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We studied the correlation between oscillatory brain activity and performance in healthy
subjects performing the error awareness task (EAT) every 2 h, for 24 h. In the EAT,
subjects were shown on a screen the names of colors and were asked to press a
key if the name of the color and the color it was shown in matched, and the screen
was not a duplicate of the one before (“Go” trials). In the event of a duplicate screen
(“Repeat No-Go” trial) or a color mismatch (“Stroop No-Go” trial), the subjects were
asked to withhold from pressing the key. We assessed subjects’ (N = 10) response
inhibition by measuring accuracy of the “Stroop No-Go” (SNGacc) and “Repeat No-
Go” trials (RNGacc). We assessed their reactivity by measuring reaction time in the
“Go” trials (GRT). Simultaneously, nine electroencephalographic (EEG) channels were
recorded (Fp2, F7, F8, O1, Oz, Pz, O2, T7, and T8). The correlation between reactivity and
response inhibition measures to brain activity was tested using quantitative measures
of brain activity based on the relative power of gamma, beta, alpha, theta, and delta
waves. In general, response inhibition and reactivity reached a steady level between
6 and 16 h of sleep deprivation, which was followed by sustained impairment after
18 h. Channels F7 and Fp2 had the highest correlation to the indices of performance.
Measures of response inhibition (RNGacc and SNGacc) were correlated to the alpha and
theta waves’ power for most of the channels, especially in the F7 channel (r = 0.82 and
0.84, respectively). The reactivity (GRT) exhibited the highest correlation to the power
of gamma waves in channel Fp2 (0.76). We conclude that quantitative measures of
EEG provide information that can help us to better understand changes in subjects’
performance and could be used as an indicator to prevent the adverse consequences
of sleep deprivation.

Keywords: electroencephalography, error awareness test, sleep deprivation, performance, reactivity, response
inhibition

INTRODUCTION

This paper explores the effect of sleep deprivation on both cognitive performance and brain
activity in healthy subjects. Given that alertness and brain activity are known to diminish in
parallel during prolonged periods of wakefulness (Borbély et al., 2016), objective techniques for
the assessment of brain activity may enable prevention of some of the common fatal events caused
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due to human error, and reduce the economic cost of
human performance deterioration. For example, performance
deterioration due to fatigue can lead to accidents in jobs
that frequently require working late at night or for long
periods (Leger, 1994; Costa, 1996; Lyznicki et al., 1998).
Electroencephalography (EEG) is a widely used method for
providing quantitative and better dynamic assessment of the
electric activity in the brain (Tatum, 2014). We focus on the
relative power of EEG as it has been used to avoid the high
variability of the absolute power (Monastra et al., 2001; Kropotov,
2010; Pavlov and Kotchoubey, 2017).

An effective means to monitor human job performance is a
long-sought goal, especially ways to detect errors and warn an
individual if their ability has been affected by something like
sleep deprivation. If detection were possible, the individual could
be warned to enact appropriate mitigating countermeasures
(Gehring et al., 1993; Ullsperger and von Cramon, 2001). EEG
is a powerful candidate for such monitoring, as studies of neural
responses to performance errors suggest that the prefrontal
and anterior cingulate cortices are critical to error processing,
although the specific roles of those regions are a matter of debate
(Bush et al., 2000).

It has been shown that both the intensity of EEG waves
upon falling asleep and the desire to sleep are linked to
the period of time spent awake (Borbély et al., 2016). The
process of becoming increasingly tired throughout the day is
attributed to the effects on the brain of the neurotransmitter
adenosine. Endogenous adenosine inhibits basal forebrain and
mesopontine cholinergic neurons, which play a large part
in abrupt shifts in EEG frequency, termed EEG arousal
(Steriade et al., 1990). As extracellular adenosine concentration
increases, so does inhibition of the cholinergic neurons. There
are many reasons why researchers believe that adenosine
produces the effects of tiredness. During wakefulness, neural
metabolism is much higher than during deep sleep, while
adenosine concentration in the brain and neural metabolic
activity have been linked. Also, caffeine is known to reduce
the effects of adenosine and promote arousal in subjects
and their EEG waveforms, by blocking adenosine receptors,
Porkka-Heiskanen et al. (1997).

The typical EEG waveform consists of alpha, beta, theta,
gamma, and delta waves, which differ in frequency as well
as amplitude (Dement, 1974; Tatum, 2014). Alpha, beta, and
gamma waves are in a higher frequency range (>8 Hz). In
most cases, high-frequency low-amplitude waves are concurrent
with higher activity of the brain. When awake, most people
exhibit beta and alpha wave patterns. Beta waves have the
highest frequency and the lowest amplitude than other waves in
an awake, alert individual. They are dominant when a person
is not sleeping. During periods of relaxation our brain waves
become slower, which is accompanied by an increase in the
amplitude of alpha waves. They tend to diminish when the eyes
are open or when the brain exercises mental effort. In other
words, lower levels of activity are represented by higher levels
of alpha waves. Gamma waves are linked to voluntary motor
movement, learning, and memory. Delta and theta waves are in
a lower frequency range. Delta waves are related to slow-wave

sleep and have been found during some continuous-attention
tasks (Kirmizi-Alsan et al., 2006). As for the theta waves, high
amplitude theta waves correlate with memory function while
lower-amplitude ones are linked to decreased alertness and
increased drowsiness. Low-frequency (delta and theta) brain
activity has been observed to increase as a result of sleep
deprivation (Cajochen et al., 1999; Hung et al., 2013; Gorgoni
et al., 2014; Fattinger et al., 2017).

Several studies have explored the correlation between sleep
deprivation, brain activity, and behavioral performance (Lorenzo
et al., 1995; Corsi-Cabrera et al., 1996; Forest and Godbout,
2000; Yokoi et al., 2003; Gorgoni et al., 2014; Bernardi et al.,
2015). Significant correlations have been found between the
EEG increase in theta activity observed during sleep deprivation
and a slowing down of reaction times (Gorgoni et al., 2014),
or an increase in behavioral errors (Bernardi et al., 2015;
Quercia et al., 2018).

Traditionally, EEG signals are divided in short-time epochs
and spectral analysis is applied to the epochs to obtain continuous
waves. In this study, we have explored a different approach,
in which the different waves were isolated in the time domain
using finite impulse response (FIR) filters. The spectral power
of each wave was computed for each channel in the 4-min
segment while the subjects performed a cognitive task, and
normalized to the total spectral power of each channel. This
analysis quantifies the brain activity during the entire period
of time the subject is undergoing a task, instead of linking it
directly to specific instantaneous events (e.g., errors or hits),
as it is traditionally done. This method of quantifying brain
activity can account for the possible relationship between brain
activity at a given moment and the committing of future
errors. In other words, this method allows us to correlate
the overall brain activity with the overall performance, during
a given period of time. This approach is simpler and has
led us to find stronger correlations between brain activity
and performance.

The EEG provides a practical and quantitative way to assess
the electrical activity of the brain. This study seeks to examine
the correlation between relative power of EEG waves and
performance over a period 4 min, during a cognitive assessment.
To evaluate this, we have employed a simple yet robust
test that requires the subject to maintain response inhibition
and reactivity. This information from the neurophysiological
measures of the oscillatory activity of the brain can complement
physiological measures used in studies focused on autonomic
reactions (Posada-Quintero et al., 2017, 2018), to predict the
effect of sleep deprivation on human autonomic response
and performance.

The resulting data could lead to a tool for prediction of
the drowsiness and fatigue states of a person by measuring the
electrical activity of the brain. To the best of our knowledge,
no other study has analyzed the correlation between task-
related relative EEG activity in the different frequency bands
and performance during periods of prolonged wakefulness.
This information can be used to predict and reduce risk in
environments where it is expected that people suffer from
sleep deprivation.

Frontiers in Neuroscience | www.frontiersin.org 2 September 2019 | Volume 13 | Article 1001

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01001 September 17, 2019 Time: 16:36 # 3

Posada-Quintero et al. Brain Activity, Performance and Sleep Deprivation

FIGURE 1 | Location of EEG channels recorded. The circles represent the
approximate location of the electrode for each channel.

MATERIALS AND METHODS

Subjects
Ten healthy volunteers (three females, seven males; age range
25–35) were enrolled in this study. Participants were required
to remain awake for at least 24 h. An experiment manager
was always observing the participants, to ensure safety and
procedural validity of the experimental protocol. During the
7 days prior to the experiment, participants recorded their
sleep patterns in a data sheet, to indicate compliance to the
experimental constraints.

Protocol
For participating in the study, the participants were required to
halt all consumption of stimulants and depressants beginning
48 h prior to the start of the experiment. Participants were
instructed to arrive at the experimental facility, located at the
University of Connecticut, within 2 h of waking up on the
morning of the study. Participants completed a learning run
for the experimental task within the 1st h of arrival. Afterward,
they were asked to perform a run of the task every 2 h
for the duration of the 24-h period, for a total of 12 runs
besides the training run. Participants remained in the building
for approximately 25 h to allow for the completion of all 12
runs and training.

Twenty minutes before starting the task, an EEG cap with
ten electrodes was placed on the participant’s head. We used
an actiCHamp amplifier (Brain Products GmbH, Gilching,
Germany) with an EasyCap electrode system (EasyCap GmbH,
Herrsching-Breitbrunn, Germany). The electrodes were placed
in frontal (F), frontal-polar (Fp), temporal (T), parietal (P), and
occipital (O) positions, as shown in Figure 1. Electrode gel was
used to provide appropriate conductance between the electrode
and the skin. Prior to EEG data measurement, the electrodes’
impedance was checked to make sure it was lower than 5 k�,
to ensure good electrode connection to the scalp. Nine EEG
channels were recorded: Fp2, F7, F8, O1, Oz, Pz, O2, T7, and T8,
while the subject was performing the error awareness task (EAT)
with their eyes open. The input signals were referenced to the
ears, band pass filtered with cutoff frequencies of 0.5 and 50 Hz,
and digitized at a sampling rate of 200 Hz.

Between runs, leads were disconnected and the subjects were
allowed to eat or do any activity other than exercising or
sleeping (for example, using a laptop, reading, going to the
restroom, talking on the phone, and so forth). To avoid any
undesirable influence on sympathetic arousal, subjects had to

FIGURE 2 | The EAT required subjects to respond to a stream of color names by pressing a key, and to withhold their response based on “No-Go” trial rules.
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remain in the building. To ensure adherence to the protocol,
food was provided. This study was carried out in accordance
with the recommendations of the Institutional Review Board of
the University of Connecticut, and with their approval of the
study protocol. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Performance Assessment
For this study, we used the EAT. We presented a serial
stream of names of colors in colored fonts. Each name was
presented for 900 ms, with 600 ms between names. The test
was 5 min long in this study. Participants were trained to
respond to each new screen with the space bar. Subjects were
requested to press the space bar for “Go” trials and withhold
this response for “No-Go” trials. A “Go” trial occurred when
the font color matched the color’s name and did not fall into
the category of a “No-Go” trial. A “No-Go” trial could be
generated by two different circumstances: (1) if the same word
was presented on two consecutive trials (repeat “No-go” task),
or (2) if the color named did not match the font color (Stroop
“No-Go” task) (Hester et al., 2005). Figure 2 illustrates the
procedure. The second instance of “No-Go” trial represents
a Stroop effect, which induces cognitive stress in the subject
(Stroop, 1935). The two withhold conditions were meant to
maintain subjects’ vigilant attention so they did not fall back
on repetitive behavior. Constantly having to monitor the color
match kept subjects alert.

To assess subject performance, the accuracy of Stroop and
Repeat “No-Go” tasks (SNGacc and RNGacc, respectively) and
average “Go trial” reaction times (GRT) were computed for
every trial. SNGacc and RNGacc constitute measures directly
proportional to how vigilantly a subject paid attention. For its
part, GRT is a simple measure to assess subject reactivity. Notice
that GRT exhibits an inverse relationship to subject performance,
as a higher reaction time represents lower performance.

EEG Data Processing
Four minutes of clean EEG data were extracted for each subject
during each EAT trial. During EAT, subjects sat in a chair and
were instructed not to talk or move. For this reason, the EEG
signals were stable and no significant artifact corruption was
usually observed. When a few instances of motion artifacts were
identified, we removed the corrupted data segments (a fraction
of a second) from all the channels. The data segment removed
was compensated for by selecting a larger window, so that all the
analyzed segments were 4 min long. To assess the brain activity,
we computed quantitative measures based on spectral analysis of
the nine channels of EEG data. We used five bands, with ranges
set at <4 Hz (delta), 4–8 Hz (theta), 8–13 Hz (alpha), 13–30 Hz
(beta), and >30 Hz (gamma) in accordance with the literature.
The five waves were obtained using FIR filters designed using
the Parks-McClellan optimal equiripple approach. The power was
computed using the following equation:

Px =
1
L

L∑
t=1

x2(t)

Where x is the signal and L is the length of the signal (4 min).
This is equivalent to the mean square of the signal. We used the
relative power (to the total power) of these waves as a quantitative
measure of brain activity.

Statistics
A total of 45 measures of brain activity were computed—the
power of the five bands in each of the nine channels of EEG.
As a measure of subject performance, average GRT, and Stroop
No-Go and Repeat No-Go accuracies (SNGacc and RNGacc,
respectively) were computed for every run of every subject.

FIGURE 3 | Averaged scalp topographies of the gamma, beta, alpha, theta
and delta waves of the subjects performing the EAT for the 12 runs during the
24 h of testing.
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To evaluate the significance of the differences in the measures
of EEG and performance during the experiment, we performed
multiple comparisons of the indices between the 12 runs.
The normality of each index was tested using the one-sample
Kolmogorov-Smirnov test (Massey, 1951; Miller, 1956; Marsaglia
et al., 2003). Given that all measures were normally distributed,
the one-way analysis of variance (ANOVA) was performed to test
for significant differences between runs. The Bonferroni method
was used for correction of multiple comparisons.

Correlation Analysis
We computed the Pearson’s correlation coefficient (r) between
mean values of measures of performance (GRT, SNGacc, and
RNGacc) and the 45 measures of brain activity (from EEG) of the
participants (over the 12 runs of the 24-h test). The t-test was used
to assess the statistical significance of the correlation coefficient
(the null hypothesis was that the product moment correlation
coefficient was zero) (Spiegel, 1961).

RESULTS

The time duration between the waking time and the first session
was less than 40 min. This short time duration allows us to expect
that possible circadian effects are negligible because of the small

difference in the start time of the experiment across subjects. The
mean starting time of the first session was 8:25 AM. Figure 3
shows the plots of the topographic maps of the scalp data field
in a 2-D circular view (looking down at the top of the head) using
interpolation on a fine Cartesian grid. Note that each wave is
plotted in a different scale, shown at the bottom of the figure.
The rows represent the hours of sleep deprivation at the time
of the measurement, and the columns represent the EEG waves
considered in this study. The topographic maps are the result
of averaging all the subjects together. In this study, gamma and
beta waves were more prominent in the front throughout the
24 h. Alpha waves were more prominent in the parietal region,
with noticeable changes during the 24 h of the experiment.
Theta waves exhibited higher power in the parietal, occipital,
and temporal regions, with an apparent reduction noticeable
after 16 h. Delta waves presented higher power in the parietal,
occipital, and temporal regions than it did in the other lobes and
their power increased toward the end of the 24-h period.

Figure 4 shows the change in performance measures during
the 24 h of sleep deprivation, along with the quantitative
measure of EEG with which they exhibited the highest
correlation. Significant differences between the runs are marked.
Figure 5 shows the correlation plot for those pairs of measures.
Figures 4A,B show that SNGacc and RNGacc indices exhibited
stable values for a majority of the 1st 14 h of the experiment,

FIGURE 4 | Mean ± Standard Error of (A) RNGacc, (B) SNGacc, and (C) GRT measures and their most-correlated quantitative measure of EEG. Symbols denote
significant difference: ∗ to run 1; ` to runs 1, 2 and 7; ‡ to runs 1, 3, 4, 5, 6, 7, 9; # to run 7; and † to runs 1 and 2.

FIGURE 5 | Correlation of (A) RNGacc and power of theta wave of channel F7, (B) SNGacc and power of theta wave of channel F7, and (C) GRT and power of
gamma wave of channel T8.
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followed by a sustained drop in value after 18 h. RNGacc showed
a significant decrease at 22 h compared to most of the runs before
18 h, and a decrease at 24 h compared to the first 14 h runs.
RNGacc exhibited a peak value at 14 h. GRT at 6, 8, and 10 h was
significantly lower than the measurement at 2 h. GRT increased
after 14 h. GRT can be summarized as 4 h of learning period after
which the subjects reached a plateau where the average reaction
time stabilized between 6 and 16 h, ending in a final increase in
the reaction time, possibly related to subjects’ tiredness.

Using quantitative analysis of EEG data, we performed
correlation analysis between brain activity and performance.
Table 1 includes the results for the correlation analysis of all
quantitative measures of EEG available in this study (five waves
times nine channels), to the three measures of performance
obtained from the subjects performing the EAT. Higher overall
correlation to the brain activity was found for the SNGacc and
RNGacc, compared to GRT. The highest correlation was found
between the SNGacc measure and the theta waves of the F7
channel (r = 0.84). Such wave exhibited the highest correlation
to the RNGacc (r = 0.82). RNGacc and SNGacc were found to
be significantly correlated with theta waves of all the channels
except the frontal polar (Fp2). These measures were also found
to be inversely correlated to delta waves in all lobes except for
frontal (F) channels and the frontal polar channel (Fp). As for the
gamma and beta waves, RNGacc and SNGacc were only found
to be significantly correlated to those waves in frontal channels
(F). These two measures of performance were not found to be
correlated to alpha waves of any channel.

The highest absolute correlation of GRT was with the gamma
and delta waves of channel Fp2 (0.76). GRT was significantly
correlated to gamma, beta, and alpha waves of channels T8
and Fp2. This measure of performance was also found to be
moderately correlated to alpha and delta waves of channel F7.

DISCUSSION

We have implemented a task that allows simultaneous evaluation
of response inhibition and reactivity, as components of overall
cognitive performance of subjects undergoing sleep deprivation.
This test has been used previously to study the relationship
between autonomic reactions and performance on young and
healthy subjects (Posada-Quintero et al., 2017). In this study,
we have used quantitative measures of EEG for the assessment
of oscillatory brain activity. Results allowed us to observe the
changes on the different waves (covering different frequency
ranges) during the 24 h of sleep deprivation, and how the
power of those waves correlates with changes in the measures
of response inhibition and reactivity. This led to the conclusion
that these quantitative measures of EEG provide valuable
information that could potentially be used to prevent an
individual from inadvertently performing undesirable actions
when sleep deprived.

Remarkably, two channels contained oscillatory power that
was the most correlated to the indices of performance: channels
F7 and Fp2. Specifically, the power of the theta waves of channel
F7 exhibited the highest correlation to RNGacc (r = 0.82) and

TABLE 1 | Correlation (r) between EEG measures and performance measures.

Performance measure

RNGacc SNGacc GRT

EEG channels and waves

FP2 Gamma −0.24 −0.20 0.76∗

Beta 0.02 0.08 0.7∗

Alpha 0.09 0.22 0.71∗

Theta 0.50 0.47 0.51

Delta −0.05 −0.09 −0.76∗

F7 Gamma −0.75∗ −0.72∗ 0.39

Beta −0.63∗ −0.58∗ 0.46

Alpha 0.10 0.22 0.64∗

Theta 0.82∗ 0.84∗ 0.18

Delta −0.30 −0.40 −0.62∗

F8 Gamma −0.63∗ −0.59∗ 0.19

Beta −0.6∗ −0.55 0.20

Alpha −0.18 −0.12 0.49

Theta 0.65∗ 0.64∗ 0.17

Delta −0.18 −0.27 −0.50

O1 Gamma −0.32 −0.20 0.30

Beta −0.15 0.02 0.36

Alpha 0.16 0.23 0.41

Theta 0.73∗ 0.73∗ 0.17

Delta −0.8∗ −0.83∗ −0.10

Oz Gamma −0.46 −0.31 0.55

Beta −0.23 −0.03 0.56

Alpha 0.30 0.34 0.33

Theta 0.73∗ 0.73∗ 0.14

Delta −0.76∗ −0.8∗ −0.14

Pz Gamma −0.38 −0.25 0.53

Beta −0.22 −0.07 0.56

Alpha 0.30 0.34 0.39

Theta 0.72∗ 0.7∗ 0.15

Delta −0.8∗ −0.82∗ −0.17

O2 Gamma −0.06 −0.12 −0.49

Beta 0.15 0.12 −0.50

Alpha 0.41 0.39 0.00

Theta 0.74∗ 0.74∗ 0.15

Delta −0.81∗ −0.82∗ 0.10

T7 Gamma −0.33 −0.26 0.33

Beta −0.16 −0.05 0.36

Alpha −0.15 −0.08 0.46

Theta 0.71∗ 0.71∗ 0.18

Delta −0.74∗ −0.82∗ −0.26

T8 Gamma −0.34 −0.17 0.68∗

Beta −0.21 −0.02 0.74∗

Alpha 0.03 0.16 0.73∗

Theta 0.69∗ 0.69∗ 0.20

Delta −0.56 −0.66∗ −0.50

∗p < 0.05.

SNGacc (r = 0.84), related to subjects’ response inhibition. The
power of the gamma and delta waves of channel Fp2 exhibited the
highest correlation to the measure of reactivity, GRT (r = 0.76).
This is an interesting observation because if a reduced set of
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channels of EEG is sufficient for providing a neurophysiological
objective measure that is able to track the effects of sleep
deprivation, it increases the feasibility of deploying the EEG for
practical applications.

In this study, theta waves exhibited high correlation with
the “No-Go” trials, assessed with the RNGacc and SNGacc
measures. Theta waves have been linked to a subject’s voluntary
repression of provoked responses, as they have been found to
increase in circumstances where individuals are intentionally
trying to inhibit a reaction (Kirmizi-Alsan et al., 2006).
Our findings corroborate this relationship between subjects’
inhibitory responses and theta waves, particularly high in the
frontal channels.

Beta waves are linked to intense brain activity, stress, active
thinking, and focus, among other circumstances (Lalo et al.,
2007; Baumeister et al., 2008). The power of the beta waves
in the frontal channels was moderately correlated to subjects’
sustained response inhibition (RNGacc and SNGacc measures).
This behavior of power of the beta waves suggests that subjects’
active thinking and focus were diminished after 14 h of sleep
deprivation, and it might have contributed to the reduction in
performance related to vigilant attention.

We found that gamma waves in the frontal polar (Fp2) and
right temporal (T8) channels were significantly correlated to
subjects’ reaction time (GRT) throughout the 24-h experiment.
Gamma waves in frontal channels (F1 and F2) were related
to subjects’ vigilant attention (RNGacc and SNGacc). Gamma
waves are present during short-term memory matching of
recognizable elements presented to the sight, and other sensory
stimuli (Kisley and Cornwell, 2006; Kanayama et al., 2007). With
some controversy, these waves are thought to be implicated
in the conscious perception (Gray, 1999; Vanderwolf, 2000).
We observed that the power of the gamma waves mostly
correlated to the rapidness the subjects exhibited in making

reaction decisions, which involves memory, matching, and
motor functions.

Alteration of the power in the delta waves observed in this
study (Figure 3). was inversely correlated with the RNGacc
and SNGacc measures (beyond −0.81), mainly in the occipital,
parietal, and temporal channels (especially O1, O2, and PZ). They
were also inversely correlated to GRT in the frontal polar channel
(−0.76). The measure of reactivity, GRT, seemed to be more
linked to the delta oscillatory activity of the right side of the brain,
as higher correlation was found in channel T8.

As for the alpha waves, it seems like they moved from the
frontal to the parietal lobe during the experiment. Alpha waves
are reportedly found predominantly in posterior sides of the
head, and are reduced with drowsiness and sleep (Palva and
Palva, 2007). Alpha waves are also linked to inhibitory control
(Kamarajan et al., 2004; Klimesch, 2012). Alpha waves only
exhibited significant correlation to GRT in channel Fp2 (−0.71).

Performance and physiology are expected to be as sensitive
to circadian rhythms as to sleep deprivation in a 24-h period
of wakefulness. However, sleep deprivation is known to cause
an overall increase in reaction time and increased errors of
omission and commission (Lim and Dinges, 2008). By the end
of this study, at about 8 AM, the effect of the circadian rhythm
should, in theory, cause a recovery of the subject’s responsiveness
and response inhibition. Instead, Figure 4 shows a continued
trend of increase in the GRT and decrease in response inhibition
measures (RNGacc and SNGacc). This indicates that participants
are more affected by sleep deprivation than by the circadian
rhythm. The same interpretation can be made with the measures
of brain activity.

Multiple studies have reported that low-frequency waves,
mainly theta waves, increase as a result of sleep deprivation
(Cajochen et al., 1999; Hung et al., 2013; Gorgoni et al., 2014;
Fattinger et al., 2017). There is also evidence of a moderate

FIGURE 6 | Increase in the absolute power of theta waves in all channels toward the end of the 24-h experiment.
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positive correlation between theta waves and the committing of
errors (Lorenzo et al., 1995; Corsi-Cabrera et al., 1996; Forest
and Godbout, 2000; Yokoi et al., 2003; Gorgoni et al., 2014;
Bernardi et al., 2015). In those studies, the power of the waves
was normalized to the power of the first run. As we were
interested in studying the changes in the waves over increasing
time of sleep deprivation, and the correlation of the overall brain
activity to performance, we did not normalize to the power
in the first run to avoid changing the “system gain” for each
subject. Instead, for quantifying the power of the bands we
used the relative power of the bands with respect to the total
power. We hypothesize that this difference in approach may
have led to different trends in theta waves. Although we found
a strong positive correlation between the power of delta waves
and the impairment of performance (maximum r = 0.81), we
found a strong negative correlation between the power of theta
waves and performance (maximum r = −0.84). Note that delta
waves exhibited much higher power (ranging 0.1–0.22) compared
to theta waves (ranging 0.06–0.15) (Figure 3). As delta waves
increase by the end of the experiment, it produces an overall
decrease in the relative power of theta waves. Figure 6 shows the
absolute power of theta waves normalized to the power of the first
run, from 16 to 24 h of sleep deprivation. The expected increase
in theta waves as a result of sleep deprivation concomitant with
the impairment of performance is also observed in our data. In
spite of the different analytical approach (absolute vs. relative
power), our results are substantially in line with previous findings
indicating that sleep deprivation is associated with a relative
increase of low-frequency (vs. high-frequency) activity that is in
turn correlated with performance impairment.

The limited sample size and characteristics of the set of
participants (ten healthy subjects) limit the conclusiveness of this
study. This was a quite demanding study protocol requiring 24 h
of sleep deprivation. To draw general conclusions, more data
are needed. We acknowledge that given the many correlations
relevant for the study, there is a good chance that random data
would yield significant correlation (p < 0.05). The analysis of
gender differences is not possible with the current data set and
needs to be explored in future studies. Also, EAT measures of
performance are certainly linked to reactivity and attention, but
do not fully replicate the kinds of tasks a subject encounters in
real life. It should be noted that despite the unavoidable variability
between subjects’ skills and training conditions, and a limited

sample size, we found considerable consistency in measures of
performance throughout the ten subjects.

CONCLUSION

Alteration of the power of theta and beta waves in frontal
channels followed a trend similar to measures of response
inhibition, measured by accuracy in performing the EAT,
whereas the changes of power in gamma and delta waves
in the frontal polar channel resembled more the changes
in reactivity, measured by reaction time. We conclude that
quantitative measures of EEG provide information to better
understand changes in subject performance and could be used
to prevent the adverse consequences of sleep deprivation.
Furthermore, objective neurophysiological measures can provide
valuable information to systems intended to assess a human’s
readiness to perform.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the Institutional Review Board of The
University of Connecticut, with written informed consent
from all subjects. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The study
protocol was approved by the Institutional Review Board of The
University of Connecticut.

AUTHOR CONTRIBUTIONS

HP-Q performed the experiments, data analysis, and wrote a draft
of the manuscript. NR and JB performed the experiments and
edited the manuscript. AO-C performed the data analysis and
edited the manuscript. KC conceptualized the study and edited
the final version of the manuscript.

REFERENCES
Baumeister, J., Barthel, T., Geiss, K. R., and Weiss, M. (2008). Influence

of phosphatidylserine on cognitive performance and cortical activity after
induced stress. Nutr. Neurosci. 11, 103–110. doi: 10.1179/147683008X30
1478

Bernardi, G., Siclari, F., Yu, X., Zennig, C., Bellesi, M., Ricciardi, E., et al. (2015).
Neural and behavioral correlates of extended training during sleep deprivation
in humans: evidence for local, task-specific effects. J. Neurosci. 35, 4487–4500.
doi: 10.1523/JNEUROSCI.4567-14.2015

Borbély, A. A., Daan, S., Wirz-Justice, A., and Deboer, T. (2016). The two-process
model of sleep regulation: a reappraisal. J. Sleep Res. 25, 131–143. doi: 10.1111/
jsr.12371

Bush, G., Luu, P., and Posner, M. I. (2000). Cognitive and emotional influences
in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222. doi: 10.1016/s1364-
6613(00)01483-2

Cajochen, C., Foy, R., and Dijk, D.-J. (1999). Frontal predominance of a relative
increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep
Res. Online 2, 65–69.

Corsi-Cabrera, M., Arce, C., Ramos, J., Lorenzo, I., and Guevara, M. A. (1996).
Time course of reaction time and EEG while performing a vigilance task during
total sleep deprivation. Sleep 19, 563–569. doi: 10.1093/sleep/19.7.563

Costa, G. (1996). The impact of shift and night work on health. Appl. Ergon. 27,
9–16. doi: 10.1016/0003-6870(95)00047-x

Dement, W. C. (1974). Some Must Watch While Some Must Sleep. New York, NY:
WH Freeman.

Frontiers in Neuroscience | www.frontiersin.org 8 September 2019 | Volume 13 | Article 1001

https://doi.org/10.1179/147683008X301478
https://doi.org/10.1179/147683008X301478
https://doi.org/10.1523/JNEUROSCI.4567-14.2015
https://doi.org/10.1111/jsr.12371
https://doi.org/10.1111/jsr.12371
https://doi.org/10.1016/s1364-6613(00)01483-2
https://doi.org/10.1016/s1364-6613(00)01483-2
https://doi.org/10.1093/sleep/19.7.563
https://doi.org/10.1016/0003-6870(95)00047-x
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01001 September 17, 2019 Time: 16:36 # 9

Posada-Quintero et al. Brain Activity, Performance and Sleep Deprivation

Fattinger, S., Kurth, S., Ringli, M., Jenni, O. G., and Huber, R. (2017). Theta waves in
children’s waking electroencephalogram resemble local aspects of sleep during
wakefulness. Sci. Rep. 7:11187. doi: 10.1038/s41598-017-11577-3

Forest, G., and Godbout, R. (2000). Effects of sleep deprivation on performance
and EEG spectral analysis in young adults. Brain Cogn. 43, 195–200.

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., and Donchin, E. (1993). A
neural system for error detection and compensation. Psychol. Sci. 4, 385–390.
doi: 10.1111/j.1467-9280.1993.tb00586.x

Gorgoni, M., Ferlazzo, F., Ferrara, M., Moroni, F., D’Atri, A., Fanelli, S.,
et al. (2014). Topographic electroencephalogram changes associated with
psychomotor vigilance task performance after sleep deprivation. Sleep Med. 15,
1132–1139. doi: 10.1016/j.sleep.2014.04.022

Gray, C. M. (1999). The temporal correlation hypothesis of visual feature
integration: still alive and well. Neuron 24, 31–47. doi: 10.1016/s0896-6273(00)
80820-x

Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., and Garavan, H. (2005). Neural
mechanisms involved in error processing: a comparison of errors made with
and without awareness. Neuroimage 27, 602–608. doi: 10.1016/j.neuroimage.
2005.04.035

Hung, C.-S., Sarasso, S., Ferrarelli, F., Riedner, B., Ghilardi, M. F., Cirelli, C., et al.
(2013). Local experience-dependent changes in the wake EEG after prolonged
wakefulness. Sleep 36, 59–72. doi: 10.5665/sleep.2302

Kamarajan, C., Porjesz, B., Jones, K. A., Choi, K., Chorlian, D. B.,
Padmanabhapillai, A., et al. (2004). The role of brain oscillations as functional
correlates of cognitive systems: a study of frontal inhibitory control in
alcoholism. Int. J. Psychophysiol. 51, 155–180. doi: 10.1016/j.ijpsycho.2003.
09.004

Kanayama, N., Sato, A., and Ohira, H. (2007). Crossmodal effect with rubber hand
illusion and gamma-band activity. Psychophysiology 44, 392–402. doi: 10.1111/
j.1469-8986.2007.00511.x

Kirmizi-Alsan, E., Bayraktaroglu, Z., Gurvit, H., Keskin, Y. H., Emre, M., and
Demiralp, T. (2006). Comparative analysis of event-related potentials during
Go/NoGo and CPT: decomposition of electrophysiological markers of response
inhibition and sustained attention. Brain Res. 1104, 114–128. doi: 10.1016/j.
brainres.2006.03.010

Kisley, M. A., and Cornwell, Z. M. (2006). Gamma and beta neural activity evoked
during a sensory gating paradigm: effects of auditory, somatosensory and cross-
modal stimulation. Clin. Neurophysiol. 117, 2549–2563. doi: 10.1016/j.clinph.
2006.08.003

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access
to stored information. Trends Cogn. Sci. 16, 606–617. doi: 10.1016/j.tics.2012.
10.007

Kropotov, J. D. (2010). Quantitative EEG, Event-Related Potentials and
Neurotherapy. Cambridge, MA: Academic Press.

Lalo, E., Gilbertson, T., Doyle, L., Di Lazzaro, V., Cioni, B., and Brown, P. (2007).
Phasic increases in cortical beta activity are associated with alterations in
sensory processing in the human. Exp. Brain Res. 177, 137–145. doi: 10.1007/
s00221-006-0655-8

Leger, D. (1994). The cost of sleep-related accidents: a report for the national
commission on sleep disorders research. Sleep 17, 84–93. doi: 10.1093/sleep/
17.1.84

Lim, J., and Dinges, D. F. (2008). Sleep deprivation and vigilant attention. Ann.
N. Y. Acad. Sci. 1129, 305–322. doi: 10.1196/annals.1417.002

Lorenzo, I., Ramos, J., Arce, C., Guevara, M. A., and Corsi-Cabrera, M. (1995).
Effect of total sleep deprivation on reaction time and waking EEG activity in
man. Sleep 18, 346–354.

Lyznicki, J. M., Doege, T. C., Davis, R. M., and Williams, M. A. (1998). Sleepiness,
driving, and motor vehicle crashes. Council on scientific affairs, American
medical association. JAMA 279, 1908–1913.

Marsaglia, G., Tsang, W. W., and Wang, J. (2003). Evaluating kolmogorov’s
distribution. J. Stat. Softw. 8, 1–4.

Massey, F. J. Jr. (1951). The kolmogorov-smirnov test for goodness of fit. J. Am.
Stat. Assoc. 46, 68–78.

Miller, L. H. (1956). Table of percentage points of kolmogorov statistics. J. Am. Stat.
Assoc. 51, 111–121. doi: 10.1080/01621459.1956.10501314

Monastra, V. J., Lubar, J. F., and Linden, M. (2001). The development of a
quantitative electroencephalographic scanning process for attention deficit–
hyperactivity disorder: reliability and validity studies. Neuropsychology 15,
136–144. doi: 10.1037/0894-4105.15.1.136

Palva, S., and Palva, J. M. (2007). New vistas for alpha-frequency band oscillations.
Trends Neurosci. 30, 150–158. doi: 10.1016/j.tins.2007.02.001

Pavlov, Y. G., and Kotchoubey, B. (2017). EEG correlates of working memory
performance in females. BMC Neurosci. 18:26. doi: 10.1186/s12868-017-
0344-5

Porkka-Heiskanen, T., Strecker, R. E., Thakkar, M., Bjørkum, A. A., Greene, R. W.,
and McCarley, R. W. (1997). Adenosine: a mediator of the sleep-inducing effects
of prolonged wakefulness. Science 276, 1265–1268. doi: 10.1126/science.276.
5316.1265

Posada-Quintero, H. F., Bolkhovsky, J. B., Qin, M., and Chon, K. H. (2018). Human
performance deterioration due to prolonged wakefulness can be accurately
detected using time-varying spectral analysis of electrodermal activity. Hum.
Factors 60, 1035–1047. doi: 10.1177/0018720818781196

Posada-Quintero, H. F., Bolkhovsky, J. B., Reljin, N., and Chon, K. H. (2017).
Sleep deprivation in young and healthy subjects is more sensitively identified
by higher frequencies of electrodermal activity than by skin conductance level
evaluated in the time domain. Front. Physiol. 8:409. doi: 10.3389/fphys.2017.
00409

Quercia, A., Zappasodi, F., Committeri, G., and Ferrara, M. (2018). Local use-
dependent sleep in wakefulness links performance errors to learning. Front.
Hum. Neurosci. 12:122. doi: 10.3389/fnhum.2018.00122

Spiegel, M. R. (1961). Theory and Problems of Statistics. Schaum’s Outline Series in
Mathematics. New York, NY: McGraw-Hill.

Steriade, M., Datta, S., Paré, D., Oakson, G., and Curró Dossi, R. C. (1990).
Neuronal activities in brain-stem cholinergic nuclei related to tonic activation
processes in thalamocortical systems. J. Neurosci. 10, 2541–2559. doi: 10.1523/
jneurosci.10-08-02541.1990

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol.
18, 643–662. doi: 10.1037/h0054651

Tatum, W. O. (2014). Ellen R. Grass lecture: extraordinary EEG. Neurodiagnostic J.
54, 3–21. doi: 10.1080/21646821.2014.11079932

Ullsperger, M., and von Cramon, D. Y. (2001). Subprocesses of performance
monitoring: a dissociation of error processing and response competition
revealed by event-related fMRI and ERPs. Neuroimage 14, 1387–1401. doi:
10.1006/nimg.2001.0935

Vanderwolf, C. H. (2000). Are neocortical gamma waves related to consciousness?
Brain Res. 855, 217–224. doi: 10.1016/s0006-8993(99)02351-3

Yokoi, M., Aoki, K., Shimomura, Y., Iwanaga, K., Katsuura, T., and Shiomura,
Y. (2003). Effect of bright light on EEG activities and subjective sleepiness to
mental task during nocturnal sleep deprivation. J. Physiol. Anthropol. Appl.
Hum. Sci. 22, 257–263. doi: 10.2114/jpa.22.257

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Posada-Quintero, Reljin, Bolkhovsky, Orjuela-Cañón and Chon.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 September 2019 | Volume 13 | Article 1001

https://doi.org/10.1038/s41598-017-11577-3
https://doi.org/10.1111/j.1467-9280.1993.tb00586.x
https://doi.org/10.1016/j.sleep.2014.04.022
https://doi.org/10.1016/s0896-6273(00)80820-x
https://doi.org/10.1016/s0896-6273(00)80820-x
https://doi.org/10.1016/j.neuroimage.2005.04.035
https://doi.org/10.1016/j.neuroimage.2005.04.035
https://doi.org/10.5665/sleep.2302
https://doi.org/10.1016/j.ijpsycho.2003.09.004
https://doi.org/10.1016/j.ijpsycho.2003.09.004
https://doi.org/10.1111/j.1469-8986.2007.00511.x
https://doi.org/10.1111/j.1469-8986.2007.00511.x
https://doi.org/10.1016/j.brainres.2006.03.010
https://doi.org/10.1016/j.brainres.2006.03.010
https://doi.org/10.1016/j.clinph.2006.08.003
https://doi.org/10.1016/j.clinph.2006.08.003
https://doi.org/10.1016/j.tics.2012.10.007
https://doi.org/10.1016/j.tics.2012.10.007
https://doi.org/10.1007/s00221-006-0655-8
https://doi.org/10.1007/s00221-006-0655-8
https://doi.org/10.1093/sleep/17.1.84
https://doi.org/10.1093/sleep/17.1.84
https://doi.org/10.1196/annals.1417.002
https://doi.org/10.1080/01621459.1956.10501314
https://doi.org/10.1037/0894-4105.15.1.136
https://doi.org/10.1016/j.tins.2007.02.001
https://doi.org/10.1186/s12868-017-0344-5
https://doi.org/10.1186/s12868-017-0344-5
https://doi.org/10.1126/science.276.5316.1265
https://doi.org/10.1126/science.276.5316.1265
https://doi.org/10.1177/0018720818781196
https://doi.org/10.3389/fphys.2017.00409
https://doi.org/10.3389/fphys.2017.00409
https://doi.org/10.3389/fnhum.2018.00122
https://doi.org/10.1523/jneurosci.10-08-02541.1990
https://doi.org/10.1523/jneurosci.10-08-02541.1990
https://doi.org/10.1037/h0054651
https://doi.org/10.1080/21646821.2014.11079932
https://doi.org/10.1006/nimg.2001.0935
https://doi.org/10.1006/nimg.2001.0935
https://doi.org/10.1016/s0006-8993(99)02351-3
https://doi.org/10.2114/jpa.22.257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation
	Introduction
	Materials and Methods
	Subjects
	Protocol
	Performance Assessment
	EEG Data Processing
	Statistics
	Correlation Analysis

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References


