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The characterization of the functional network of the brain dynamics has become a

prominent tool to illuminate novel aspects of brain functioning. Due to its excellent time

resolution, such research is oftentimes based on electroencephalographic recordings

(EEG). However, a particular EEG-reference might cause crucial distortions of the

spatiotemporal interrelation pattern and may induce spurious correlations as well as

diminish genuine interrelations originally present in the dataset. Here we investigate in

which manner correlation patterns are affected by a chosen EEG reference. To this end

we evaluate the influence of 7 popular reference schemes on artificial recordings derived

from well controlled numerical test frameworks. In this respect we are not only interested

in the deformation of spatial interrelations, but we test additionally in which way the time

evolution of the functional network, estimated via some bi-variate interrelation measures,

gets distorted. It turns out that the median reference as well as the global average show

the best performance in most situations considered in the present study. However, if

a collective brain dynamics is present, where most of the signals get correlated, these

schemes may also cause crucial deformations of the functional network, such that the

parallel use of different reference schemes seems advisable.

Keywords: electroencephalography, EEG reference, multivariate analysis, functional network, time series analysis

1. INTRODUCTION

Although electroencephalography (EEG) is one of the most popular techniques for the study of
brain dynamics, the search for the ideal reference point still remains. For principal reasons it
is impossible to measure the magnitude of the electrical potential at a given location in space,
so that only potential differences between two positions are experimentally accessible (Jackson,
1999). Given that dynamical changes of the electrical brain activity cause only small changes of
the potential at the scalp surface, which are of the order of microvolts, it is highly desirable that
the electrical potential at the reference point stays precisely at a constant value in order to avoid
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erroneous alternation of the time dependency of the signal at
the recording side. Given that the fluctuations of the electrical
potential of external fields are in general larger or at least of the
same order of magnitude as those generated by the electrical
activity upon the scalp, one pragmatically seeks for an optimal
solution within the system, although it is well known that the
human body does not contain an electrically neutral location
(Nunez and Srinivasan, 2006). Therefore, the impossibility to
encounter an ideal solution remains clear beforehand.

The first studies about the issue were reported more than half
a century ago (Goldman, 1950; Offner, 1950), and since then a
multitude of important contributions have been published, each
with a different angle of view on this problem (see e.g., Osselton,
1965; Hjorth, 1975; French and Beaumont, 1984; Bertrand et al.,
1985; Fein et al., 1988; Rappelsberger, 1989; Lemos and Fisch,
1991; Travis, 1994; Nunez et al., 1997, 1999; Zaveri et al., 2000,
2006; Rummel et al., 2007; Hu et al., 2010, 2018; Kayser and
Tenke, 2010, 2015; Nunez, 2010; Chella et al., 2016; Lei and
Liao, 2017; She et al., 2017; Trujillo et al., 2017). Motivated by
the fact that the study of the functional network, constructed
by some preferential bivariate measure applied to brain signals,
gained a lot of attention during the last decades, we focus here
mainly on the effect that a particular reference choice may have
on the topological properties as well as the time evolution of the
interrelation pattern between different brain signals.

A large body of evidence has been accumulated showing that
estimates of bivariate measures may be crucially affected by the
chosen reference scheme, such that numerical results become
“virtually uninterpretable" (French and Beaumont, 1984). For
instance, coherence values estimated from EEG signals with
linked earlobes are up two time larger as those when the
Laplacian montage has been used (Travis, 1994). By employing
autoregressive models to simulate EEG signals with well defined
power spectra and specific mutual interrelations, it turns out
that coherence values estimated under the influence of the global
average are most useful when signals are independent or nearly
independent (Rappelsberger, 1989).

It is a matter of fact that the integral over the surface
of a volume conductor of the electrical potential is precisely
zero (Bertrand et al., 1985; Jackson, 1999). Therefore, if a
sufficiently high number of electrodes homogeneously placed
around the whole brain are used, the global average should
provide a nearly constant reference signal. However, if signals
are mutually independent, also with the partial and sparse
covering of the 19 electrode international 10/20-system one
should expect approximately an equivalent quality. If on the other
hand active electrodes are correlated, or, if the power of a few
active electrodes is notably larger than that of the remaining ones,
the global average is no more electrically inactive and may cause
disturbances (Fein et al., 1988). Therefore, the averaged earlobe
signals are recommended in more general terms (Rappelsberger,
1989).

Some authors (Nunez et al., 1999) conclude that close bipolar
as well as the Laplacian reference eliminate undesired volume
conduction effects but systematically underestimate coherence
by the spatial filtering effect. Also in Zaveri et al. (2006) it
is advised to use the bipolar montage with caution in time

series analysis. Instead, in Nunez et al. (1999) the authors
find that for large-scale interrelations, the global average as
well as linked mastoids provide reasonable “semi-quantitative"
coherence estimates, while the usage of an active electrode, e.g.,
Cz, as a reference point is discarded (Nunez et al., 1997). A similar
conclusion is drawn in Zaveri et al. (2000). Here also the earlobe
reference is considered to have a limited impact on coherence
measurements if the power of the reference signal is considerably
smaller than that of active electrodes, a supposition that is not
necessarily true for extracranial recordings.

In Rummel et al. (2007) this issue was discussed in the
context of RandomMatrix Theory. Usingmultivariate techniques
stemming from this research field (Laloux et al., 1999; Plerou
et al., 1999, 2002; Müller et al., 2006) they tested the influence of 6
popular reference schemes on the eigenvalue spectra of the zero-
lag cross-correlationmatrix. Furthermore, a correction algorithm
is derived, which is proposed to minimize such perturbations to
a large extent. As a result it turned out that the distortions caused
by the global average were less pronounced than those of other
schemes, and the proposed correction algorithm worked almost
perfectly in this case.

For the case of multivariate analysis of EEG data, which
has gained increasing interest during the last decades, in Chella
et al. (2016) the influence of EEG references on the connectivity
and graph theoretical measures has been probed by using the
imaginary part of the coherency. The authors conclude that
significant differences arise by using different reference schemes
for the estimation of scalp EEG functional connectivity and,
consequently, a significant influence on the estimation of the
topological properties of the functional network, as assessed by
graph theoretical metrics, has been detected. The authors advise
that the comparison of results derived in different laboratories
using different data acquisition and pre-processing techniques
should be undertaken with caution.

In the present study the authors present and quantify the
spatiotemporal distortions caused by different EEG-references,
using linear cross-correlations, as well as phase synchronization
as a representative for a linear and a non-linear bivariate
measure, respectively. To this end, we employ artificial data
derived from theoretical models, where the interrelation pattern
between data channels can be perfectly controlled. In order to
investigate time dependencies we use additionally three types
of real EEG-recordings: Sleep EEG from healthy subjects, a
peri-ictal recording of an epileptic focal onset seizure and
recordings of clinically healthy subjects with open and closed
eyes while hearing music. We chose these examples because
they show striking differences in terms of the morphology
and the interrelation pattern of the signals. Furthermore,
the peri-ictal transition of an epileptic seizure as well as
the transitions between different sleep stages are highly
non-stationary, and thus they allow probing for the time
dependency of the functional network derived for different
reference schemes. Specifically, these recordings are used to
derive realistic EEG-references, which can then be applied
to the model data in order to visualize their effect on
the correlation pattern and the power spectra in a more
objective way.
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For this purpose, we probed for those reference schemes
already considered in Rummel et al. (2007) and included
additionally the median reference as a non-parametric version
of the global average. In principle, one should expect that the
influence of the global average and the median is of comparable
size. However, the non-parametric character of the median
ensures a higher robustness against outliers, since the global
average can be quite sensitive to muscle artifacts that are
restricted to only a few signals, but enter with high amplitude,
while the median remains unaffected from such outliers.

In Yao (2001), a new reference montage has been proposed
which is superior than other schemes in several aspects (Qin
et al., 2010; Liu et al., 2015; Lei and Liao, 2017; She et al., 2017;
Trujillo et al., 2017; Hu et al., 2018). However, the so called
Reference Electrode Standardization Technique (REST) requires
a precise head model in order to simulate electrically active
sources. Such estimates improve in general with an increasing
number of electrodes and may show essential deficiencies
when only 64 or less electrodes are used (Acar and Makeig,
2013). Even when the location of sources can be almost
precisely determined, the lack of knowledge of resistivity and
the anisotropy of brain and skull tissues constitute major error
sources (Nunez, 2010). Additionally, these parameters might
differ across subjects. Furthermore, source distributions might
change drastically during recording time. For instance, dominant
sources alter drastically during the transition from wake state
to sleep (Steriade, 2003) and during sleep cycles (Pace-Schott
and Hobson, 2002; Steriade, 2003; Dang-Vu et al., 2010; Brown
et al., 2012; Jones, 2019). Even the much longer circadian rhythm
(Dijk and Czeisler, 1995; Pace-Schott and Hobson, 2002; Brown
et al., 2012) is regulated by specific neuronal circuits. The
same is true for the peri-ictal transition of epileptic seizures.
While during its initial stage the seizure onset zone may play
a major role in the generation of particular brain rhythms,
the dynamical evolution of seizures (Geier et al., 2015) and,
in particular, the collective termination of focal onset seizures
seem to be orchestrated by widely distributed well-coordinated
network activity (Schindler et al., 2006, 2008). Consequently, the
source distributions are drastically altered during epileptic events
(Alarcon et al., 1994). In the cases of such highly nonstationary
recordings, it seems advisable to properly design a head model
individually for different epochs. For these reasons, in the present
study we solely focus on model-free reference schemes, which
seems to be of more practical usage when only 19 electrodes of
the 10/20 systems are considered for the measurement of highly
nonstationary events.

The paper is organized as follows. In the next chapter, the
method section, we describe the reference schemes considered
in this work, the numerical test frameworks and we describe
the EEG data and the interrelation measures used. Then, in
section 3, we present the numerical results concerning the
spatial deformations of several well defined correlation patterns
and check for possible consequences of re-referencing. It is
supposed that earlobe signals are not sensitive for neural activity
and are thus independent from those of the active electrodes.
Also in our model, calculation-simulated earlobe signals are
derived independently. However, we probe for the validity of this

assumption in a separate section. Finally, several applications on
real world data are discussed. Namely, we study the peri-ictal
correlation dynamics of a focal onset seizure, we consider deep
sleep as well as paradoxical sleep and check for vulnerability to
muscle artifacts. In a final section, we draw our conclusions.

2. METHODS

2.1. Reference Schemes Considered in the
Present Study
The time–resolved values of an electroencephalographic
recording (Yi(t)) represent the difference between the electrical
potential measured at the position of an scalp electrode (Xi(t))
and some reference potential Ri(t) measured elsewhere, viz.:

Yi(t) = Xi(t)− Ri(t) (1)

where i = 1, ...,M denotes the index of the active electrodes.
In order to define a reference point Ri(t) different schemes have
been established. Here we consider the most common ones:

1. Average of two active electrodes (F3F4): The average of the
two scalp electrodes (F3 and F4) are taken as reference for
all others:

R ≡ RF = (XF3 + XF4)/2. (2)

Sometimes only one scalp electrode like Cz is used instead, but
pitfalls disclosed for the F3F4 reference are similar to those
when only one active electrode is chosen.

2. Earlobes average (A1A2): The average of the two earlobe
electrodes A1 and A2 is taken as reference:

R ≡ RA = (XA1 + XA2)/2. (3)

It is supposed that this reference signal is not substantially
influenced by the brain activity and thus it is (almost)
independent from scalp electrodes. Our numerical
simulations are also based on this assumption, where
earlobe recordings are derived as independent signals.
Furthermore, in the numerical test framework used by us to
simulate active electrodes as well as reference signals, this
scheme is equivalent to the mastoid reference. Occasionally,
only one earlobe signal is used.

3. Contra-lateral reference (CL): The earlobe electrodes A1 and
A2 are taken separately as reference for the right and left
hemisphere, respectively.

4. Hjorth montage (H): For a given electrode the weighted
average of neighboring electrodes is taken as a reference.
The weights depend on the relative distance between the
electrodes, for details see Hjorth (1975) and Gordon and
Rzempoluck (2004).

5. The global average (gav): The Reference signal is the average
over allM scalp electrodes:

R ≡ RG =
1

M

M∑

i=1

Xi. (4)
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This scheme is motivated by general principles (Bertrand
et al., 1985; Jackson, 1999) and further by the assumption that
dynamical aspects of the brain activity are averaged out such
that one ends up with an (almost) constant reference signal.

6. Median (M): The median reference is the non-parametric
version of the global average scheme. At each time step the
median RM of all EEG-channels (M) is taken as a reference.
Hence, for the scheme of 19 electrodes, only one scalp
electrode is used as a reference point, but it may change at
any instant (Müller et al., 2011, 2014; Olguín-Rodríguez et al.,
2018).

R ≡ RM (5)

7. Bipolar montage (bp): Finally, bipolar montages have ample
clinical applications, such as for diagnostic purposes of, e.g.,
epilepsy. In the present study we use the following scheme: we
close the left (Fp1−F7, F7−T3, T3−T5, T5−O1, Fp1−F3,
F3− C3, C3− P3, P3−O1) and right hemisphere (Fp2− F8,
F8 − T4, T4 − T6, T6 − O2, Fp2 − F4, F4 − C4, C4 − P4,
P4− O2) of the standard surface EEG to rings and couple the
three central electrodes: Fz−Cz and Cz−Pz. This choice leads
to a total ofM′ = 18 data channels.

R ≡ RB. (6)

2.2. Numerical Test Frameworks
In order to put this study on solid statistical footings, we
synthesized multivariate data sets from theoretical test models,
where strength as well as the spatial distribution of the cross-
correlations can be perfectly controlled. Then, deviations from
such well defined correlation structures, provoked by some
reference signal, can be precisely evaluated. Here we chose
multivariant Nf -tori (Müller et al., 2005) as a test framework,
because this model bears the additional advantage that one may
adjust independently the amount of cross-correlations between
data channels as well as the power spectrum of each signal.

Nf -tori are sums of Nf harmonic oscillations with
incommensurate frequencies, and as such they can be
understood as a kind of discrete Fourier decomposition of
a whatever time series:

Xk(t) =
Nf∑

l=1

Akl sin(2π flt + δkl), (7)

with k = 1, ...,M data channels, which mimic the electrode
signals. Given the close relationship of the Nf -tori to the Fourier
theory, it puts this test framework on very general grounds. Via
the Wiener-Khinchin theorem, it remains clear that all linear
univariate properties are fixed via the selection of the amplitudes
Akl, while non-linear autocorrelations and simultaneously linear
as well as non-linear cross-correlations are governed by the
initial phases δkl. However, for a given realistic situation, the
distribution of the δkl might be quite complicated. Here we used
a simple but transparent strategy in order to generate different
interrelation patterns.

Hence, theAkl are the amplitudes of the harmonic oscillations,
while the δkl are the phases at t = 0. Note, in Equation (7) the fl
take the same values for all M signals, while amplitudes Akl and
initial phases δkl are chosen individually for each data channel.
The amplitudes Akl fix the power spectra and therefore the
amount of random correlations within the multivariate dataset
(Müller et al., 2005). The initial phases δkl, on the other hand,
permit the control of genuine correlations between pairs or
groups of signals (Müller et al., 2005). If the δkl are uniformly
distributed between zero and 2π the Xk(t) are completely
uncorrelated, because each phase relationship between data
channels occurs with equal probability, and frequency ranges
with specific phase relations are absent. Any deviation from this
uniform distribution implies phase relationships between time
series and gives rise to the occurrence of genuine correlations
(Müller et al., 2005). In the present study, correlations are
generated via Gaussian distributionsmodulo 2π withmeanµδ =
π and standard deviation σδ ∈ [0, 2π] such that on the average a
constant phase difference is produced (Hramov et al., 2005).

For each signal of the multivariate set, Nf = 5000 frequencies
are randomly selected using a uniform distribution between
0.1 and 100 Hz. Here a time unit is arbitrarily chosen as 256
sampling points, and the amplitudes are fixed according to a
Gaussian distribution:

Akl(fl) =
1

√
2π σA

exp

[
−
1

2

(
fl − µA

σA

)2
]
, (8)

where µA and σA are, respectively, the center and the standard
deviation of the Gaussian. With that choice we simulate
qualitatively band-pass filtered EEG data. Note, band-pass
filtering is mandatory if one aims to apply phase-synchronization
measures, which require mono-component narrow-band signals
(Picinbono, 1997; Chavez et al., 2006; Rios Herrera et al., 2016)
To each of the data channels of the Nf -tori we assigned an
electrode of the 10/20-system in order to define the Hjorth
and bi-polar reference adequately. By means of the δkl we
generated 8 different correlation structures, each set consisting
of 21 signals, where 19 simulate the active scalp electrodes and
the two remaining ones mimic the earlobe electrodes (A1,A2), or
the mastoid signals, respectively. A detailed description of the 8
models is given in Table 1.

Model 1 and 2 simulate the limit cases where none or all data
channels are correlated, respectively. In models 3−6 correlations
are induced within a subset of the 19 signals (one single cluster).
Two mutually uncorrelated clusters are generated in model 7.
For this purpose, the centers of the Gaussian distributions of the
initial phases of the two clusters are displaced by π/2. Finally, in
model 8 three small correlation clusters are formed. The centers
of the Gaussian probability distributions used to select the initial
phases are chosen as π/20, 11π/40, and 9π/40. Hence, the three
correlation clusters are mutually correlated.

2.3. Description of the EEG-Data
We analyze three examples of electroencephalographic
recordings. The first signal was acquired at the Sleep Laboratory
of the Faculty of Psychology of the Universidad Nacional
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TABLE 1 | Correlation patterns generated by Nf -tori.

Model Standard deviation (σδ ) Correlated channels

1 – None

2 π/5 All signals

3 π/20 1–9

4 π/20 1–10

5 π/20 3 and 4

6 π/20 3, 5, 7, 9, 11, 13, and 15

7 π/20 Two clusters (1–8) and (9–16)

with mean phase difference of π/2

8 π/20 Three weakly interrelated correlation cluster

(1, 2), (8, 10), and (18, 19) centered at

π/20, 11π/40 and 9π/40, respectively

Autónoma de México. It was taken from a 26-year-old, clinically
healthy male subject during the whole night after giving written
informed consent. The recording considered here was obtained
during the second night in the laboratory in order to avoid
irregularities of the first night sleep in a new environment. Prior
to the study, the subject had a structured clinical interview and
kept a 15-day sleep log, confirming a regular sleeping habit
without any symptoms of sleep disorders. The experiment was
approved by the Ethical Committee of the Faculty of Medicine
of the Universidad Nacional Autónoma de México following
the ethical standards of the Declaration of Helsinki (1964).
Standard polysomnography (PSG) and a standard scalp EEG
were recorded at Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, T5, T6,
P3, P4, O1, O2, Fz, Cz, and Pz of the 10/20 International System
(Lesser, 1986) referenced to A2 with a Grass 8 - 20 polygraph
with filters set at 0.1 and 70 Hz for EEG, at 10 and 70 for EMG,
and 0.3 and 70 Hz for EOG. Additionally, earlobe A1 referenced
to A2 was also recorded. Beside the construction of the functional
network spanned by all active electrodes, this scheme allows
additionally the estimation of possible correlations between
them and the earlobe signal A1. Hence, one is able to probe the
independence of earlobe signals.

All-night PSG data were digitized and stored with a 1,024
Hz sampling rate using a 12-bit A–D converter of the GRASS-
GAMMA acquisition program. Wakefulness and sleep stages
were identified by standard procedures using 30-sec epochs
(Rechtschaffen and Kales, 1968) by an experienced specialist in
sleep recordings (MC-C). For the data analysis we applied a low
pass filter (4th order Butterworth) suppressing all frequencies
above 25 Hz and downsampled the recording to 128 Hz
effective recording frequency. Then a band-pass for the delta-
band (0.5-3.5 Hz), the fast beta-band (18–25 Hz) and the
broad band (1–40 Hz) was applied. Thereafter, the signals were
reference transformed.

In particular, we analyzed sleep stage 4 and Rapid Eye
Movement (REM) sleep because of the strikingly different
morphology and functional connectivity of these sleep stages.
Sleep stage 4 resembles a more collective state dominated by large
amplitude slow waves, while recordings during REM sleep have

a larger contribution of fast frequency components and are in
general more similar to the awake state. In a first example we
considered in total 50 epochs from this data set, each with a 30-s
duration, which are consecutive during the first sleep cycle in the
case of sleep stage 4 and were taken from the last two sleep cycles
in the case of REM-sleep. In a second calculation we considered
the whole night recording with a 30-s running window.

The second example is a 5-min recording of a 30-year-old
female epilepsy patient, measured in the Instituto Neurologico de
Antioquia in Colombia in accordance with its surgery protocol.
The EEG contains the peri-ictal transition of a secondary
generalized focal onset seizure with a tonic-clonic seizure
offset and a duration of 70 s. The recording was obtained
by using a Cadwell Inc with 32 channels with the settings
of the international 10/20 system. However, only the standard
19 channels were used, referenced to A1, with a recording
frequency of 250 Hz, filtered between 0.1 to 70 Hz and a Notch
filter at 60 Hz. The acquisition program is called Easy III.
Ten-second epochs have been evaluated from an experienced
neurophysiologist (JFZB). The patient signed a written consent
and the protocol was approved by the Ethics Committee of the
Clinical Research Neurological Institute of Colombia. Before we
analyzed the data set with a 10-s, non-overlapping window, the
data were band-pass filtered between 0.5 and 25 Hz by using a
4th-order Butterworth filter, employed in forward and backward
directions in order to avoid artificial phase shifts.

The third type of EEG data used in this paper were recorded
from healthy subjects (four women and eight men; age range 23–
38 years) in the Laboratory of the Psychology of Cognitive and
Emotional Processes of the University of Guadalajara, Mexico by
using a 128-channel Medicid (Neuronic) amplifier. However, like
in the former cases, only the 19 standard channels from the 10/20
International System were recorded, employing an appropriate
Electro Cap. The signals were referenced to the linked earlobes
with filter set at 0.1–70 Hz and sampled at 200 Hz by using a
neuronic acquisition program. All subjects were recorded while
listening to an acoustic rhythm presented with different tempi
(120, 140, and 160 bpm) with open eyes. The protocol was
approved by the Ethics Committee of the Neuroscience Institute
of the University of Guadalajara.

2.4. Definition of the Interrelation Measures
In order to measure relations between time series, we focus
on two prominent quantities, namely the cross-correlation
coefficient and the degree of phase synchronization estimated
by the Mean Phase Coherence (Mormann et al., 2000). This
choice is substantiated by the fact that none of the two measures
require a computationally expensive and error-prone phase-
space reconstruction such as with non-linear interdependence
(Kreuz et al., 2007). As such a procedure is in general
questionable for non-stationary, noise contaminated systems
with a high dimensional phase space (Kantz and Schreiber, 2004).
Furthermore, information theoretical measures also seems to
be more affected by external noise and less sensitive for the
detection of interrelationships between two signals. Because of
its seemingly superior performance in EEG-analysis (Mormann
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et al., 2005), even in situations where coupled non-linear, low-
dimensional systems are under consideration (Kreuz et al., 2007),
we decided to restrict the bivariate analysis to linear cross-
correlation coefficients and phase synchronization estimated by
the mean phase coherence. From these bi-variate measures,
symmetric interrelation matrices are constructed, which reflect
the interrelations between all pairs of electrodes.

2.4.1. The Zero-Lag Correlation Matrix
For a proper computation of the cross-correlation coefficients the
N time series Xi(tk) (i = 1, . . . ,N and k = 1, . . . ,T) are first
normalized to zero mean and unit variance:

X̃i(tk) =
Xi(tk)− 〈Xi〉tk

σi
, (9)

where brackets 〈Xi〉 denote time average and σi the standard
deviation estimated over a time window of length T. Then the
N × N zero-lag cross-correlation matrix C is composed over the
same data segment:

Cij =
1

T

T∑

k=1

X̃i(tk)X̃j(tk) = 〈X̃i(tk)X̃j(tk)〉tk . (10)

The matrix defined in Equation (10) is a real symmetric matrix
and, being a quadratic form, it is also positive semi-definite.

2.4.2. Phase Synchronization
The main deficiency of the zero-lag correlation coefficient
consists in the fact that phase differences of π/2 cannot be
detected by definition. The equal-time correlation between e.g.,
sine and cosine waves with the same frequency is zero, although
there is a tight phase locking between the two signals. Therefore,
in the present study we considered also a phase synchronization
measure, which is sensitive for any phase differences between two
signals and solely quantifies the stability of the phase locking of
instantaneous phases over time.

A prerequisite for the characterization of phase
synchronization is the proper estimation of the instantaneous
phase φ(t), which is in fact a nontrivial issue (Picinbono, 1997;
Chavez et al., 2006; Rios Herrera et al., 2016). In order to
correctly assign a physical meaning to the φ(t), the signals have
to fulfill certain requirements; in particular, they have to be
narrow banded with only one prominent peak in the power
spectrum (Chavez et al., 2006). Otherwise, band-pass filtering is
mandatory (Rios Herrera et al., 2016).

If this condition is fulfilled, the instantaneous amplitude a(tk)
and phase φ(tk) of a signal are then properly defined by the real
and imaginary part of the analytic signal S̃(tk) = X(tk)+ iXH(tk)
(Gabor, 1946; Oswald, 1956; Bedrosian, 1962):

a(tk) =
√
X(tk)2 + XH(tk)2, (11)

φ(tk) = arctan(XH(tk)/X(tk)), (12)

whose imaginary part is obtained using the Hilbert transform:

XH(tk) =
1

π
P.V.

∫ ∞

−∞

X(τ )

tk − τ
dτ . (13)

Here P.V. denotes that the integral is taken in the sense of
the Cauchy Principal Value. The temporal stability of possible
phase relationships between signals Xi(tk) and Xj(tk) can then be
estimated by

Rij =
1

n

∣∣∣
n−1∑

k=0

ei1φij(k1t)
∣∣∣. (14)

In the last formula k denotes the time index, 1
1t the recording

frequency and n the length of the time interval used to estimate
the φ(tk) and, hence, Rij is an estimator for the temporal stability
of the phase differences 1φij(k1t) = φi(tk)− φj(tk).

2.5. Evaluating Distortions
The main focus of the present contribution is to quantify
distortions of the correlation structure induced by the reference
signal. For this purpose, we calculated the average difference of
the interrelation matrix obtained for the untransformed original
data and its reference-transformed version:

D =
2

N(N − 1)

∑

i>j

|MOriginal
ij −M

Reference
ij |, (15)

whereN is the number of simulated (or real) EEG channels. Note,
in the above formula as well as in the sequel the symbolMij is used
as a replacement for either the CorrelationmatrixCij or theMean
Phase Coherence matrix Rij, when formulas refer to interrelation
matrices in a more general sense.

Eventually, we also calculate the average of the absolute values
of the non-diagonal elements of the interrelation matrices:

< |M| > =
2

N(N − 1)

∑

i>j

|Mij|. (16)

In order to probe for possible distortions of univariate properties
of the signals, we estimated the power spectra of the reference
transformed signals and compared them with that estimated
from the untransformed data. Eventually, we also calculated the
power spectrum for the reference itself.

3. RESULTS

We start this section with an exemplary discussion of one
particular model, namelymodel 7 ofTable 1, before wemerge the
results obtained for all models in a summary figure. Thereafter,
we will consider the problem of re-referencing and probe the
assumed independence of earlobe signals. Then we turn to
possible deformation of power spectra and discuss probable
dynamical changes due to a chosen EEG-reference as well as the
influence of eye-artifacts at the end of this section. In all cases
we provide a quantitative comparison of different EEG-reference
schemes considered in the present study.

3.1. Deformation of Spatially Distributed
Correlation Pattern
In order to study possible deformation of the spatial interrelation
structure we derived time series from 214 sampling points. Then
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we generated the zero-lag correlationmatrix for a data window of
256-samples, which is equivalent to 1 s. Thereafter, we averaged
over this set of correlation matrices. This procedure is done for
the untransformed time series derived from Nf -tori (7), as well
as for the signals transformed to the above-mentioned reference
schemes. Results for Model 7 are shown in Figure 1.

In order to improve the visibility of the spatial correlation
structure of the matrices shown in Figure 1 all diagonal elements

are shadowed gray. The average phase difference between the two
clusters of model 7 is π/2 and, hence, by definition not detectable
by zero-lag correlations. Therefore, the two clusters seem
uncorrelated even for the case of the untransformed data. Median
reference (M) and global average (gav) performed qualitatively
similarly, as should be expected, although the distortions caused
by the median were marginally less pronounced. This was
probably due to the fact that the median is a non-parametric

FIGURE 1 | Average correlation matrices derived from model 7 for different simulated EEG references. The diagonal elements of all matrices are drawn in gray in order

to improve visibility.
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quantity, which is not vulnerable to outliers. However, both
schemes induce erroneously anti-correlations between the two
clusters while the earlobe reference, on the other hand, induces
a pronounced positive offset over the whole matrix.

When the contra-lateral montage (CL) is used, which is to say
when each hemisphere is referenced to the earlobe of the opposite
hemisphere, a peculiar checkered pattern of spurious correlation
distributed over the whole matrix, while at the same time
certain genuine intra-cluster correlations become significantly
weakened. Major distortions of the spatial pattern are also
observed for the (F3F4) as well as for the bi-polar reference (bp).
In both cases a massive destruction of genuine correlations as
well as the generation of spurious correlations takes place, such
that the interpretation of the spatial correlation pattern as the
functional brain network would lead to completely erroneous
conclusions. In comparison, the functional network derived in
the Hjorth-montage (H) is much closer to the untransformed
one, although in that case the truly uncorrelated data channels
17–19 seem to be strongly correlated or anti-correlated to both
correlation clusters, in addition to pronounced but mistaken
anti-intercluster correlations.

When turning to phase synchronization estimated by the
mean phase coherence (Figure 2), one observes a similar
picture. Major distortions due to the choice of the EEG-
reference are observed for the (F3F4)-reference, the contra-
lateral scheme and the clinically relevant bipolar montage.
For phase synchronization the Hjorth-reference also performed
worse, given that for model 7 even the two clusters with a mean
phase difference of π/2 could not be identified but seemed to
merge into a single large group of correlated channels. Like in
the case of cross-correlation, the earlobe reference generated
an artificial bias, such that the inter-cluster interrelation gets
somewhat hidden by this offset. Median reference and the
global average are quite similar as expected, with slightly better
results for the usage of (M). For both schemes, the genuine
intra-cluster synchronization strength is somewhat weakened.
However, the two cluster configuration as well as the inter-cluster
synchronization are clearly visible.

To quantify the difference between the interrelation pattern
derived for the untransformed data of themodels listed inTable 1
and the reference transformed signals, we employ Equation
(15). Note, with the set of models listed in Table 1 we intend
to include qualitatively different spatial interrelation patterns
beginning with no correlations at all, one large cluster as well as
multi-cluster configurations. In order to obtain reliable results
we created 100 realizations for all models. In each case we
estimated the cross-correlation matrix as well as the mean phase
coherence matrix over a data segment of 4,096 data points. In
order to avoid edge effects, 10% at each side of the segment
is disregarded (Mormann et al., 2000). For both bi-variate
measures symmetric interrelation matrices were constructed,
which reflect the interrelations between all pairs of electrodes.
Then, deviations were estimated according to Equation (15). The
results summarized in Figure 3 allow a quantitative comparison
of the reference schemes considered.

In general, one observes that deviations from the original
pattern are less pronounced when the mean phase coherence

is estimated in order to construct the functional network.
Deviations for linear correlations are systematically larger.
However, qualitatively the results for both estimators reflect
similar features. Namely, for Model 2, where all data channels are
correlated, the deviations are most pronounced for all reference
schemes, but the largest values are observed for the median, the
global average and the Hjorth transformation. Also for Model 4,
where more than the half of the signals are correlated, the median
reference shows the worst performance. This could be expected
given that the median as well as the global average is dominated
by correlated signals if interrelation clusters are large. In that
case, cluster-specific features might be subtracted from correlated
channels and artificially induced to independent signals.

On the other hand, this effect might also have positive
consequences, namely concerning the undesired contamination
via volume conduction. Hereby, redundant information is
induced to all active electrodes, such that the corresponding
signals are no more exclusively reflecting neuronal activity of
the vicinity of each electrode. Hence, by volume conduction
additional spurious zero-lag cross-correlations are generated.
However, by re-referencing to the global average as well as
to the median reference, redundant information is subtracted.
Therefore, the deviations observed for Model 2 in Figure 3 are
due to the fact that the global correlation pattern covering all
active electrodes is eliminated by re-referencing to (gav) and (M)
and, in this case, the data looks like the completely uncorrelated
recordings of Model 1, where both references perform best.
Yet, when correlation structures are small, or when multiple
correlation clusters are present, deviations caused by the median
reference as well as the global average are the least.

In contrast, the deviations obtained for the earlobe reference
seem to be almost independent from the correlation structure
of the data set. Quantitatively, as documented in Figure 3, the
overall distortions of the earlobe reference are approximately of
the same order of magnitude as those observed for the contra-
lateral scheme. For all models considered in the present study
we obtained almost the same moderate amount of distortions
for both the mean phase coherence and the correlation matrix
for the case of the earlobes average. However, this observation
is owed to the fact that we assumed in this model calculations
that the earlobe signals are completely independent from those
measured by the scalp electrodes. In this case only a constant
bias, as observed in Figures 1, 2, can be expected and of course,
by construction this bias does not depend on the genuine spatial
correlation pattern.

Nonetheless, it is plausible to assume that in a true
measurement, the earlobe signals share information with (at least
some) active electrodes. If that is true, the deviation from the true
correlation pattern is not just a constant, spatial homogeneous
offset, but one should expect a more complicated distortion, such
that genuine correlations could be destroyed in one region while
spurious correlations could be generated in another, like in the
case of the other reference schemes. We probe the independence
of earlobe signals in the next section.

Slightly more scattered are the results obtained for (F3F4)
and (H), showing deviations of the same magnitude as those
estimated for (M). However, these reference schemes provoke
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FIGURE 2 | Average Mean Phase Coherence matrices derived for model 7 by using different simulated EEG references. The diagonal elements of all matrices are

drawn in gray in order to improve visibility.

severe structural changes, which are not capable of the global
measure 15 shown in Figure 3 but clearly documented by the
example of Model 7 in Figures 1, 2.

3.2. Independency of Earlobe Signals
In order to probe for a possible dependency on earlobe electrodes,
we consider the whole night EEG recording of a clinically healthy
subject, with A2 as the reference electrode (Dataset 1 of section

2.3). In addition to the common 19 active channels of the 10/20-
system, the left earlobe A1 was also recorded. Hence, in this case
we were able to estimate the cross-correlation of A1 with each of
the active ones.

The results displayed in Figure 4 document that, despite
our model assumptions, strong correlations between the earlobe
and active electrodes are present, e.g., in the case of electrode
T3 (Figure 4A). Additionally, correlations between earlobe and
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FIGURE 3 | Average deviation D (Equation 15) from the original, viz. untransformed interrelation pattern caused by different reference schemes estimated for synthetic

data derived from each of the models listed in Table 1. Left columns, indicated by a gray shadow, show the results obtained for the correlation matrix, right columns

those for the mean phase coherence matrix.

active electrodes may vary strongly with the physiological brain
state and may even change its sign. For instance, electrode T4
shows a pronounced dependency on sleep stages and vary notably
during sleep stage 2, deep sleep and awake state. In fact, all active
electrodes are correlated with A1 with highest average values for
electrodes located on the same frontal or temporal lobe like F7
(Cav = 0.58), T3 (Cav = 0.68) and T5 (Cav = 0.6). On the
other hand, electrodes located at the right temporal lobe, like F8
(Cav = −0.07), T4 (Cav = −0.1) and T6 (Cav = −0.03), are on
the average weakly correlated with A1, but those correlationsmay
show a pronounced time dependence as exemplified in Figure 4.
Finally, average correlations at the midline like Fz (Cav = 0.2),
Cz (Cav = 0.18) and Pz (Cav = 0.2) are still not negligible. The
heat maps in the lower part of Figure 4 illustrate nicely that the
strength of those correlations decrease with the distance to the
earlobe (Figure 4B), while simultaneously fluctuations, caused by
the time dependency of the interrelation between earlobe and
active electrodes and, hence, the dependency on physiological
brain states, notably increase (Figure 4C).

Based on these findings we conclude that the assumed
independence of earlobes in our theoretical model is
unrealistic for EEG recordings and favors notably this
reference. Hence, results presented for the earlobes average
in Figure 3 are just estimates of minimal possible average
deviations and, due to the fact that correlations vary
across the scalp and may strongly vary in time, one has
to expect that the earlobe reference causes, additionally to
the observed bias, important spatiotemporal deformations
of the genuine interrelation pattern, which additionally
affect notably the time evolution of the measured functional
network due to its marked dependency on the physiological
brain state.

3.3. Re-referencing to the Median
Reference
According to the results presented so far, and considering
that synchronous dynamics of a large number of electrodes
occurs mainly under pathological circumstances like generalized
epileptic seizures, it seems, according to the results presented
in Figure 3 and considering the discussion made in section
3.2, that the median reference and the global average performs
best under quite generic conditions, if the construction of the
functional network of the electrical brain activity is desired
and no strong global correlations covering most of the active
electrodes are to be expected. However, EEG-equipment do
not allow for data recording using these reference schemes.
Thus, both references might depend on the reference scheme
used during data acquisition and so we tested in the next step
for such a potential dependency. In Figure 5 we summarize
the corresponding results obtained for artificial data derived
from Model 7 (like in Figures 1, 2) for the median reference.
Equivalent results were obtained for the global average.

The correlation matrix conserves even quantitatively the same
structure when the data are retransformed from the global
average Figure 5B. Given that the global average is usually close
to the median if the sample does not contain crucial outliers or
a pronounced asymmetric tail, this result could be anticipated.
However, the same is true when the data is at first transformed
to the average of two active electrodes (F3F4) (Figure 5C) or
the average of the earlobe electrodes (A1A2) (Figure 5A). Also
for these cases, one recuperates not only qualitatively the same
correlation structure, but quantitatively the obtained correlation
matrices are also remarkable similar. On the other hand, the
correlation matrix derived from data previously transformed
to the Hjorth-reference is markedly different (Figure 5D). In
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FIGURE 4 | (A) Correlation coefficient between the earlobe A1 and active electrodes T3, Cz and T4 estimated with a running window of length 3,840 data points

(corresponding to 30 s) over the whole night recording of a clinically healthy, 26-year-old male subject. Sleep stages (W = awake, S1–S4 denotes sleep stages 1–4

and REM denotes Rapid Eye Movement sleep periods) are indicated by colored shadows in each panel. (B) Shows a heat map of the average correlation between the

active electrodes and A1 and (C) the respective standard deviation. Both quantities are estimated over the whole night recording.

this case, one retrieves the correlation structure already seen
in Figure 1, i.e., the re-transformation to the median does not
provoke notable changes, such that the deformations caused
by the Hjorth-transform are almost conserved. Due to the
fact that in the Hjorth montage to each electrode a personal
reference signal (determined by its neighborhood) is assigned,
signatures imprinted by the Hjorth transform can no more
be eliminated by re-referencing. Similar results are obtained
when the mean phase coherence is used instead of cross-
correlations (not shown in the figure). In conclusion, these results
underpin the robustness of the median reference (as well as the
global average) against re-referencing. The resulting interrelation
matrices are practically independent from the EEG reference

used during the recordings. This is particularly true for the
commonly used earlobe reference, mastoids or when an active
electrode is employed as a reference point.

3.4. Influence on Power Spectra
So far it remains unclear if and to what extent EEG-references
may influence univariate properties of the recordings. Here
we test for linear autocorrelations expressed by the power
spectra of the transformed data in comparison to those of
the untransformed signals derived from the theoretical models.
Note, the power spectrum is just the Fourier transform of
the autocorrelation function and thus, its slope is a direct
measure of the autocorrelation length. This procedure seems to
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FIGURE 5 | Correlation matrices estimated for median-referenced data previously transformed to different popular EEG-references. (A) A1A2, (B) global average,

(C) F3F4, and (D) Hjorth. Data have been derived from Model 7 of Table 1, like in Figures 1, 2.

be reasonable given that reference transformations are linear and
as such they may modify linear univariate properties. In Figure 6

we show the mean power spectra of an active electrode, averaged
over an ensemble of 100 realizations of four different models.
Additionally, the power spectra of the reference signals are drawn
in the respective insets.

For the model data we observe for all cases that
autocorrelations are almost conserved. For all models and
all reference schemes considered in the present study the
slopes of the power spectra do not vary notably from that of
the untransformed data. Slope variations are tiny and only
the absolute power gets modified, although in some cases
the autocorrelation length of some reference signals differs.
For example, the slope of the power spectrum of the median

reference derived for Model 1 (inset of panel Figure 6A) is
somewhat lower than that of other reference signals, indicating
a shorter auto-correlation length. Nevertheless, on the average,
linear univariate properties expressed by the power spectra seem
to be quite robust under reference transformations, and they
are at least for the test framework considered in this study only
marginally affected.

3.5. Applications to Real World Data
Figure 4 already indicates that correlations induced by the EEG
reference are by no means stable in time, but may depend
crucially on the genuine correlation pattern of the specific
physiological brain state. This is explicitly exemplified for the
case of the earlobe reference in section 3.2. There we could
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A B

C D

FIGURE 6 | Power spectra averaged over all active electrode signals transformed to different reference schemes estimated for synthetic data derived from Model 1

(A), Model 2 (B), Model 7 (C), and Model 8 (D). The insets show the power spectra of some of the corresponding reference signals.

prove that the correlations between the earlobe signals and active
electrodes not only depend on the distance to the earlobe but
show also notable variations with the sleep stages. Here we
further investigate this issue by using: (a) a real EEG recording of
an epileptic seizure, (b) a sleep recording of a healthy subject, and
(c) recordings of healthy subjects with open eyes while hearing a
rhythmic acoustic stimuli. To this end we proceed in three steps.
First we show that the time evolution of the overall correlation
strength during the peri-ictal transition of an epileptic seizure
may differ qualitatively between different reference schemes.
However, given that the true dynamics of the functional network
is effectively unknown for real world recordings, we use in the
next step the sleep recording solely for the deduction of reference
signals, which are then applied to artificial data of Model 1, where
all data channels are uncorrelated. This allows a more objective,
quantitative evaluation of disturbances caused by the different
reference schemes. Finally, in a last step we use the data sets of
healthy subjects in order to test for robustness against muscle
artifacts, in particular eyelid movement.

3.5.1. Correlation Dynamics of a Focal Onset Seizure
In this section we present the results for the analysis of the time
evolution of a spatial cross-correlation pattern derived from an
extracranial EEG-recording containing a focal onset seizure. Due
to the fact that we consider here empirical data recorded from
a real world experiment, the genuine interrelation pattern of
the multivariate data set is unknown. Therefore, in this section
we are only able to compare qualitative differences of the time

course of numerical estimates. In Figure 7 we show in the
bottom the average absolute cross-correlation coefficient derived
for recordings transformed to different reference schemes along
the peri-ictal transition of the seizure. In the same figure
we show additionally cross-correlation matrices obtained for
different reference schemes in order to exemplarily visualize the
variety of spatial interrelation patterns that may occur in the
different settings.

Figure 7 nicely documents that the influence of EEG-
references is not necessarily stationary but may alter qualitatively
the time evolution of the correlation pattern. 〈|C|〉(t) takes almost
always the highest values for the left earlobe reference, which
is in line with the findings reported above. The redundant
information induced by the earlobe signal enhances notably the
overall correlation strength and, hence, it is expected that values
obtained for 〈|C|〉(t) are larger than those obtained for other
reference montages. Furthermore, temporal changes of 〈|C|〉(t)
are notably diminished in comparison to the curves obtained for
other references, such that even the ictal event is only hardly
discernible in the time evolution of the average correlation
strength. Apparently, the bias induced by A1 overshadows the
correlation matrix and dynamical features of the brain activity
get markedly obscured.

In addition, it seems that distortions of the interrelation
pattern, probably due to the fact that the earlobe is not
independent from the active electrodes, are expressed by a
pronounced anti-correlation between the results derived for
the A1-reference in comparison to others. This is particularly
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FIGURE 7 | In the lower panel the time evolution of the average absolute value of the non-diagonal elements of the correlation matrices 〈|C|〉, estimated for an

extracranial recording of a focal onset seizure, is shown. Vertical black solid lines indicate seizure onset and offset. Dashed vertical lines mark three instances of time

for which the cross-correlation matrices, obtained for different reference montages, are shown in the upper part of the figure. The first two columns of six matrices

correspond to the moment just after seizure onset (around second 610), the next two columns to the instant marked in the central part of the seizure (about second

635) and the matrices of the last two columns are estimated for the marked instant of time during the post-seizure period (about second 690). In all cases the diagonal

elements are artificially set to gray color in order to improve visibility.

true for the period between second 600 and 700. During
the seizure 〈|C|〉(t) is somewhat elevated, it decreases toward
seizure offset and rises again in the immediate postseizure
period. On the contrary, the time course of 〈|C|〉(t) derived
for the remaining reference schemes shows a pronounced
minimum during seizure and a strong increase toward seizure

offset. Then it encounters again a local minimum during
the immediate postseizure period. Only when two active
electrodes are used (F3F4) does one observe quantitative
and occasionally also qualitative deviations from the behavior
revealed for the median, global average, the Hjorth and the
bipolar montage.
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Again, we underline that the time evolution of the genuine
correlation pattern of real world data is unknown. However,
the loss of correlations during seizure and the strong increase
toward seizure offset are in accordance with previous findings for
intracranial recordings (Schindler et al., 2006), using eigenvalues
as an indicator for the overall increase (or decrease) of cross-
correlations within the multivariate dataset. In this work, the
excess of correlations is not understood as the pathology but as
an active mechanism used by the brain in order to terminate
the crisis.

〈|C|〉(t) provides solely information about the time evolution
of the overall correlation strength. Possible spatial deformations
are not captured by this quantity. The correlation matrices
shown at the top of Figure 7 exemplify spatial deformations
and confirm various conclusions drawn from the analysis of
the model data presented above. One observes clearly that the
cross-correlations obtained for the (A1)-reference are notably
elevated in comparison to the matrices derived for the other
reference schemes. For example, the correlation matrix estimated
in the central part of the seizure is quite similar to the matrix
drawn for the post-seizure period. The remarkable offset blurs the
spatial interrelation pattern and, given that the earlobes are not
independent from the signals recorded from the active electrodes
(see Figure 4), it gets additionally distorted. Furthermore, and
on contrary to the time evolution of 〈|C|〉(t), one observes that
the correlation matrices obtained for the remaining reference
schemes show qualitatively different interrelation patterns, with
the exception of the median and the global average, whose
matrices are remarkable similar.

In any case, the correlation matrices reveal not only
an increase or decrease of the overall correlation strength
but, furthermore, one encounters structural changes of the
interrelation pattern during the ictal and post-ictal period.
The three matrices obtained for F3F4, bipolar scheme and
Hjorth transform show drastic structural changes along the
peri-ictal transition. This behavior indicates a high sensitivity
to physiological changes, probably the reason why the bipolar
montage is so convenient for clinical purposes. For the
bipolar and Hjorth transform the reference is defined by the
neighborhood of an active electrode, viz. this observation
indicates that the transition from ictal to postictal activity
is accompanied by pronounced local changes of inter-
dependencies. However, according to the results presented
above in Figures 1–3, neither of these schemes is adequate for
the study of the functional network due to drastic deformations
of the genuine spatial interrelation pattern.

3.5.2. Deep Sleep and Paradoxical Sleep
Here we consider a 19-channel sleep EEG of a healthy subject
(data set 1 of section 2.3) and focus on deep sleep (sleep stage 4)
and periods with Rapid Eye Movement (REM-sleep). Sleep stage
4 is particularly characterized by large amplitude slow oscillations
with a higher level of synchronization between brain regions
(Guevara et al., 1995). In this sense, at least for the slow frequency
band one expects a more collective dynamical state. REM-sleep,
on the other hand, is characterized by a larger contribution of

fast frequencies, and the morphology of the EEG-signals is more
similar to the awake state.

In order to visualize dynamical changes we derive different
reference signals from EEG segments of both sleep stages for the
δ− and the fast β−band. These reference signals are then used
to transform synthetic data derived from Model 1 of Table 1, of
19 independent signals simulating the active electrodes. Hence,
in this model no genuine cross-correlations are present, but, as
in the previous section, each synthesized data channel is assigned
to a specific electrode of the 10/20 system in order to apply the
reference schemes such as e.g., the bi-polar or the Hjorth setting.

For example, in the case of the bipolar reference the EEG
recorded at F7 was used as a reference for data channel Fp1 of
the model data, T3 of the real EEG as a reference for data channel
F7 of the model data, etc. For the global average and the median
reference, the corresponding references have been derived from
the real EEG in order to re-reference the uncorrelated model
data. That is to say, separately for the fast and slow frequency
band as well as for the deep and paradoxical sleep each reference
has been derived from real world recordings in order to re-
reference uncorrelated artificial data. In order to create a realistic
situation, we normalized the model data such that the standard
deviation of the signals coincides with those of the corresponding
EEG recordings. Note, we do not claim that the real world data,
used to derive the reference signals, do not contain genuine
correlations. But with the exceptions of the bipolar and the
Hjorth montage, these correlations do not play any role in the
present context, such that the reference solely induces the same
redundant information to each signal of the model data. If, on the
other hand, each electrode receives its own reference given by a
single electrode or the neighborhood of some electrodes, genuine
correlations of the EEG recordings are partly transmitted to the
formerly uncorrelated synthetic data. But as we can see below,
they play only a minor role for the present analysis. Figure 8
shows the distribution of non-diagonal elements for the original
and reference transformed data for both sleep stages in the two
frequency bands.

Due to the lack of genuine correlations, the nondiagonal
elements of the cross-correlation matrices derived from Model
1 should be equal to zero, but because of the existence of
random correlations one encounters for the untransformed data
a symmetric distribution centered at zero. For the reference
transformed data it is desired that corresponding distributions
are as close as possible to this null-hypothesis. However, one
observes clearly that conspicuous deviations are present for all
reference schemes, which depend on both the physiological brain
state as well as the frequency band.

The worst performance is observed for the earlobe reference
during REM-sleep for both frequency bands and for the β−band
during deep sleep. It turns out that the above mentioned bias of
this reference scheme is larger for fast than for slow frequency
bands for both sleep stages (see Figures 8B–D). In the fast
β−band, the corresponding distribution is notably displaced
toward considerably large correlation values around 0.5, but in
particular for REM-Sleep a long tail with values close to one is
observed. Note, these deviations are not caused by variations of
the power in the delta or beta-band of the model data but are due
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A B

C D

FIGURE 8 | Distribution of non-diagonal elements of correlation matrices estimated from reference transformed data derived from model 1 of Table 1. Reference

signals are extracted from real EEG-recordings of a healthy subject during sleep stage 4 (A,C) and REM sleep (B,D), for the δ−band (A,B) and the fast β−band (C,D)

as described in the main text.

to the reference transformation. Variation of the relative power
would be equivalent to the variation of the amount of random
correlations. In this case, one should not expect any displacement
but just a broadening of the probability distributions (Müller
et al., 2011). Variations of the relative power do not shift the
center of the distribution functions toward lower or larger values
but just vary its standard deviation. Displacements, on the other
hand, are caused by the induction of redundant information to
all data channels, because it increases the correlations between
all data channels of the model data almost equally. If in addition
the EEG data are non-stationary, such that the standard deviation
of the reference alters with time, also higher moments of the
probability distributions get affected, because then the center of
the distribution does not stay at a constant value, and fat tails, as
observed in Figure 8, are generated. Here we used a considerably
long segment of the sleep stage 4 of the first sleep cycle and two
data segments of REM sleep taken from different sleep cycles. In
both cases the stationary assumption is presumably nomore valid
(Dijk et al., 1990).

Hence, the poor performance in the fast frequency bands
can be explained by the ratio of the standard deviation of the
earlobe signal and that of the active electrodes, which is directly

related to the amount of redundant information induced by the
reference. For sleep stage 4 in the delta band this ratio is 0.38, viz.,
the magnitude of the earlobe signal is considerably smaller than
that of scalp electrodes. Correspondingly, the shift toward larger
correlation values is moderate. For REM sleep in the delta band
this ratio is with 0.76 notably larger, and a shift toward larger
mean correlation values and additionally a fat tail toward large
correlations is generated (see Figure 8B). However, for the fast
frequency band, these ratios are 0.92 and 0.93, respectively, for
deep and REM sleep. In these cases, the redundant information
imposed by the reference is of the same order of magnitude as
that of the simulated EEG-signals themselves. Consequently, the
distributions are located close to 0.5 (see Figures 8C,D).

On the other hand, when slow waves during deep sleep are
considered, the earlobe reference shows smallest deviations and
clearly outperforms the other settings. Given that in particular
the slow frequencies in the δ−range constitute a kind of collective
dynamics, a major influence on the global average and median
reference is expected. Correspondingly, the distributions derived
for the global average and the median reference (as well as
for Hjorth transform) are centered approximately at 0.36. On
the contrary, for the slow waves during REM-sleep (Figure 8B),
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the median reference and global average are closest to the null
hypothesis. The same is true for the β−band for both sleep stages,
where deviations obtained for the median and the global average
montage are smallest.

Finally, also the bipolar and Hjorth montage show a notably
good performance, given that the corresponding probability
distributions are considerably close to the null-hypothesis of the
untransformed model data. However, as mentioned in the last
section, crucial deformations of the topological properties of the
functional network caused by these references disqualify them for
connectivity studies.

3.5.3. Vulnerability to Artifacts
As a final aspect of the present study we focus on the susceptibility
to deformations due to artifacts, in particular to eye-artifacts.
To this end we focus on EEGs from data set 3, which has
been measured with respect to the linked earlobes reference, as
described in the method section 2.3. For each reference scheme
considered in this section, we generated two data sets. The first
one was just the transformation to the new EEG-reference. For
the generation of the second one, the original recordings have
been preprocessed in order to diminish the influence of eyelid
movements via the application of Independent Component
Analysis (ICA). Then, after this pre-processing procedure, the
cleaned data sets were transformed to different reference schemes
as well. Thereafter, we estimated the Pearson coefficient between
the cleaned and the raw data for each reference scheme
separately. If the similarity between preprocessed and raw data

is high (large Pearson correlation), the time-consuming pre-
processing via the application of ICA is of minor importance.
In such cases the transformation to the new EEG reference
simultaneously eliminates to a large extent the contamination
with artifacts. Otherwise, if the correction of artifacts causes
serious morphological changes, which are not attained by the
reference transformation, the Pearson correlation should be
small. Results for all active scalp electrodes are shown in Figure 9.

Again, global average and Median reference lead to similar
results. In both cases the central values of the samples of the
Pearson coefficients are about 0.9, an extremely high value.
This result implies that corrections effectuated by the ICA are
insignificant such that the raw signals and the corrected ones
are highly similar. We mentioned already above that events
common in all signals get diminished by these references,
depending on the collectivity of the episode, which has a
quite positive influence with respect to the undesired effect of
volume conduction, as outlined in the discussion of Figure 3.
It seems that eyelid movements affect a sufficient number
of signals, such that a posterior ICA only causes marginal
corrections after transforming to the global average or the
median. Simultaneously, correlation coefficients obtained for
the earlobe reference vary between 0.1 for temporal electrodes
and 0.4 for electrodes located at the central line. In this case,
ICA is able to accomplish major changes, probably improving
notably the signal quality. In other words, as a favorable side
product the median reference and global average auto-correct
to a high degree undesired collective artifacts. Time-consuming
pre-processing of the recordings via ICA is of minor importance.

FIGURE 9 | Median and 95% confidence interval of the Pearson coefficient comparing signals recorded by the same electrode before and after the application of

Independent Component Analysis for the elimination of eyelid-movement. EEG recordings stem from data set three described in the method section.
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On the other hand, when using the earlobe reference or active
electrodes like F3F4, the application of ICAmight be mandatory.

4. SUMMARY AND CONCLUSIONS

In general, the EEG-reference causes distortions of the spatial
interrelation pattern in real world data, independently of
which reference scheme is used (Figures 1–3 as well as
Figure 7). Genuine correlations may get obscured, correlations
may change the sign, or formerly uncorrelated channels may
get (anti-)correlated to others. However, different reference
schemes have different effects on the interrelation pattern,
while autocorrelations expressed by power spectra are seemingly
conserved, as revealed in the present study (Figure 6).

According to our model calculations, the earlobe reference
causes an offset to all elements of the interrelation matrix
independently of whether phase synchronization or cross-
correlations are under consideration (Figure 3). This is due to
the fact that the earlobe signal is induced to the recordings
of all active electrodes (Figures 1, 2) and consequently adds
redundant information to them. Therefore, independent from
the genuine correlation pattern, the magnitude of the distortions
takes always a moderate value (Figure 3). However, in these
model calculations we assumed that the electrical potential at
the earlobes is independent from the electrical activity measured
upon the scalp—an assumption which is not accomplished as
we could demonstrate via the results displayed in Figure 4.
Depending on the distance to the earlobe, the correlation with
an active electrode might encounter surprisingly high values of
up to 0.75 or higher and, furthermore, these correlations show
also dynamical changes depending on the physiological brain
state. Consequently, our estimates based on model calculations
for the earlobe reference are the most optimistic ones and,
beside the pronounced bias, one should expect additionally
major distortions of the spatial interrelation pattern. This is
possibly the reason for the marked difference in the time
evolution of the overall correlations during an epileptic seizure
in comparison to other reference schemes, as exemplified in
Figure 7. A strong bias elevates notably the curve obtained for the
earlobe reference and simultaneously diminishes physiological
changes of the correlations. But additionally, due to the distance-
dependent correlations between the earlobes and scalp electrodes
(see Figure 4), the topology of the functional network gets
deformed. This is also documented in Figure 8, where reference
signals have been derived from real world recordings. The strong
dependency of the earlobe signals on the physiological brain
state, and therefore their influence on the time evolution of the
estimated functional network, remains evident. For the earlobe
signal, the worst performance is observed in most situations
displayed in Figure 8.

The performance of the median reference as well as the global
average depend also on the physiological brain state. When
several small or moderate interrelation clusters are present,
both schemes show best performance. As shown in Figure 3,
overall deviations caused by these references are minimal in
most cases. Only when huge interrelation clusters are formed,

imitating hypersynchronized brain activity involving almost all
scalp electrodes, deviations are of the size (or larger) of those
observed for the other reference schemes. In such situations both
the median as well as the global average subduct a large part of
the correlation strength of the large cluster and, simultaneously,
they add artificially correlations to the remaining data channels.
However, such hypersynchronized activity is probably not the
generic case and occurs solely in particular circumstances.
Additionally, this undesired effect might be beneficial in another
context, namely the correction of muscle artifacts.

As shown in Figure 9 ICA-corrected and non-corrected
signals are quantitatively notably similar. This result indicates
that eyelidmovements are automatically reduced by the reference
transformation, an effect owed to the high collectivity of such
events. In any case, Figure 9 implies that a time-consuming
correction procedure like ICA is nomore necessary whenmedian
or global average is used as a reference frame.

Finally, for all schemes using active electrodes as a reference,
major distortions of the functional network are observed. This
is true for the average of the electrodes F3 and F4 (and
equivalently when Cz is used instead), as well as for the Hjorth
transform of the bipolar montage. Furthermore, the contralateral
reference scheme (as well as the ipsi-lateral scheme) causes a
peculiar distortion perturbing the whole functional network (see
Figures 1, 2). In all these settings the functional network gets
almost completely blurred, which makes them unacceptable for
the construction of functional networks.

However, we like to underline that these results are only
relevant if one aims to construct the functional brain network
from EEG recordings by using popular bi-variate measures like
the mean phase coherence or linear cross-correlations. If one
has other applications in mind, such schemes might be useful
and one should prove the utility of a certain reference schemes
for each case separately. For instance, for a clinical evaluation
of epilepsy patients, the bipolar montage is well established
and for multiple reasons the most useful one, although in this
scheme the functional network is blurred almost completely.
In this respect, and probably for most of the physiological
brain states, the median reference as well as global average
seem to deliver the most reasonable results. However, the
optimal choice of the reference site depends on the particular
study and on the purpose of the analysis as already stated in
Dien (1998).
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