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Major depressive disorder (MDD) is a common and disabling syndrome with multiple
etiologies that is defined by clinically elicited signs and symptoms. In hopes of
developing a list of candidate biological measures that reflect and relate closely
to the severity of depressive symptoms, so-called “state-dependent” biomarkers of
depression, this pilot study explored the biochemical underpinnings of treatment
response to cognitive behavior therapy (CBT) in medication-free MDD outpatients.
Plasma samples were collected at baseline and week 12 from a subset of MDD
patients (N = 26) who completed a course of CBT treatment as part of the Predictors
of Remission in Depression to Individual and Combined Treatments (PReDICT)
study. Targeted metabolomic profiling using the AbsoluteIDQ R© p180 Kit and LC-MS
identified eight “co-expressed” metabolomic modules. Of these eight, three were
significantly associated with change in depressive symptoms over the course of the
12-weeks. Metabolites found to be most strongly correlated with change in depressive
symptoms were branched chain amino acids, acylcarnitines, methionine sulfoxide, and
α-aminoadipic acid (negative correlations with symptom change) as well as several
lipids, particularly the phosphatidlylcholines (positive correlation). These results implicate
disturbed bioenergetics as an important state marker in the pathobiology of MDD.
Exploratory analyses contrasting remitters to CBT versus those who failed the treatment
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further suggest these metabolites may serve as mediators of recovery during CBT
treatment. Larger studies examining metabolomic change patterns in patients treated
with pharmacotherapy or psychotherapy will be necessary to elucidate the biological
underpinnings of MDD and the -specific biologies of treatment response.

Keywords: major depression, cognitive behavioral therapy, metabolomics, acylcarnitines, branched-chain amino
acids, lipids

INTRODUCTION

Major depressive disorder (MDD) is a clinical syndrome that
has multiple etiologies and responds to a diverse range of
treatments that affect various biological pathways. Nevertheless,
it is highly likely that specific biological processes underpin
the clinical presentation of the disorder. Identifying these
state biological processes could provide a more precise
gauge of the pathophysiological processes underpinning the
clinical- symptomatic expression of MDD, and that also could
reflect treatments’ biological effect beyond the information
gleaned from the simple assessment of signs and symptoms
(Rush and Ibrahim, 2018).

Biological, physiological, neuro-functional, and other
measures that are most closely tied to and reflective of the
clinical expression of MDD or to the symptomatic expression of
other medical syndromes are often referred to “state-dependent”
markers (Rush and Ibrahim, 2018). Central venous pressure
(CVP), for example, is a state-dependent measure for congestive
heart failure (CHF). The greater the CVP, the more severe the
symptoms that define CHF such as pedal edema, pulmonary
effusion, orthopnea, and dyspnea. On the other hand, “trait-like”
markers, are those measures that are persistently abnormal
both during and between clinically symptomatic episodes
(Rush and Ibrahim, 2018). “Trait-like” markers often reflect
the underlying pathobiology of the condition that either sets
the stage for the initial clinical expression of the disorder
or that reflect the effect/consequence of the clinical episode
itself even after the episode ends. The latter are sometimes
said to be “scars” or consequences of the clinical episode.
Left or right ventricular hypertrophy, for instance, can be
consequences of repeated episodes of congestive heart failure
(Senni and Redfield, 1997). For MDD, hypercortisolemia is
known to be highly state dependent in psychotic or melancholic
depressions (Pariante, 2017). On the other hand, some sleep
EEG parameters appear to be more trait-like (i.e., persistent
even between clinically apparent major depressive episodes)
than state-dependent (only apparent during clinically apparent
depressive episodes) (Kraemer et al., 1994; Thase et al., 1998).
However, neither state nor trait markers for MDD have been
found that are as yet of sufficient value to enter clinical practice.

Metabolomics have the potential to define specific biochemical
processes that underpin MDD and the effects of treatment on
those biological processes. Some work indicates metabolomic
profiling may have utility in differentiating MDD from bipolar
disorder or healthy controls (Gui et al., 2018; Hashimoto, 2018;
Pan et al., 2018; MacDonald et al., 2019). Others have shown pre-
treatment metabolomic profiles and changes during treatment

can predict response to antidepressant medication, or changes
in profiles occur (Kaddurah-Daouk et al., 2011; Abo et al., 2012;
Kaddurah-Daouk et al., 2013; Zhu et al., 2013; Rotroff et al.,
2016; Moaddel et al., 2018; Czysz et al., 2019). To date, however,
metabolomic profiling has largely been conducted with depressed
patients who have been taking antidepressant medications, which
can directly affect metabolomics profiles and thus interfere with
the identification of state dependent measures.

Pharmacometabolomic studies from our group have
previously reported perturbations in intermediates of TCA
cycle, urea cycle, amino acids, and lipids in depressed patients
exposed to sertraline (Kaddurah-Daouk et al., 2011, 2013;
Zhu et al., 2013). Another study utilizing intravenous ketamine
treatment in depressed patients reported changes in tryptophan
metabolism, acylcarnitines, urea cycle intermediates, and lipid
metabolism (Rotroff et al., 2016). In a cross-sectional study,
the branched chain amino acids (BCAAs) Valine, Leucine, and
Isoleucine were significantly lower in MDD patients compared
to healthy controls and were negatively correlated to Hamilton
Depression Rating Scale scores. In a rat model of depression,
biogenic amines like putrescine, spermine, and spermidine were
significantly reduced in the hippocampus of stressed animals
compared to non-stressed ones, but the biogenic amines were
restored by the antidepressant effect of S-adenosyl-L-methionine
(Genedani et al., 2001). Plasma lipid and acylcarnitine profiles,
which have also been implicated in animal models of depression,
suggest inflammatory conditions and incomplete mitochondrial
β-oxidations as primary phenomena associated with the
pathophysiology of MDD (Chen et al., 2014).

This pilot study utilized a sample from the cognitive behavior
therapy (CBT) arm of the Emory Predictors of Remission in
Depression to Individual and Combined Treatments (PReDICT)
study, a randomized controlled trial of previously untreated
patients with MDD (Dunlop et al., 2017a). This sample
avoids the likely confounding effects of medications on
endogenous metabolomic processes under study; i.e., the
sample ensures that when patients improve symptomatically-
(or not), there is no confounding effect of concurrent
antidepressant medication. Therefore, any biological changes
whether found to be state- independent or state dependent-
would entirely reflect the depressive symptom severity while
being unaffected by the pharmacological effects of medications.
To our knowledge this study is the first to explore the underlying
biochemical (metabolomic) changes associated with relevant
clinical endpoints in treatment-naïve patients treated with CBT.

Analyses were conducted to identify which changes in
serum metabolites and pathways were most closely related to
changes in depressive symptoms between baseline to week 12
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in the acute treatment of MDD with CBT. Herein, we report
observed metabolite alterations within a biomarker panel
targeting 186 plasma metabolites from 5 distinct metabolite
classes (specifically, amino acids, biogenic amines, acylcarnitines,
glycerophospholipids, and sphingolipids) available in the
Biocrates AbsoluteIDQ R© p180 Kit1.

MATERIALS AND METHODS

Clinical
The PReDICT study was a randomized clinical trial that
enrolled 344 adults ages 18–65 years with a primary psychiatric
diagnosis of MDD without psychotic features. The design
and clinical results of the study have been published
(Dunlop et al., 2012, 2017a). The Structured Interview for
DSM-IV (First et al., 1995) assessed MDD diagnosis, which was
confirmed with a psychiatrist’s interview. Patients meeting all
eligibility criteria were randomized in a 1:1:1 manner to receive
either CBT (delivered in up to 16 one-hour individual sessions),
escitalopram, or duloxetine for 12 weeks. One-hundred-fifteen
patients were assigned to CBT, of whom 26 had serum samples
available for metabolomic analyses at baseline and week 12; these
26 patients are the subjects of the current analysis.

Key inclusion criteria for the trial included no lifetime history
of having received treatment for depression (either ≥4 weeks
of antidepressant medication at a minimally effective dose or
≥4 sessions of an evidence-based psychotherapy), and fluency
in either English or Spanish. At screening, patients had to
score ≥18 on the HAM-D17 (Hamilton, 1967) and at the
baseline randomization visit had to score ≥15. Key exclusion
criteria included: a lifetime history of bipolar disorder, psychotic
disorder, or dementia; a current significant medical condition
that could affect study participation or data interpretation; a
diagnosis of obsessive-compulsive disorder, an eating disorder,
substance dependence, or dissociative disorder in the 12 months
before screening; or substance abuse within the 3 months
prior to baseline. The only other psychotropic agents permitted
during the trial were sedatives (eszopiclone, zolpidem, zaleplon,
melatonin, or diphenhydramine) up to three times per week.
The Emory Institutional Review Board and the Grady Hospital
Research Oversight Committee approved the study protocol, and
all patients provided written informed consent prior to beginning
study procedures.

The therapy was delivered in accordance with Beck’s protocol-
based CBT (Beck et al., 1979) and therapists’ fidelity to the
protocol was assessed by independent raters at the Beck Institute
using the Cognitive Therapy Scale (Young and Beck, 1980).
Raters blinded to treatment assignment assessed depression
severity using the HAM-D17 at baseline, weeks 1–6, 8, 10, and
12. For the individual patient outcomes, the protocol defined
remitters as patients who achieved HAM-D17 score ≤7 at both
week 10 and 12 (Dunlop et al., 2012). Consistent with the prior
analyses of this dataset (Dunlop et al., 2017a), outcomes for non-
remitters were using percent change in HAM-D17 score from

1https://www.biocrates.com/products/research-products/absoluteidq-p180-kit

baseline to week 12, as follows: Non-remitting responder, ≥50%
reduction, but not meeting remitter criteria; Partial responder:
30–49% reduction; Treatment failure: <30% reduction.

Laboratory
Metabolomic Profiling Using Absolute IDQ p180 Kit
Metabolites were measured with a targeted metabolomics
approach using the AbsoluteIDQ R© p180 Kit
(BIOCRATES Life Science AG, Innsbruck, Austria), with an
ultra-performance liquid chromatography (UPLC)/MS/MS
system [Acquity UPLC (Waters), TQ-S triple quadrupole
MS/MS (Waters)]. This procedure provides measurements
of up to 186 endogenous metabolites in quantitative mode
(amino acids and biogenic amines) and semi-quantitative
mode (acylcarnitines, sphingomyelins, phosphatidylcholines
and lysophosphatidylcholines across multiple classes).
The AbsoluteIDQ R© p180 kit has been fully validated according
to European Medicine Agency Guidelines on bioanalytical
method validation. Additionally, the kit plates include an
automated technical validation to assure the validity of the run
and provide verification of the actual performance of the applied
quantitative procedure including instrumental analysis. The
technical validation of each analyzed kit plate was performed
using MetIDQ R© software based on results obtained and defined
acceptance criteria for blank, zero samples, calibration standards
and curves, low/medium/high-level QC samples, and measured
signal intensity of internal standards over the plate. De-identified
samples were analyzed following the manufacturer’s protocol,
with metabolomics labs blinded to the clinical data.

Preprocessing of P180 Profiles
The raw metabolomic profiles included 182 metabolite
measurements of serum samples. Each assay plate included
a set of duplicates obtained by combining approximately 10 µl
from the first 76 samples in the study (QC pool duplicates)
to allow for appropriate inter-plate abundance scaling based
specifically on this cohort of samples (n = 24 across all plates).
Metabolites with >40% of measurements below the lower limit
of detection (LOD) were excluded from the analysis (n = 160
metabolites passed QC filters). To adjust for the batch effects,
a correction factor for each metabolite in a specific plate was
obtained by dividing the metabolite’s QC global average by QC
average within the plate. Missing values were imputed using each
metabolite’s LOD/2 value followed by log2 transformation to
obtain a normal distribution of metabolite levels. The presence
of multivariate outlier samples was checked by evaluating the
squared Mahalanobis distance of samples. Samples were flagged
as “outliers” when their Mahalanobis distances exceeded the
critical value corresponding to a Bonferroni-corrected threshold
(0.05/n, n: number of samples) of the Chi-square distribution
with m degrees of freedom (m = 160: number of metabolites).

Data Analysis
For statistical analysis we adopted a two-pronged approach.
Initially, a multivariate “co-expression network” analysis was
employed with CBT treated patients to detect clusters (or
modules) of metabolites demonstrating similar patterns of
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perturbations that correlated with changes in depressive
symptom scores based on the HAM-D17. Univariate analyses
were also performed to detect whether the metabolites within
or outside the clusters were individually and significantly
correlated to the depressive symptom outcome. The traditional
univariate analysis method to metabolomic profiling focuses
on the individual metabolites; thus, the interactions among
metabolites are largely ignored, even though it is appropriate
to assume that metabolites play their roles not in isolation
but via interactions with each other. Consequently, metabolite
“co-expression” analysis is a powerful, multivariate approach
to identify groups of perturbed metabolites belonging to same
class or pathways. This approach has the additional benefit of
alleviating the multiple testing problem (DiLeo et al., 2011). The
workflow of data analysis is presented in Figure 1.

Univariate analysis
To define the association between changes in metabolite
levels from baseline to week 12 of CBT treatment and the
changes in depressive symptom of total HAM-D17 scores over
that time, linear mixed effects models were fitted to each
metabolite change, adjusting for age and gender and with
subjects as a random variable. All p-values were checked for false
discovery rates by Benjamini–Hochberg method (Hochberg and
Benjamini, 1990). Correlation between metabolite changes and
depressive symptoms changes were also assessed by Pearson’s
correlation coefficients.

Co-expression network analyses
Changes in modules of “co-expressed” metabolites were
identified using the R package WGCNA (weighted gene
co-expression network analysis) (Langfelder and Horvath,
2008). Signed and weighted Pearson’s correlation networks
were constructed with the subject-wise changes of baseline
to week 12 metabolite concentrations (in the logarithmic
scale). First a weighted adjacency matrix was created based

FIGURE 1 | Workflow for data analysis.

on pairwise Pearson’s correlation coefficients between the
metabolites. A scale-free topology criterion was used to choose
the soft threshold of beta = 18 for the correlations as per
the WGCNA protocol. The obtained adjacency matrix was
used to calculate the topological overlap measure (TOM) for
each pair of metabolite log2 fold changes comparing their
adjacencies with all of the other metabolite log2 fold changes.
Densely interconnected groups (or modules) of metabolites
were identified by hierarchical clustering using 1-TOM as
a distance measure through the use of the dynamic hybrid
tree cut algorithm with a deep split of 2 and a minimum
cluster size of 3. Each module is summarized by the module
eigenvector, which is the first principal component of the
metabolite changes across all the subjects. Similar clusters were
subsequently merged if the correlation coefficient between the
clusters’ eigenvectors exceeded 0.75. The association between
the resultant modules and the changes in HAM-D17 scores was
measured by the pairwise Pearson correlation coefficients and
presented in a heatmap. In all analyses for this small scale pilot
study an uncorrected p-value threshold of 0.10 was used as the
significance cutoff.

RESULTS

Patient Characteristics
Plasma metabolite data were available at baseline and week 12
from 26 patients. The mean number of therapy sessions attended
was 14.0 ± 1.5. Table 1 summarizes the characteristics of the
study sample. Four patients (15.4%) were in a chronic depressive
episode. Twelve (46.2%) of the sample achieved remission and 7
(26.9%) were classified as treatment failures.

Detection of Metabolite “Co-expression”
Modules
To investigate the functional response of the MDD metabolome
during receipt of CBT, we adopted a multivariate approach.

TABLE 1 | Patient characteristics.

Measures Categories Mean (SD or Percentage)

No. of patients 26

Agea 37.4 (10.8)

Genderb

Female 16 (61.5%)

Male 10 (38.5%)

Response to Therapyb

Remitters 12 (46.2%)

Responders (Non-remitting) 3 (11.5%)

Partial_Responders 4 (15.4%)

Treatment Failures 7 (26.9%)

HAM-Da

Baseline 18.6 (3.1)

Week 12 8.7 (7.2)

aMean (SD). bMean (percentage).
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Using WGCNA methodology we focused on identifying modules
(or clusters) of metabolites that showed a similar pattern of
change from baseline to week 12. Thus, each module represented
metabolite changes (week12/baseline ratios) in the logarithmic
scale. Eight such metabolite modules were identified in which
the member metabolites showed statistically significant strong
correlations (mean R2 ranged between 0.74 and 0.94, all p< 0.05)
amongst each other in their perturbation patterns, and each
module was assigned a unique color. Black, blue, brown, green-
yellow, midnight-blue, purple, royal-blue and yellow were the
metabolite modules representing 8, 15, 12, 96, 5, 6, 3 and
9 metabolites, respectively. The grey module represented 6
metabolites that could not be assigned to any module. The
detected modules were represented by metabolites belonging
primarily to the same metabolite class; this may indicate that
these metabolites have a functional relationship to each other.
Additionally, for each module we identified a “hub” metabolite
(also known as a “driver” metabolite) that had the maximum
number of connections in the module. The hub metabolites are
important, and they merit further investigation because they
may influence the function of other metabolites, or even may
be significant contributors to the trait of interest. The eight
modules, their hub metabolites, and their major metabolite
classes are presented in Table 2. A list of the network metrics,
the intra-modular correlations between member metabolites, and
the module membership for each metabolite is presented in
Supplementary Files (Supplementary Tables S1–S3).

Metabolite Modules That Were
Associated With Changes in Depressive
Symptoms (HAM-D17 Scores)
Next, we evaluated the association between the identified
metabolite modules and changes in HAM-D17 scores from
baseline to week 12. Three metabolite modules were found to be
significantly associated (R2 > 0.3, at p < 0.1) with changes in the
symptom severity scores: (a) the purple module containing the
short chain acylcarnitines (C3, C4, and C0), α-aminoadipic acid,
and the two amino acids, Glutamate and Proline; (b) the yellow
module containing the BCAAs, Isoleucine and Valine, the BCAA-
derived C5-carnitine (Isovalerylcarnitine), the neurotransmitter-
related amino acids Tryptophan, Tyrosine, Phenylalanine,
Methionine, Methionine-sulfoxide, and the biogenic amine
Sarcosine; and (c) the green-yellow module containing 96 lipid
molecules including the phosphatidylcholines, sphingomyelins,
and acylcarnitines. A heatmap showing the correlations between
each of the metabolite modules and the changes in HAM-D17
scores is presented in Figure 2. The correlation coefficients
were moderate, ranging between 0.31 and 0.36 for each of
the three modules.

We examined the correlation of each of the metabolite
members of the purple, yellow and green-yellow modules to
HAM-D17 scores. Figure 3A presents a composite plot of the
correlations between the changes of each member-metabolite of
the purple module to each other and also to HAM-D17 changes.
Each of the metabolite changes was negatively associated with
changes in HAM-D17, but they were positively correlated to

TABLE 2 | Characteristics of the co-expression modules of metabolites.

Module Number of Major metabolite Hub metabolite

member classes

metabolites

Black 8 Amino acids Asn (Asparagine)

Blue 15 Medium and long chain
acylcarnitines

C18:1 (Octadecenoyl-L-
carnitine)

Brown 12 Lysophosphatidylcholines lysoPC a C18:1
(Lysophosphatidylcholine
acyl C18:1)

Green-
yellow

96 Lipids
(phosphatidylcholines
and sphingomyelins) and
acylcarnitines

PC aa C42:4
(Phosphatidylcholine
diacyl C42:4)

Midnight-
blue

5 acylcarnitines C16:2
(Hexadecadienoylcarnitine)

Purple 6 Short-chain
acylcarnitines,
α-aminoadipic acid

C3 (Propionyl-L-carnitine)

Royalblue 3 sphingomyelins SM C18:1
(Sphingomyeline C18:1)

Yellow 9 Branched-chain amino
acids,
neurotransmitter-related
amino acids

Val (Valine)

each other. α-aminoadipic acid showed the strongest correlation
to HAM-D17 changes (R2 = –0.52, p < 7E-06). The BCAA-
derived C3- (propionyl) and C4- (butyryl) carnitines were
strongly correlated to each other (R2 = 0.93, p < 1.3E-11)
as well as to α-aminoadipic acid. C3-carnitine was the hub
metabolite in this module.

Figure 4A presents a similar composite figure for the yellow
module. All members were negatively correlated to HAM-
D17 changes, with the BCAA valine and the known oxidative
stress biomarker methionine sulfoxide perturbations showing
the strongest correlations with HAM-D17 changes (R2 < –0.40,
p < 0.05). All the yellow module metabolites showed strong
positive correlations with each other (mean R2 = 0.75, range
0.44–0.93, all p < 0.02) in their perturbation patterns. Notable
were the strong positive correlations between the branched chain
amino acids and methionine, sarcosine, and the neurotransmitter
related amino acids (phenylalanine, tryptophan and tyrosine)
indicating that they may be functionally related. Valine was the
hub metabolite for this module.

The members of the 96 lipids-containing green-yellow module
also showed strong correlations amongst each other and also to
HAM-D17 changes. Unlike the amino acids and the short chain
acylcarnitines from the purple and yellow modules, these lipid
molecules’ changes were positively associated with HAM-D17
changes and also to each other (Supplementary Figures S1A,B).

In univariate linear mixed model analysis, the log2 fold
changes of the α-aminoadipic acid, the branched chain amino
acids, isoleucine and valine, methionine-sulfoxide and several
of the phosphatidylcholines, containing long chain fatty acids,
from the green-yellow module, were found to be significantly
associated (p < 0.10) with the changes in HAM-D17 scores
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FIGURE 2 | A heatmap showing correlations between the metabolite modules and the changes in symptom severity (HAM-D17) scores. Each module represents a
number of metabolites that showed strongly correlated perturbation patterns, from baseline to week 12, in response to CBT. The metabolite members of the three
modules, purple, yellow and green-yellow, that showed significant association (R2 > 0.3, at p < 0.1) with changes in HAM-D17 scores are presented in adjacent
boxes.

after adjusting for age and sex. These findings highlight the
potential involvements of mitochondrial energy metabolism and
lipids in the response of depressed patients receiving CBT.
Table 3 depicts the list of metabolites that were significant
in univariate models and their associations with depressive
symptom scores (HAM-D17).

To maximize our ability to detect the effects of treatment
outcomes, we plotted the mean trajectories of the metabolites
among the CBT remitters (N = 12) and the treatment
failures (N = 7), leaving out the patients with intermediate
outcomes, consistent with the approach used in other biomarker
studies (Dunlop et al., 2017b; Vadodaria et al., 2019). There
were interesting trends among the metabolites in the purple,
yellow, and green-yellow modules. In the green-yellow module,
consisting of lipids, ∼75% of the phosphatidylcholines were
higher at baseline in the remitters compared to the treatment
failures (Supplementary Figure S2), with some of them being
statistically significant at p < 0.10 (PC aa- C30:0, C34:1, C36:2,
C36:3, PC ae- C36:0, C38:2). In the purple (Figure 3B) and yellow
(Figure 4B) modules, consisting mostly of amino acids including
BCAAs and the short-chain acylcarnitines, the remitters mostly
had lower baseline levels but showed an upward trend in
their metabolite trajectories from baseline to week 12 while the

treatment failures all trended to decrease to lower levels post-
therapy. The limited sample size, however, precluded detection
of statistical significance to these differences in trajectories.

DISCUSSION

Using liquid-chromatography coupled to mass-spectrometry
analyses, we examined the biochemical changes that occurred
in the plasma of depressed outpatients completing a course
of CBT. Changes in several metabolite modules, containing
primarily short-chain acylcarnitines and α-aminoadipic acid
(purple module) as well as branched-chain and neurotransmitter-
related amino acids (yellow module) and lipids (green-yellow
module), were significantly associated with changes in depressive
symptom severity over the 12-weeks of CBT treatment. The
metabolites within each module were highly correlated, and
therefore it is likely that the similarity in their perturbations
stemmed from their functional relatedness or being members of
the same affected pathways.

Changes in individuals’ metabotypes during periods of intense
stress, and their return to the original homeostatic levels upon
stress resolution (Ghini et al., 2015), support the possibility of
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FIGURE 3 | Purple module characteristics. (A) The pairwise correlations between the changes in the metabolite members to each other and also to HAM-D17

changes are shown in a composite plot. (B) The trajectories of each member metabolite with its mean (± SEM) at baseline and week 12 are presented for remitters
and treatment-failures.

identifying metabolomic state markers in MDD. Our analyses
found specific amino acids, acylcarnitines, phosphatidylcholines,
and sphingomyelins were associated with the depressed state and
with changes after CBT treatment. Most notably, concentrations
of the BCAAs isoleucine and valine, along with methionine
sulfoxide and α-aminoadipic acid, showed strong inverse
correlations with change in depression severity. Conversely,

many lipid metabolites were directly correlated with changes in
depression severity.

Alterations in BCAAs have been linked to altered
mitochondrial energy metabolism and have been previously
implicated in MDD (Baranyi et al., 2016) and in response
to treatment (Kaddurah-Daouk et al., 2011, 2013). We have
shown that MDD patients have alterations in the phenylalanine,
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FIGURE 4 | Yellow module characteristics. (A) The pairwise correlations between the changes in the metabolite members to each other and also to HAM-D17

changes are shown in a composite plot. (B) The trajectories of each member metabolite with its mean (± SEM) at baseline and week 12 are presented for remitters
and treatment-failures.
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TABLE 3 | Association of metabolite changes to HAM-D17 changes from baseline to week 12 upon exposure to CBT, by univariate models.

Metabolite Pearson correlation Linear mixed model Module-membership

CorrCoeff p-value CoeffEstimate p-value

α-aminoadipic acid −0.5164 0.0069 −0.2 (−0.3, −0.1) 0.0093 Purple

Isoleucine −0.3372 0.0921 −0.1 (−0.2, 0.0) 0.0812 Yellow

Valine −0.4147 0.0351 −0.1 (−0.2, −0.0) 0.0367 Yellow

Methionine Sulfoxide −0.4009 0.0424 −0.1 (−0.2, 0.0) 0.0512 Yellow

Hexenoylcarnitine (C6:1) 0.3445 0.0848 Green-yellow
aLPC a C24 0.4601 0.0180 0.1 (0.0, 0.3) 0.0236 Green-yellow

LPC a C26 0.4021 0.0417 0.1 (0.0, 0.2) 0.0510 Green-yellow

LPC a C28 0.3666 0.0655 0.1 (0.0, 0.3) 0.0730 Green-yellow
bPC aa C34:1 0.4041 0.0406 0.2 (0.0, 0.3) 0.0584 Green-yellow

PC aa C34:3 0.3897 0.0491 0.1 (0.0, 0.2) 0.0724 Green-yellow

PC aa C36:1 0.3501 0.0796 Green-yellow

PC aa C36:2 0.4238 0.0309 0.2 (0.0, 0.3) 0.0431 Green-yellow

PC aa C36:3 0.4388 0.0249 0.2 (0.0, 0.3) 0.0369 Green-yellow

PC aa C38:3 0.3748 0.0592 0.1 (0.0, 0.2) 0.0829 Green-yellow

PC aa C38:5 0.3479 0.0816 Green-yellow

PC aa C40:2 0.4232 0.0312 0.2 (0.0, 0.3) 0.0419 Green-yellow

PC aa C40:3 0.3589 0.0718 0.1 (0.0, 0.3) 0.0976 Green-yellow

PC aa C40:4 0.3532 0.0767 Green-yellow

PC aa C40:5 0.3363 0.0930 Green-yellow

PC aa C42:6 0.3401 0.0891 Green-yellow
cPC ae C30:0 0.4160 0.0346 0.2 (0.0, 0.3) 0.0495 Green-yellow

PC ae C34:1 0.3875 0.0505 0.1 (0.0, 0.3) 0.0702 Green-yellow

PC ae C38:2 0.5777 0.0020 0.3 (0.1, 0.4) 0.0033 Green-yellow

PC ae C38:3 0.3817 0.0543 0.1 (0.0, 0.3) 0.0749 Green-yellow

PC ae C40:3 0.3604 0.0705 0.2 (0.0, 0.3) 0.0952 Green-yellow

PC ae C42:1 0.4554 0.0194 0.1 (0.0, 0.3) 0.0330 Green-yellow

PC ae C42:2 0.3621 0.0691 Green-yellow

PC ae C42:4 0.3299 0.0998 Green-yellow

Octadecadienylcarnitine (C18:2) 0.3572 0.0732 Blue

According to common lipid nomenclature, aLPC stands for lysophosphatidylcholine with a single fatty acid chain, bPC aa stands for Phosphatidylcholine diacyl (two fatty
acid chains) and cPC ae stands for Phosphatidylcholine acyl-alkyl. The lipid species are described as CX:Y where X is the length of the carbon chain C, Y is the number
of double bonds; “a” means the acyl chain is attached via an ester bond to the backbone while “e” means the attachment is via an ether bond.

tyrosine, and tryptophan pathways, which are involved in
the biosynthesis of the monoamine neurotransmitters (Lucca
et al., 1992; Maes et al., 1997; Bhattacharyya et al., 2019). Our
metabolomic results overlap with the state metabolic markers
identified in obesity, type 2 diabetes, and overall worsening
metabolic health (Schooneman et al., 2013; Libert et al., 2018).
Taken together, the patterns of change observed in our sample
implicate bioenergetics as a focus of the pathobiology of the
depressed state.

The lipid perturbations, especially those of the
phosphatidylcholines (consisting of either diacyl or alkyl-
acyl moieties) showed positive correlations to the changes in
HAM-D17 scores. Phosphatidylcholines are a large class of lipid
molecules commonly known as the glycerophospholipids. They
have important functions in membrane stability, permeability,
and signaling. Phosphatidylcholines have been implicated
in MDD in several studies. Recently Knowles et al. (2017)
suggested that a subclass of the phosphatidylcholines
(the ether-phosphatidylcholines) might have a shared genetic

etiology with MDD, and thus might be candidates for improved
diagnosis and treatment of depression. Our previous work
with ketamine have implicated these lipids along with
acylcarnitines in the mechanism of response to ketamine
(Rotroff et al., 2016).

These results, suggesting that the metabolites may serve as
state markers of depression, received tentative support from our
exploratory contrast of the differential trajectories of the changes
in metabolites between the patients with the clearest treatment
outcomes: remitters versus treatment failures. The BCAAs,
their catabolic byproducts, the short chain acylcarnitines, the
lysine metabolite α-aminoadipic acid, and the aromatic amino
acids (phenylalanine, tyrosine and tryptophan) were present at
comparatively higher levels at baseline in the treatment failures
compared to the remitters. These findings suggest that metabolic
wellbeing may be an important factor contributing to CBT
response. Interestingly, there was a general downward trend in
the trajectories of these metabolites over the course of treatment
among the CBT treatment failures, whereas in the remitters they
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all exhibited stable or upward trajectories. It is possible that
the differences in metabolic trajectories observed in remitters
versus treatment failures to CBT indicate a state of “metabolic
resilience” (Ghini et al., 2015) in the remitters. The two outcome
groups also differed in their metabolomic profiles at baseline,
with approximately 75% of the phosphatidylcholines being
elevated in the remitters compared to the treatment failures,
suggesting that levels of these lipid components may serve as
moderators of outcome to CBT. It is also possible that these
baseline differences reflect true subtype differences among the
MDD patients that might have a role in treatment selection.
Larger scale, longitudinal studies will be necessary to test
these hypotheses.

The primary limitation to this study is the relatively small
number of subjects analyzed. Consequently, testing for the
statistical significance of the effects observed was limited,
particularly for the categorical comparisons of differences by
treatment outcome group; we could not analyze non-remitting
responders and partial responders as additional groups. The
study also lacked a healthy control group that could have
permitted quantification of how far the observed metabolite
concentrations were outside the “normal” ranges. Six of the
subjects took a non-benzodiazepine sedative on an as-needed
basis at some point during their CBT treatment. Although
unlikely, we cannot rule out that this infrequent use could have
impacted the metabolomic profiles. Despite these limitations,
the study is important as an original exploration of the
metabolomic changes in depression with a proven and well-
delivered psychotherapy treatment, in the absence of the
powerful metabolomic effects of psychopharmacotherapy.

In summary, this pilot evaluation assessed ∼180 metabolites
from the Biocrates Absolute p180 kit that clustered into
8 “co-expression modules” based on their propensities to
change over 12 weeks of treatment with CBT. The results
were largely confirmed by additional univariate analyses of the
individual metabolites in the co-expression analyses. Specifically,
BCAAs, methionine sulfoxide, α-aminoadipic acid, and multiple
phosphatidylcholines were all altered in association with changes
in the HAM-D17 scores at a level that equaled or exceeded
a correlation coefficient of 0.4. Hence, these metabolites
may represent markers for the depressed state, and perhaps
may act as moderators or mediators for improvement from
depression.These results will be useful in comparing and
contrasting metabolomic changes that occur during and after
treatment with antidepressant medication, and perhaps serving
as a biomarker to inform treatment selection for MDD patients.
In addition, metabolomic profiles in medication-free patients
may prove to have utility as a biomarker for impending depressive
relapse during long-term follow-up studies. Metabolomic profiles
may also find a clinical application as surrogate measures
for more expensive and cumbersome biomarkers, such as
neuroimaging, if links between these biological systems can be
identified (Dunlop and Mayberg, 2014). The results of this study
provide an empirically testable set of hypotheses for MDD,
namely the utility of these metabolites as potential state markers,
in order to understand the mechanistic underpinnings of MDD
and their change associated with symptomatic improvement.
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modules and the changes in symptom severity (HAM-D17) scores, highlighting the
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FIGURE S2 | The trajectories of each member metabolite of the greenyellow
module, consisting of mostly lipids, or lipid-related metabolites, with its mean
(± SEM) at baseline and week 12 are presented for remitters and
treatment-failures.

TABLE S1 | Metabolite network metrics.

TABLE S2 | Intramodular correlations between member metabolites.

TABLE S3 | Metabolite membership for each module.
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