
Taxanes are effective against breast, lung, ovarian, cervical
and pancreatic cancers and Kaposi sarcoma (Weaver, 2014).
The pharmacological effect of paclitaxel consists in its ligation
to cytoplasm polymerised tubulins, interrupting G2 phase
of cell cycle and, then, stabilising the microtubules. This
interaction with tubulins also causes mitochondrial damage by
opening the mitochondrial permeability transition pore, that
has β-tubulin in its constitution, increasing the Ca2+ efflux
and eventually apoptotic or necrosis cell death (Jordan and
Wilson, 2004). This impairment does not occur exclusively

in cancer cells, what reflect the numerous side effects
experienced by the patients, including myelosuppression,
hypersensitivity responses and, the most important, neuropathic
pain (Carozzi et al., 2015).

With the best understanding of the genetic and phenotypic
alterations of the tumours, the modalities of systemic
treatments in oncology were expanded, being reinforced
by the immunotherapy. It has been found that cancer cells
in some specific types of cancer express on their surface
proteins that could be used as targets for modulation and
disruption of the tumour expansion process. Although cancer
cells are highly genetically unstable, immunotherapy has
been successfully used to manage numerous tumour types
(Martin et al., 2015a). Toxicological assays that compared
chemotherapy agents with immunomodulatory regimens
in oncology concluded that the last has a greater safety in
clinical applicability due to their well-defined targets, unlike
chemotherapy agents that are less specific (Waldmann, 2003).
In the current scenario, the greatest difficulty of immunotherapy
is to adjust and handle enough monoclonal antibodies to
reach the tumour site, so that its effect is potentiated. In
addition, it is also required that the target of the monoclonal
antibody should be highly specific and sufficiently expressed
by the tumour cell, in addition of being directly involved
with the cancer genesis (Guimaraes et al., 2008). Despite
significant advances in cancer treatment with the discovery of
immunotherapy, for some cancers, chemotherapy remains as
gold standard treatment.
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SIDE EFFECTS OF CHEMOTHERAPY

Cytotoxic agents have narrow therapeutic indexes, with limited
selectivity against cancer cells and high toxicity potential;
consequently, anti-cancer drugs have limited efficacy at doses
that are acceptable for most patients (Borcoman and Le
Tourneau, 2016). Side effects of chemotherapy remain the major
concern for both patients and clinicians despite the increase
in efficacy and survival rates with the current treatments.
The current approaches to counteract the side effects of
chemotherapy are not completely effective, usually do not
address long-term consequences or can induce other side effects
(Nurgali et al., 2018).

Nausea and vomiting are the most dreaded side effects for
patients who initiate anti-cancer chemotherapy. The current
treatments to control acute chemotherapy-induced nausea and
vomiting (CINV) are effective for most patients; however,
the management of delayed CINV is more difficult to obtain
(Andrews and Sanger, 2014). Mucositis is also an important
side effect of anti-cancer drugs. Both oral and gastrointestinal
mucositis can cause local ulceration and pain, leading to anorexia,
malabsorption, weight loss, anaemia, fatigue and increased risk
of sepsis. Despite many efforts of the scientific community,
safe and effective treatments are still lacking to treat mucositis
(Abalo et al., 2017). Other side effects of chemotherapeutic agents
include hypersensitivity reactions to carboplatin in children with
solid tumours; chronic subclinical skeletal muscle toxicity caused
by oxaliplatin; and nephrotoxicity, ototoxicity and increased
risk of cardiovascular disease in patients treated with cisplatin
(Malik et al., 2016).

Central neurotoxicity induced by anticancer drugs can lead
to persistent cognitive impairment, which has been associated
with alterations in circulating factors and cerebrospinal fluid
constituents, and occurrence of genetic polymorphisms.
Additionally, peripheral neurotoxicity caused by many
anti-cancer drugs, including platinum-based agents, vinca
alkaloids and taxanes, can lead to neuropathic pain. These side
effects can last many years after discontinuation of treatment and
reduce the quality of life of cancer survivors. In addition, long
term CINP is associated with depression, anxiety and insomnia.
Therefore, the preventive and therapeutic strategies for CINP are
an urgent need (Zhou et al., 2018).

CHEMOTHERAPY-INDUCED
NEUROPATHIC PAIN

Chemotherapy-induced neuropathic pain is essentially caused
by injury to the somatosensory nervous system after anticancer
drug treatment, and it is one of the major causes of neuropathic
pain in clinical practice (Colvin, 2019). The incidence of CINP
is variable among the studies with up to 81 and 98% for
paclitaxel and oxaliplatin, respectively (Hershman et al., 2011;
Gilchrist et al., 2017; Gebremedhn et al., 2018; Molassiotis
et al., 2019). The occurrence of CINP may change according
to number of cycles and duration of treatments, drug chemical
structure, age, prescription of other neurotoxic drugs and

presence of predisposing conditions such as alcoholism, diabetes
or pre-existing neuropathy (Argyriou et al., 2014; Kerckhove
et al., 2018). Sensory symptoms usually manifest as spontaneous
or evoked abnormal sensations such as paraesthesia, dysesthesias,
numbness, burning, shooting or electric shock sensations, as well
as allodynia or hyperalgesia evoked by mechanical or thermal
stimuli. The symptoms usually affect the extremities of the upper
and lower limbs (“stocking and glove” distribution) and progress
to the proximal regions of the body (Miltenburg and Boogerd,
2014; Colvin, 2019).

Chemotherapy-induced neuropathic pain can manifests
initially as an acute pain syndrome, with sensory symptoms
arising during or just after drug administration, and progress to a
chronic neuropathy after repetitive treatment cycles. Regarding
the duration of sensory symptoms, acute neuropathy generally
subsides between treatments, while chronic neuropathy can
persist for months or years (Colvin, 2019). Indeed, 47% of
patients treated with anti-cancer drugs still experience peripheral
neuropathy symptoms after 6 years of treatment termination
(Winters-Stone et al., 2017). Chronic pain severely impairs the
quality of life of cancer patients, reminding them of time they
had cancer and that the disease may return (Binder and Baron,
2016). The available pharmacotherapies for CINP are poorly
effective and associated with numerous side-effects. However,
the search for more effective treatments is difficult as the
physiopathology of CINP involves a complex machinery (for
review see, Sisignano et al., 2014). Therefore, a deep knowledge
of the molecular mechanisms involved in CINP is crucial to
provide new molecular mechanism-based therapies instead of
simply treating symptoms.

Several pathophysiological mechanisms have been described
for CINP including mitochondrial dysfunction, changes
in calcium homeostasis, oxidative stress, activation of
apoptotic pathways, loss of myelinated and unmyelinated
fibres, activation of the immune system and increased ion
channel expression and activity. Comprehensive analysis of
the pathophysiological mechanisms associated with CINP have
already been performed elsewhere, and readers are invited to
consult these reviews (for review see, Sisignano et al., 2014;
Fukuda et al., 2017; Starobova and Vetter, 2017; Trecarichi
and Flatters, 2019; Zajaczkowska et al., 2019). Despite some
specific neurotoxic effects, anticancer drugs have important
and mutual pathophysiological mechanisms that contribute to
the development of CINP. Herein, we will present a possible
sequence of events connecting the common mechanisms
described for CINP associated with different anticancer drugs.

Peripheral sensory neurons are vulnerable to the toxic action
of anti-cancer drugs as the PNS is devoid of a complex
vascular-nerve barrier, allowing the diffusion of systemic-
administered drugs to the dorsal root ganglia (DRG) (Abram
et al., 2006; Sapunar et al., 2012). The damage to the
cellular bodies of sensory neurons leads to the degeneration
of myelinated fibres (mainly) and, consequently, inflammatory
process, overactivity of remaining fibres and central sensitisation
(Fukuda et al., 2017). In fact, axonopathy and loss of
epidermal innervation were described after the treatment with
paclitaxel, vincristine or ixabepilone (Lapointe et al., 2013).
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Furthermore, peripheral and central inflammatory responses
have been described as important mechanisms of pain, including
paclitaxel-, vincristine- and oxaliplatin-induced neuropathic
pain (Marotta et al., 2009; Ji et al., 2013; Janes et al., 2015;
Makker et al., 2017; Segat et al., 2017; Costa et al., 2018;
Manjavachi et al., 2019). Additionally, these drugs increase the
activity of both voltage-dependent calcium (Cav) and sodium
(Nav) channels, and transient receptor potential (TRP) channels
in peripheral nerves (Sisignano et al., 2014). Central neuronal
sensitisation, marked by phosphorylation and activation of
N-methyl-D-aspartate (NMDA) receptor, has also been described
for CINP (Pascual et al., 2010; Mihara et al., 2011; Ji et al., 2013).

Regarding the cellular mechanisms of CINP, mitochondrial
damage has been reported as a key component of the damage to
sensory neurons in the DRG after the treatment with different
anticancer drugs. It has been widely reported that paclitaxel,
vincristine and oxaliplatin cause mitochondrial dysfunction
and, consequently, increased production of reactive oxygen
species (ROS) in the DRG (Duggett et al., 2016, 2017; Gong
et al., 2016; Vashistha et al., 2017; Khasabova et al., 2019).
Chemotherapy causes impairment in cellular respiration and
decreases the production of adenosine triphosphate (ATP),
and promoting mitochondrial respiration and restoring
mitochondrial bioenergetics has protective effect on CINP
(Bennett et al., 2014; Toyama et al., 2018). Additionally, the level
and activity of superoxide dismutase (SOD) and catalase, two
important antioxidant enzymes, are reduced by the treatment
with anti-cancer drugs generating an imbalance between oxidant
and antioxidant molecules (Janes et al., 2013; Duggett et al., 2016;
Khasabova et al., 2019). Together, these effects trigger cellular
apoptotic pathways that lead to the degeneration of peripheral
sensory fibres and related inflammatory process (Areti et al.,
2014; Fukuda et al., 2017).

Once oxidative stress is a key event in the physiopathology
of CINP, antioxidant strategies are believed to be effective
alternatives for preventing the development of CINP. Studies
with animal models have been performed in order to determinate
the effect of several antioxidant agents on CINP (Carvalho
et al., 2017). Notably, calmangafodipir, an antioxidant and
neuroprotective agent, has shown to prevent oxaliplatin-induced
neuropathic pain in a double-blinded randomised phase II
clinical trial (Glimelius et al., 2018).

TREATMENT OF CINP

As mentioned before, the neurotoxicity and chronic pain induced
by chemotherapy treatments are important adverse effects that
must be considered, once they could compromise the cancer
treatment and the post-treatment patients’ quality of life. The
first study mentioning neuropathic pain in cancer-patients dates
from 1967 (Figure 1), where three case reports were presented
with necropsy findings linking the neurological symptoms with
vincristine neurotoxicity (Moress et al., 1967). Since then, as
presented in Figure 2, the number of papers has grown year
by year focussing on both the pathophysiological mechanisms
of CINP and new treatments (Figure 2A). Most of publications

involve regular articles (Figure 2B) and the great majority
mention taxanes, followed by platinum drugs (Figure 2C).

Despite the growing search for new drugs, the American
Society of Cancer and American Society of Clinical Oncology
(ASCO), until now, do not endorse the prescription of other
pharmacological therapy or nutraceutical besides duloxetine. The
reason for that consensus is based on the absence of evidence for
efficacy and safety for other therapies (Hershman et al., 2014; Hou
et al., 2018). Table 1 reunites all clinical trials that investigated
or plans to investigate pharmacological strategies to prevent or
treat CINP. Several classes of drugs already known to be effective
in the neuropathic pain control, such as antidepressants and
anticonvulsants, have been pre-clinically and clinically tested and
surprising the specialists with their absence of effect. We can
cite gabapentin, pregabalin and amitriptyline (Table 1). This
scenario leads to believe that it is a pathological condition with
a profile significantly different from other neuropathies and,
unfortunately, difficult to manage, since the great majority of the
trials has failed to reduce the symptoms. New clinical trials are
being conducted to evaluate new strategies focussing on the main
mechanism of CINP, including oxidative stress, mitochondrial
impairment and ion channels (more specifically TRP and Na+
channels) (Table 1).

Looking at the current scenario resumed in the Figure 3, there
are 42 registered clinical trials investigating new pharmacological
strategies to treat or prevent CINP. Most of them (n = 28) are
conducted in the US. Only 27 studies have been completed and 4
have been terminated due to different reasons, including absence
of participants and important side effects (Figure 4A). By the
total, 9 studies support the therapy use against 12 that do not
support it (Figure 4B). One third of the studies with successful
results supports the use of duloxetine (Figure 4C). Observing this
data, it is clear why the only therapy indicated by ASCO to treat
CINP is duloxetine, all based on evidence of efficacy and safety.

PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTORS

Peroxisome proliferator-activated receptors (PPARs) are
important members of the nuclear receptor family that cause
the activation of several genes by acting as ligand-activated
transcription factor (Berger and Moller, 2002). In mammals,
there are three different PPAR isoforms: alpha (α), beta/delta
(β/δ), and gamma (γ), which are differentially expressed in
several tissues (Heneka and Landreth, 2007). PPARα (encoded
by NR1C1) is ubiquitously expressed, but it is mostly found
in tissues that present fatty acids high catabolic amounts,
such as adipose tissue and liver, among others. It is also
expressed in the lung, placenta, intestine, pancreas and skeletal
muscle. Furthermore, PPARβ/δ (encoded by NR1C2) is also
ubiquitously expressed and low levels are found in several
tissues, such as muscle, adipose tissue and liver. PPARγ (encoded
by NR1C3) has three different isoforms (γ1, γ2, and γ3) that
display differences in tissue expression for each isoform: γ1 has
ubiquitous tissue expression, γ2 is mostly expressed in adipose
tissue, and γ3 is expressed mainly in colon, macrophages and
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FIGURE 2 | (A) Number of scientific papers tagged “chemotherapy” and “peripheral neuropathy” and “pain” and “cancer” in Pubmed by decade of publication. (B)
Types of publications, including regular article, review and clinical trial, found using the terms mentions in the first graph. (C) Number of papers mentioning the
chemotherapy classes Vinca, Taxane and Platinum. Accessed in May 26th, 2019.

adipose tissue (Han et al., 2017). Additionally, low levels of
PPARγ were found in vascular smooth muscle, endothelium,
hepatic stellate cells, bone marrow and neoplastic epithelial
cells in breast, prostate, colon and bladder. This pattern of
expression suggests that PPARγ may participate of many
physiological and pathophysiological processes in different
tissues (Guan and Breyer, 2001).

PPARs were originally identified in 1990 with the first cloning
(PPARα) happening during molecular targeting for peroxisome
proliferating agents in rodents (Issemann and Green, 1990). Since
then, several fatty acids and by-products, including eicosanoids,
have been identified as PPARs ligands and have also been shown
to target many synthetic compounds currently used to treat
diabetes and dyslipidaemias, such as thiazolidineodiones (TZDs),
including pioglitazone and rosiglitazone, and fibrates (clofibrate)
(Guan and Breyer, 2001; Seiri et al., 2019). Therefore, the
knowledge of the molecular structure and physiological effects
of these receptors becomes particularly important, both in the
development and in the use of drugs to treat of metabolic diseases
and others illness.

Independent of the PPAR type, all isoforms have similar
structure (Korbecki et al., 2019). PPARs are composed of five
different domains: A/B domain (amino-terminal region), domain
C (DNA-DBD binding), domain D (hinge region), domain
E (interaction with the linker – LDB) and domain F (Itoh
et al., 2008; Figure 5). The amino-terminal (A/B) domain is
extremely variable between the members of the nuclear receptor
superfamily, both in size and amino acid sequence, and exhibits
a transcriptional activation function that operates independently
of the linker, termed activation function 1 (AF1) (Shao et al.,
1998; Blanquart et al., 2003). The AF1 domain has an important
role in the regulation of PPAR activity trough phosphorylation
(Shao et al., 1998).

The domain C is the best-conserved part of the protein
among the nuclear receptor family and its main function is
the binding to DNA. This domain is in the central portion of
the receptors and consists of two structural segments known

as zinc fingers with nine cysteines. This domain controls gene
expression through specific binding to the nucleotides sequences
called the peroxisome proliferator responsive element (PPRE)
after forming heterodimer with the retinoic X receptor (RXR)
nuclear receptor (Guan and Breyer, 2001). There is a small region
in the domain D that connects the DBD to the ligand-binding
domain (LBD), or E domain, which is known as the hinge,
allowing the rotation of the DBD in relation to the LBD (Guan
and Breyer, 2001). The LDB domain is in the carboxy-terminal
region and has several functions such as ligand recognition and
homo and heterodimerisation of the receptor (Seiri et al., 2019).
In addition to these functions, LBD contains a surface that is
critical for transcriptional activation. After the activation of this
region, called activation function 2 (AF-2), interaction with the
co-activators occurs, which will allow the formation of the protein
complex involved in the activation of the transcription (Guan and
Breyer, 2001; Seiri et al., 2019).

Data from literature have shown that the transcription
induced by PPARs is modulated by post-translational events,
including phosphorylation, SUMOylation, ubiquitination
and nitration (Van Beekum et al., 2009). However, the
phosphorylation receives more attention by the researcher
community for being the main determinant of PPARγ

transcriptional activity, as already observed for oestrogen,
progesterone and RXR receptors. However, its activity is
determined by the intracellular localisation of the receptor,
where nuclear migration leads to genomic effects, while cytosolic
or cell membrane activation promotes DNA-independent
effects (Cantini et al., 2010; Luconi et al., 2010). In fact,
PPARγ could regulate the different metabolic situations, such
as lipid and glycidic homeostasis, inflammation and also cell
proliferation by specifically modulating genes expression. The
genomic mechanism is based on gene transcription regulation,
where a PPAR ligand-bound receptor interacts with the RXR
on specific PPRE in the promoter of specific target genes
and recruits co-activator complexes that modify chromatin
structure, enabling assembly of transcriptional machinery on
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TABLE 1 | Clinical trials for CIPN treatment using drugs or nutraceuticals around the world.

Study Trial # Country Subjects Start (yr) Status Remarks References

Antidepressant

Duloxetin (Sinbalta R©) UMIN000017647 Japan 70 2015 Ongoing Phase III Matsuoka et al., 2017

UMIN 000011554 Japan 34 2013 Completed Phase II – pilot randomised trial;
reduction of pain symptoms

Hirayama et al., 2015

NCT00489411 United States 231 2008 Completed Phase III – significant reduction
of pain score

Smith et al., 2013

NCT00489411 United States 106 2008 Completed Phase III – significant reduction
of pain score

Smith et al., 2017

Amitriptyline – Finland 114 2003 Completed Preventive protocol; use not
supported

Kautio et al., 2008

– Finland 44 2002 Completed Therapeutic protocol; improve
symptoms of CINP

Kautio et al., 2008

Anticonvulsant

Gabapentin (Neurontin R©) NCT00027963 United States 100 2002 Completed Phase III – use not supported Rao et al., 2007

Pregabalin (Lyrica R©) NCT02394951 United States 26 2015 Completed Results not mentioned

– United States 46 2012 Completed Pilot study; PTX-treated
patients; use not supported

Shinde et al., 2016

NCT00380874 Europe/Asiaa 61 2006 Terminated Phase IV

NCT00407511 Latin Americab 121 2006 Completed Phase IV – not conclusive for
CINP

Xochilcal-Morales et al., 2010

Lamotrigine (Lamictal R©) – United States 131 2004 Completed Use not supported Rao et al., 2008

Ethosuximide (Zarontin R©) NCT01278004 United Kingdom 15 2011 Completed Phase II – results not mentioned

NCT02100046 France 114 2014 Completed Phase II – use not supported Kerckhove et al., 2018

Antipsychotic

Loxapine NCT02820519 United States 4 2016 Terminated Phase II – intolerable high
amount of adverse effects

Associations

Memantine XR-pregabalin combination NCT03272919 United States 20 2017 Recruiting Observational study

Baclofen-Amitriptyline
Hydrochloride-Ketamine gel (BAK)

NCT00516503 United States 208 2007 Completed Phase III – reduced pain
symptom

Barton et al., 2011

Opioid

Dextromethorphan (Robitussin R©) NCT02271893 France 40 2014 Recruiting Phase II Martin et al., 2015b

Neuroprotector

Olesoxime (TRO19622) NCT00876538 France 17 2009 Completed Phase II – results not mentioned

Calmangafodipir (PledOx R©) NCT03654729 United States 420 2018 Recruiting Phase III

NCT01619423 United States 186 2012 Completed Phase I and II-OXA-treated
patients; reduced pain
symptom

Glimelius et al., 2018

(Continued)
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TABLE 1 | Continued

Study Trial # Country Subjects Start (yr) Status Remarks References

Leteprinim (Neotrofin R©) NCT00041795 United States 50 2002 Completed Phase II – results not mentioned

Glutathione United States 195 2009 Completed Phase III – PTX-treated
patients; use not supported

Leal et al., 2014

Weight loss

Lorcaserin (Belviq R©) NCT03812523 United States 50 2019 Not yet recruiting Phase II – OXA-treated patients

Cannabinoid agonists

Cannabinoids NCT03782402 United States 100 2019 Not yet recruiting Phase II – taxane-induced
neuropathy

Nabiximol (Sativex R©) NCT00872144 Canada 16 2009 Completed Phase III – reduced pain
symptoms

Lynch et al., 2014

Nabilone NCT00380965 United States 23 2006 Completed Phase IV – results not
mentioned

Toxins

Botulinum Toxin A NCT03571334 United States 40 2018 Not yet recruiting Phase II

Tetrodotoxin NCT01655823 United States 125 2012 Terminated Phase II – interim analysis
determined the procedure to
phase III trial

Anaesthetic

Lidocaine NCT03254394 United States 38 2017 Recruiting Phase I/II – OXA-treated
patients

TRPs agonist

Capsaicin 8% patch
(Qutenza R©)

NCT03317613 France 84 2017 Recruiting Phase II

– Poland 18 2013 Completed OXA-treated patients; reduction
of pain symptoms

Filipczak-Bryniarska et al., 2017

Menthol NCT01855607 United States 60 2013 Unknown Phase II

Nutraceutic

L-Carnitine L-tartrate NCT00754767 United States 2 2007 Terminated Phase IV – unable to accrue
study participants

Acetyl L-carnitine NCT01526564 China 239 2012 Completed Phase III – results not
mentioned

NCT00775645 United States 437 2008 Completed Phase III – use not supported Hershman et al., 2013

NCT0058191 United States 32 2004 Completed Phase II – use not supported Callander et al., 2014

Nicotinamide Riboside NCT03642990 United States 39 2019 Recruiting Phase II

Omega-3/Vitamin D3 NCT02294149 Canada 600 2014 Unknown Phase III

Vitamin E NCT00363129 United States 207 2006 Completed Phase III – use not supported Kottschade et al., 2011

α-Lipoic acid – United States 462 Completed Use not supported Guo et al., 2014

Antibiotic

Minocycline hydrochloride NCT02297412 United States 47 2014 Completed Phase II – PTX-treated patients;
use not supported

Pachman et al., 2017

PTX, paclitaxel; OXA, oxaliplatin; aPfizer (Australia, Germany, Italy, Spain, Korea, Taiwan); bPfizer (Colombia, Equator, Mexico, Peru, Venezuela). Source: Pubmed and www.ClinicalTrials.gov, accessed in April 26th 2019.
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FIGURE 3 | Global distribution of registered and published clinical trials involving CINP and drugs or nutraceuticals. Sources: Pubmed and www.ClinicalTrials.gov,
accessed in April 26th, 2019.

FIGURE 4 | (A) Current clinical trial status, (B) studies successfully completed and their results, and (C) drugs or nutraceuticals with recommended use. Sources:
Pubmed and www.ClinicalTrials.gov, accessed in April 26th, 2019.

FIGURE 5 | Structural and functional domains of the human peroxisome proliferator-activated receptors (PPARs). A/B, N-terminal A/B domain containing a
ligand-independent activation function (AF1); C, DNA-binding domain (DBD); D, hinge region; E, ligand-binding domain (LBD) containing the ligand-dependent
activation function, and F, C-terminal domain.
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the promoter (Korbecki et al., 2019). However, some effects of
PPARs are correlated with trans-repression mechanism, mainly
the anti-inflammatory effects, blocking the transcription factors
activity, such as NF-kB and AP-1 (Daynes and Jones, 2002;
Pawlak et al., 2012). Known as non-genomic pathway, this effect
of PPARs has been in the spotlight, where the mechanism did
not involve enhancement or inhibition of gene transcription.
The non-genomic effects are correlated to the fast modulation
of intracellular activity, including kinases and phosphatases.
Therefore, the mechanism that mediates rapid action is still
controversial (Brown, 1981).

Independent of the mechanism, it is important to emphasise
that PPAR, mainly PPARγ, is highly expressed in different types
of cells. In the CNS, PPARγ have been described to be expressed
in the cortex and spinal cord, and also in the microglia and
astrocytes (Kainu et al., 1994; Cullingford et al., 1998; Cristiano
et al., 2001; Benani et al., 2003; Bernardo et al., 2003; Moreno
et al., 2004; for review see, Okine et al., 2019). However, PPARγ

is more expressed in neurons than in astrocytes or microglia
(Warden et al., 2016).

The PPARγ is the most well-studied member of the PPAR
family of nuclear receptors, and both ligand-dependent and
ligand-independent modes of modulation of its activity have
been established. In this context, PPARγ modulation has been
currently focussed in the market and in the scientific research of
new drug discovery. The research is based mainly in metabolic
and neurodegenerative disorders, and other conditions where
CNS is affected as neuropathic pain (Okine et al., 2019).

PPARγ AGONISTS TO TREAT CINP

Thiazolidineodiones, or simply “glitazones,” belong to a class
of compounds that activates PPARγ and can be employed to
treat type 2 diabetes and metabolic syndrome (Sauer, 2015).
Ciglitazone was the first drug described as an insulin sensitiser,
and TZDs were recognised as PPARγ agonists in 1995. Two
years later, the FDA approved the clinical use of troglitazone.
In 1999, two new drugs, rosiglitazone and pioglitazone, entered
in the hall of anti-diabetic drugs. Unfortunately, what seemed
to be a future of success, ended with the troglitazone removed
from the market in 2000 because of significant liver toxicity.
On the other hand, pioglitazone and rosiglitazone remain
in clinical practice, despite their association with increased
bladder cancer risk and cardiovascular disease, respectively
(Sauer, 2015).

In addition to the treatment of diabetes, PPARγ agonists
have been considered potential therapeutic drugs to treat a large
amount of neurological conditions, such as neurodegenerative
diseases, traumatic injury, demyelinating diseases and chronic
pain (Jin et al., 2013; Swanson et al., 2013; Vallee and
Lecarpentier, 2016; Patel et al., 2017; Villapol, 2018). Recently,
it was published a comprehensive review compiling all studies
of PPAR agonists in different types of pain models (Okine
et al., 2019). Pioglitazone, rosiglitazone and 15d-PGJ2 have been
largely employed in pre-clinical studies using different models
of neuropathic pain in rodents, showing anti-nociceptive effect

by reducing oxidative stress and inflammation in the DRG and
spinal cord (Table 2; Okine et al., 2019).

The expression of PPARγ at both mRNA and protein levels
was found in the spinal cord of rats, and the intrathecal injection
of PPARγ agonists (15d-PGJ2 or rosiglitazone) was able to reverse
mechanical allodynia induced by spare nerve injury (SNI) in rats,
indicating that PPARγ is functionally expressed in the spinal
cord (Churi et al., 2008). The immunoreactivity for PPARγ

was also found in the mouse DRG and spinal cord neurons,
as well as in sciatic nerve adipocytes, where the receptor was
believed to mediate the anti-allodynic effect of pioglitazone by
controlling inflammation (Maeda et al., 2008). Despite no data
about the spinal levels of PPARγ in injured animals, a further
study showed that PPARγ activity was not altered by SNI in rats,
but it was significantly increased by the treatment of animals
with R-flurbiprofen; the increase in PPARγ activity was proposed
to be one of the mechanisms involved in the antinociceptive
effect of R-flurbiprofen in the SNI model (Bishay et al., 2010).
PPARγ was also suggested to meditate the antinociceptive effect
of palmitoylethanolamide on the chronic constriction injury
(CCI) model of neuropathic pain (Costa et al., 2008).

As previously mentioned, mitochondrial dysfunction,
oxidative stress and, consequently, neuronal injury in the
DRG and spinal cord are key events in the physiopathology
of CINP. Therefore, TZDs could have beneficial effects on
CINP by limiting some, if not all, of these events. In fact,
several studies have proposed that the main mechanisms of
action of PPARγ agonists are the protection of mitochondrial
function and antioxidant activity, including the upregulation
of mitochondrial oxidative phosphorylation and biogenesis,
and improvement of endogenous oxidant defences (for review
see, Corona and Duchen, 2016). Indeed, TZDs were able to
protect cortical astrocytes and neuroblastoma derived cell line
by promoting mitochondrial biogenesis (Dello Russo et al.,
2003; Miglio et al., 2009). Also, ciglitazone reduced the oxidative
stress in hippocampal neurons and, consequently, prevented
the mitochondrial damage (Zolezzi et al., 2013). The protective
effects of TZDs were also attributed to their ability of reducing
apoptosis associated with oxidative stress (Hunter et al., 2007;
Wang et al., 2011). In a rat model of spinal nerve ligation
(SNL), pioglitazone alone or in association with ceftriaxone was
able to ameliorate neuropathic pain by restoring the activity
of mitochondrial enzyme complex activities, increasing the
levels of reduced glutathione (GSH), superoxide dismutase
(SOD) and catalase, and reducing oxidative damage in the rat
spinal cord (Pottabathini et al., 2016). The treatment of rodents
with oxaliplatin or cisplatin caused an imbalance between the
oxidative stress and the level of antioxidant enzymes in the
DRG and spinal cord of treated animals (Zanardelli et al., 2014;
Khasabova et al., 2019). In these studies, rosiglitazone was
effective in preventing oxaliplatin-induced mechanical and cold
hyperalgesia by inhibiting oxidative stress and increasing catalase
activity in the DRG and spinal cord of rats (Zanardelli et al.,
2014). Additionally, in a recent publication Khasabova et al.
(2019) demonstrated that pioglitazone reduced cisplatin-induced
neuropathic pain in mice, suggesting the improvement of
antioxidant enzymes activity and protection against oxidative
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TABLE 2 | Pre-clinical studies investigating PPARγ agonists effects in experimental neuropathic pain models.

Glitazones Model Specie Main effects Mechanism of action References

Pioglitazone and
Rosiglitazone

Spinal cord injury Rats Improvement of motor function recovery and
prevention of heat hypersensitivity.

Reduction of neuronal damage, inflammation
and myelin loss in the spinal cord.

Park et al., 2007

Pioglitazone Partial sciatic nerve ligation Mice Reversal of mechanical allodynia and heat
hyperalgesia.

Reduction of inflammation in the sciatic nerve,
DRG and spinal cord.

Maeda et al., 2008

Rosiglitazone Spared Nerve Injury Rats Reversal of mechanical and cold allodynia. Transcription-independent mechanism in the
spinal cord.

Churi et al., 2008

Rosiglitazone Tibial and sural nerve transection Rats Attenuation of mechanical and cold
hyperalgesia.

Inhibition of oxidative stress and inflammation in
the sciatic nerve.

Jain et al., 2009

Rosiglitazone Partial sciatic nerve ligation Mice Attenuation of mechanical allodynia Regulation of macrophage infiltration and
pro-inflammatory molecules production in the
sciatic nerve.

Takahashi et al., 2011

Pioglitazone Spared nerve injury Rats Prevention of mechanical and cold
hypersensitivities

Inhibition of microglia and/or astrocyte
activation in the spinal cord.

Morgenweck et al., 2013

Pioglitazone Spinal nerve transection Rats Prevention of mechanical hypersensitivity Inhibition of neuro-inflammation in spinal cord. Jia et al., 2013

Rosiglitazone Oxaliplatin-induced neuropathic pain Rats Prevention of mechanical and cold hyperalgesia Prevention of oxidative stress in the DRG and
spinal cord by increasing catalase activity.

Zanardelli et al., 2014

Pioglitazone Spared Nerve Injury Rats Reversal of mechanical and cold allodynia Inhibition of astrocyte activation by
non-genomic mechanisms.

Griggs et al., 2015

Pioglitazone Spinal nerve ligation Rats Prevention of mechanical, cold and heat
hypersensitivities

Inhibition of oxidative stress, inflammation and
apoptosis in the spinal cord.

Pottabathini et al., 2016

Pioglitazone Trigeminal inflammatory compression Mice Attenuation of mechanical allodynia Activation of PPARγ in the trigeminal brainstem
sensory nucleus.

Lyons et al., 2017

Pioglitazone Cisplatin-induced neuropathic pain Mice Reduction of mechanical and cold hyperalgesia Reduction of oxidative stress in the DRG by
increasing SOD activity.

Khasabova et al., 2019
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stress as the main mechanisms. Besides, pioglitazone was able
to increase the sensitivity of cancer cells to the chemotherapy,
reducing the levels of its concentration to block cell proliferation
(Khasabova et al., 2019). Taken together, these studies suggest
that PPARγ agonists could prevent CINP and improve the
efficacy of cancer chemotherapy.

Neuroinflammation in the spinal cord is an important
imprint of neuropathic pain that contributes to the chronicity
of pain. Studies using the mouse model of paclitaxel-induced
neuropathic pain have shown increased immunostaining for
Iba-1 (microglia marker) and augmented levels of NF-κB,
cytokines and chemokines in the spinal cord of paclitaxel-treated
mice (Segat et al., 2017; Manjavachi et al., 2019). Also, the
release of kinins and the activation of their receptors (B1 and
B2 receptors) in the spinal cord seem to be important for
paclitaxel-induced neuropathic pain in mice (Costa et al., 2011).
The blockage of spinal cord neuroinflammation using natural
compounds, monoclonal antibodies or antagonists (for kinin
B1, B2 or CXCR2 receptors) has been shown to prevent and
revert pain-like behaviours in paclitaxel-treated mice (Costa
et al., 2011, 2018; Segat et al., 2017; Manjavachi et al., 2019).
Therefore, PPARγ agonists could be effective pharmacological
tools to treat CINP by reducing the inflammatory process in
the spinal cord or even in the DRG. In fact, the non-genomic
activity of PPARγ has been extensively co-related with its
anti-inflammatory property, characterising TZDs as important
blockers of protein transcription (Sauer, 2015). Additionally,
several studies have demonstrated an important link between
the efficacy of PPARγ agonists on neuropathic pain and
the suppression of inflammatory gene expression (including
cytokines and cytokines) (Maeda and Kishioka, 2009; Freitag and
Miller, 2014).

While DRGs and spinal cord are considered the most likely
structures involved in the anti-nociceptive effect of TZDs, the
cell types mediating their actions are not well-characterised.
However, the expression of PPARγ in both neuronal and
non-neuronal cells has been shown (Lu et al., 2011). PPARγ

expressed in astrocytes was proposed to regulate oxidative stress,
as the impairment in its activity reduced catalase activity, a key
antioxidant defence enzyme (Di Cesare Mannelli et al., 2014). In
the CNS, PPARγ activation reduced JNK and NF-KB signalling,
as well as JAK/STAT pathway, modulating the activity of adaptive
immune cells, myeloid cells and astrocytes (Daynes and Jones,
2002; Bright et al., 2008). PPARγ activation is also able to reduce
the levels of inflammatory and neurotoxic mediators produced
by macrophages and astrocytes and stimulate the infiltration of
regulatory T cells (Ferret-Sena et al., 2018).

POTENTIAL EFFECT OF PPARγ

AGONISTS ON CANCER

In 2008, PPAR Research Journal published several reviews
regarding the role of PPAR and its agonists in cancer and the
possible mechanisms involving on it. Taking the last decade,
approximately 1,400 regular articles and clinical trials have
been published evaluating the involvement of PPARγ on cancer
development and its modulation or even anti-cancer profile of

PPARγ agonists (data extracted from PUBMED on 24th July
using the terms “PPARγ and cancer”). Considering the current
year (2019), 14 studies revels the strong potential of PPARγ as
target to promote reduction in neoplastic cell proliferation and
migration. It demonstrates that this receptor and its signalling
pathways are in the pipeline of new drugs for the treatment of
patients with different types of cancer.

As previously described, pioglitazone was linked to a high risk
of developing bladder cancer, which was seriously considered by
the medical community in case of PPARγ prescription to patients
with cancer or familiar history. Recently, Rochel et al. (2019)
have shown that mutations in the PPARγ protein are responsible
for the pro-oncogenic activity of the heterodimer PPARγ/RXRα,
leading to bladder luminal cancer. This discovery reintroduces
the receptor among the promisor new targets to treat cancer, and
considering that co-morbidities, such as metabolic syndrome,
have strong implication in cancer development, it becomes
more significant.

Besides that, PPARγ gain more pros than cons with the
studies that demonstrate the activity of their ligands as cancer
suppressors. Here we are going to mention the important
results obtained with PPARγ activation published only this year.
Piccinin et al. (2019) demonstrated that the administration of
PGC1, a PPARγ activator, was able to reduce the progression of
hepatocellular carcinoma. The enhanced invasion and migration
of colorectal cancer cells promoted by the microRNA-11 was
reverted by the increase of PPARγ expression induced by Fatty
Acid Binding Protein 4 (FABP4) activation (Zhao et al., 2019). In
fact, it was previously shown that the inhibition of the oncogenic
Src culminated in the enhancement of the axis FABP4/PPARγ,
working as tumour repressor (Hua et al., 2019).

TZD18, a dual PPARγ/α ligand, reduced the growth and
increased the apoptosis of human gastric cancer cells by
increasing the expression of BAX and p27kip1 and decreasing
Bcl-2 (Ma et al., 2019). Similar activity was observed for
renal carcinoma cells (Wu et al., 2019), cutaneous squamous
cell carcinoma cells (Wolff et al., 2019), non-small cell lung
carcinoma (Liu and Fang, 1983; Ciaramella et al., 2019) and
prostate cancer cells (Masure et al., 1983). Ciaramella et al. (2019)
also correlated the anti-cancer activity of PPARγ to its effects on
cancer microenvironment bioenergetics and metabolism.

Furthermore, the PPARγ was also implicated in the
enhancement of doxorubicin cytotoxic effect of K562 resistant
cells after treatment with ciglitazone, emphasising its important
role in the multidrug resistance (MDR) activity. Additionally, Lv
et al. (2019) demonstrated that PPARγ expression in cancer cells
is related to favourable prognostic of patients with bladder cancer
and that the in vitro and in vivo administration of pioglitazone
or rosiglitazone was responsible for enhancing the cell cycle G2
arrest and apoptosis, followed by reduction in cell proliferation
and tumour growth through PI3K-AKT pathway.

CONCLUDING REMARKS

Safe and effective therapies to prevent or treat CINP are
still an unmet clinical need. Drugs normally effective against
chronic pain conditions, such as gabapentin and tricyclic
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antidepressants, failed to relieve CINP. The physiopathology
of CINP involves a complex machinery where mitochondrial
impairment and oxidative stress are key elements, leading to
cell death, neuronal damage and inflammatory process. PPARγ

agonists can protect cells against mitochondrial damage and
the deleterious effect of oxidative stress, and interfere with the
synthesis of important chemical mediators, such as cytokines and
chemokines. Therefore, the use of PPARγ agonists to treat CINP
have provoked the interest of scientists and clinicians. In fact,
rosiglitazone and pioglitazone have shown antinociceptive effect
on chronic pain models, including neuropathic pain induced
by platinum-based drugs, by increasing the antioxidant defences
and reducing oxidative stress. Additionally, PPARγ agonists have
been pointed as potential pharmacological tools to suppress
cancer progression. Therefore, the use of TZDs in the treatment
of CINP could also have a positive impact on cancer treatment,
what is favourable to the use of these drugs in cancer patients.

Despite being a promising pharmacological strategy, further
studies are essential to support the use of TZDs in treatment
of CINP. First, the effect of TZDs on neuropathic pain induced
by other anticancer agents, such as paclitaxel or bortezomib,
should also be addressed. Second, the mechanisms of action
of these drugs on CINP must be fully characterised (for
example, the effect of TZDs on neuroinflammation associated
with CINP has not yet been evaluated). Finally, joint effort
of chemists, pharmacologists and physicians should prioritise
the search for new PPARγ agonists, with reduced side effects,

good permeability at blood brain barrier and positive effects
in reducing CINP.
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