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Dynamic functional network connectivity (dFNC) analysis is a widely-used to study

associations between dynamic functional correlations and cognitive abilities. Traditional

methods analyze time-varying association of different spatial networks while assuming

that the spatial network itself is stationary. However, there has been very little work

focused on voxelwise spatial variability. Exploiting the variability across both the temporal

and spatial domains provide a more promising direction to obtain reliable dynamic

functional patterns. However, methods for extracting time-varying spatio-temporal

patterns from large-scale functional magnetic resonance imaging (fMRI) data present

some challenges, such as degradation in performance with respect to increase in

size of the data, estimation of the number of dynamic components, and the potential

sensitivity of the resulting dFNCs to selection of the networks. In this work, we implement

subsequent extraction of exemplars and dynamics using a constrained independent

vector analysis, a data-driven method that efficiently estimates spatial and temporal

dynamics from large-scale resting-state fMRI data. We explore the benefits of analyzing

spatial dFNC (sdFNC) patterns over temporal dFNC (tdFNC) patterns in the context of

differentiating healthy controls and patients with schizophrenia. Our results indicate that

for resting-state fMRI data, sdFNC patterns were able to better classify patients and

controls, and yield more distinguishing features compared with tdFNC patterns. We also

estimate structured patterns of connectivity/states using sdFNC patterns, an area that

has not been studied so far, and observe that sdFNC was able to successfully capture

distinct information from healthy controls and patients with schizophrenia. In addition,

sdFNC patterns were also able to identify functional patterns that associate with signs

of paranoia and abnormalities in the patients group. We also observe that patients with

schizophrenia tend to switch to or stay in a state corresponding to a hyperconnected

brain network.
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1. INTRODUCTION

Dynamic functional network connectivity (dFNC) analyzes the
time-varying associations among different regions of the brain
and has been widely studied in order to identify correlations
between functional changes and cognitive abilities (Fox et al.,
2005; Chang and Glover, 2010; Sakoğlu et al., 2010). In order
to identify these functional patterns of different brain regions,
conventional methods identify groups of temporally coherent
voxels, referred to as spatial maps, and their corresponding
activation patterns, referred to as time courses (Lee et al., 2013).
Followed by the estimation of time courses, a sliding window
is applied on the time courses that divides it into consecutive
windows and an analysis on the time points within each window
is performed (Allen et al., 2014). The analysis of dFNC patterns
depends on the length of the window, where the use of a longer
window length increases the risk of averaging the temporal
fluctuations of interest resulting in false negatives (Preti et al.,
2017), and the use of a shorter window length has too few samples
for a reliable computation of correlation (Hero and Rajaratnam,
2016), resulting in the temporal variations to capture spurious
fluctuations and increasing the risk of false positives (Sakoğlu
et al., 2010; Hutchison et al., 2013; Leonardi and Van De Ville,
2015). Previous studies have shown that a window length
between 30 and 60 s successfully estimates temporal fluctuations
in resting-state functional magnetic resonance imaging (fMRI)
data (Preti et al., 2017), and for most cases higher window lengths
do not alter the results significantly (Keilholz et al., 2013; Li
et al., 2014; Liégeois et al., 2016). However, there is a lower
bound in being able to capture fluctuations due to the limited
number of samples, limiting the use of dFNC analysis in the
temporal domain.

Conventional methods also estimate the time-varying FNC
patterns of the spatial networks while assuming that the spatial
network itself is stationary. However, studies have shown that
changes in the FNC patterns imply changes in the spatial
networks (Calhoun et al., 2008). Hence, spatio-temporal dFNC
analysis relaxes the assumption of stationarity in both the spatial
and temporal domain, and provides a more general framework
for capturing time-varying FNC patterns (Ma et al., 2014;
Kottaram et al., 2018; Kunert-Graf et al., 2018). The availability
of higher number of samples in the spatial domain also
guarantees reliable estimation of functional correlations (Hero
and Rajaratnam, 2016), thus providing a promising direction
for the use of spatial domain for dFNC analysis. However, the
methods used to extract time-varying spatio-temporal patterns
face few challenges. Region of interest based methods use pre-
defined resting-state networks causing the estimated functional
connectivity to be sensitive to network selection. Dynamic
mode decomposition, a spatio-temporal modal decomposition
technique, requires significant dimension reduction that may
restrict the method to estimate fewer dynamic components
(Kunert-Graf et al., 2018). Independent vector analysis (IVA)
provides a general and flexible framework to spatio-temporal
dFNC analysis and estimates window-specific time courses and
spatial maps. However its performance degrades with increase in
the size of the data, for a given number of samples (Bhinge et al.,

2019). Hence, in this work, we use a data-drivenmethod to jointly
extract spatio-temporal patterns using the subsequent extraction
of exemplar and dynamic components using constrained IVA
(SED-cIVA) method (Bhinge et al., 2019), from a large-scale
fMRI data acquired from 91 healthy controls and 88 patients
with schizophrenia. This two-stage method preserves variability
in both domains while addressing the issue with large-scale data,
by using a parameter tuning technique. This parameter tuning
technique adapts to the variability of each brain region separately,
thus allowing accurate estimation of time-varying spatial maps
and corresponding time courses.

Although exploiting variability in the spatial domain for
dFNC analysis has shown better performance in terms of
classification using a seed-based analysis (Kottaram et al., 2018),
which is sensitive to the networks selected, the features extracted
from sdFNC patterns are not explored. In this work, we explore
the use of spatial domain for dFNC analysis in order to
demonstrate the benefits of exploiting variability in the spatial
domain and taking advantage of the large sample size in this
domain, using a data-driven approach. We perform a prediction
technique to compare the ability of temporal dFNC (tdFNC)
patterns and sdFNC patterns to predict if a subject is a patient
or a control. We also perform a joint analysis by combining
the sdFNC and tdFNC patterns together in order to explore
the contribution of each toward prediction and observe that
the use of sdFNC patterns alone provides higher prediction
accuracy than using tdFNC patterns, or a combined feature set.
This shows that exploiting the variability and taking advantage
of large sample size in the spatial domain provides meaningful
discriminative features. We also obtain structured patterns of
connectivity/states from sdFNC patterns and identify differences
between patients and controls in terms of dwell time, transition
matrix and fraction of time spent in each state. To the best
of our knowledge, no study has been performed to identify
these properties from sdFNC patterns. Our results indicate that
patients tend to stay in or transition between states associated
with hyperconnected brain network. We also find significant
associations between the resulting functional connectivity and
signs of paranoia in the patient group using sdFNC patterns.

The remainder of the paper is organized as follows. Section 2
introduces the dataset used in this work and the method used for
extraction of spatio-temporal dynamic patterns. This section also
discusses the prediction technique followed by the method used
for estimating states. Section 3 shows the results and discusses
these results. Section 4 concludes the paper.

2. MATERIALS AND METHODS

2.1. Material
We work with resting-state fMRI data is acquired from K =

179 subjects including 91 healthy controls (HCs) (average age:
38 ± 12) and 88 patients with schizophrenia (SZs) (average
age: 37 ± 14). The dataset was obtained from the Center for
Biomedical Research Excellence (COBRE) (Aine et al., 2017) and
is available on the collaborative informatics and neuroimaging
suite data exchange repository (https://coins.trendscenter.org/)
(Scott et al., 2011). The data was obtained over the duration of
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5 min with a sampling period of 2 s yielding 150 timepoints per
subject. The subjects were asked to keep their eyes open during
the entire scanning period. Each subject’s data was pre-processed
to account for motion correction, slice-time correction, spatial
normalization and was slightly re-sampled to 3 × 3 × 3mm3

yielding 53×63×46 voxels. The first 6 time points were removed
to account for the T1-effect. We perform masking on each image
volume to remove the non-brain voxels and flatten the result to
form an observation vector of V = 58,604 voxels, giving T = 144
time evolving observations for each subject.

2.2. SED-cIVA
In this work, we use the SED-cIVA method to extract time-
varying spatial and temporal patterns. SED-cIVA consists of two
stages: the first stage extracts exemplar/informative components
from all subjects and uses these components as reference signals
in a sliding-window parameter-tuned cIVA framework in the
second stage, to obtain the time-varying representation of these
components. The idea of SED-cIVA is to extract stationary
representation of the most informative resting-state networks
from the given dataset, in the first stage followed by estimating
the time-varying representation of these networks for each
subject using a sliding-window approach. Figure 1A shows the
flow-chart of the method.

2.2.1. Extraction of Exemplars
SED-cIVA provides flexibility in the choice of the method used
to extract the exemplar components. Templates of resting-
state networks of interest that are pre-defined based on
extensive studies of resting-state fMRI data can be used as
exemplars. Sparsity-learningmethods such as dictionary learning
(Varoquaux et al., 2011) or sparse ICA (Boukouvalas et al., 2017)
can be used to extract more focal spatial components. One of the
widely used methods for extraction of components frommultiple
subjects is group independent component analysis (GICA) that
estimates a common subspace consisting of the most informative
components across all subjects (Calhoun et al., 2001a,b). In this
work, we perform GICA on all subjects to extract exemplars of
resting-state networks using the group ICA for fMRI toolbox
(GIFT). GICA performs a subject-level principal component
analysis (PCA) to extract the signal subspace for each subject
followed by a group-level PCA on the principal components
(PCs) from all the subjects. In order to exploit higher order
statistics, it performs independent component analysis (ICA)
on the group-level PCs. We estimate the model order for each
subject using the minimum description length criterion that
accounts for sample dependence (Li et al., 2007) and the final
order is selected as the mean (30) plus one standard deviation
(5) across all subject’s model orders. The dimension of the signal
subspace in the subject-level PCA stage is set as 53 and the
order for the group-level PCA stage is set as 35. By default,
GIFT selects the subject-level PCA order (53) to be 1.5 times the
final order (35). We use the entropy rate bound minimization
(ERBM) algorithm (Li and Adali, 2010) to estimate the group-
level independent components. ERBM is a flexible ICA algorithm
that exploits multiple statistical properties of the sources such
as sample dependence and higher order statistics, and provides

a better estimation of fMRI sources (Long et al., 2018a). The
ICA algorithm is run 10 times and the best run is selected
using the minimum spanning tree approach (Du et al., 2014).
Among the 35 group-level components, we visually select N =

17 components as exemplars, denoted as dn, n = 1, . . . , 17,
and these components are used as reference signals in the
second stage.

2.2.2. Extraction of Spatial and Temporal Dynamics of

Exemplars
In the second stage, time-varying representation of the exemplar
components is estimated using a sliding-window IVA approach.
In the sliding-window approach, each subject’s data is divided
into M = 17 windows of length L = 16 (32 s) with a 50%
overlap. We extract time-varying spatio-temporal patterns of the
exemplars by performing parameter-tuned cIVA on each subject’s
data. Parameter-tuned cIVA is a type of IVA that incorporates
information regarding the exemplars into the IVA framework
and extracts window-specific time courses and spatial maps of
these exemplars. The general IVA model, for a given set of
observations, can be written as X[m] = A[m]S[m],m = 1, . . . ,M,
where X[m] ∈ R

L×V denotes the observations from window
m, A[m] ∈ R

L×L denotes the mixing matrix and the rows in
S[m] ∈ R

L×V are the latent sources. IVA estimates M demixing
matrices, W[m], such that the sources within each dataset are
maximally independent and sources across dataset are maximally
dependent. The cost function, written using random vector
notation, is given as (Anderson et al., 2012; Adali et al., 2014),

JIVA =

L
∑

l=1

[

M
∑

m=1

H

(

ŝ
[m]
l

)

− I
(

ŝl
)

]

−

M
∑

m=1

log
∣

∣

∣
detW[m]

∣

∣

∣
, (1)

where H

(

ŝ
[m]
l

)

denotes the entropy of the lth source estimate

for the mth dataset, and I (sl) denotes the mutual information
of the lth source component vector (SCV) estimate, ŝT

l
=

[

ŝ
[1]
l
, . . . , ŝ[M]

l

]

. The optimization of Equation (1) jointly weighs

the independence within the dataset through the entropy term
along with the log determinant term and dependence across the
datasets through the mutual information term. The dependent
sources across datasets can be grouped together to form a SCV.
Thus, in the SED-cIVA framework, IVA treats each window as
a dataset and estimates window-specific time courses and spatial
maps, and a SCV represents the time-varying representation of a
spatial map. Parameter-tuned cIVA directs the estimation of the
sources toward the reference components through an additional
term in the IVA cost function given as,

J = JIVA −

L
∑

l=1

1

2γn

M
∑

m=1

{

[

max{0,µ[m]
n + γng(ŝ

[m]
n , dn)}

]2
− (µ[m]

n )2
}

,

(2)
where µ

[m]
n is the regularization parameter, γn is a positive scalar

and g(ŝ[m]
l

, dn) is the inequality constraint function given as,

g(ŝ[m]
l

, dn) = ρn −

∣

∣

∣
corr(ŝ[m]

l
, dn)

∣

∣

∣
≤ 0. (3)

The constraint parameter, ρn, controls the amount of
correspondence between the exemplar, dn, and the estimated
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source, and acts as a lower bound for the amount of correlation
between them. A higher value for this parameter enforces
the estimated source to be exactly similar to the exemplar
component, not allowing the other components to interact with
the exemplar component. On the other hand, a lower value
deviates the estimated source from the exemplar component
causing the source to be prone to noise and other artifacts.
Additionally, the interaction between an exemplar component
and other components vary with respect windows and subjects,
hence a fixed value for this parameter across all m and for
all subjects does not allow the model to efficiently capture
the variability across windows. Thus in order to capture the
variability, SED-cIVA implements parameter-tuned cIVA, that
adaptively selects a value from a set of possible values for ρn,
denoted as P , as follows,

ρ̂n = arg min
ρn∈P

[

min
m

{∣

∣

∣
ρn −

∣

∣

∣
corr(ŝ[m]

l
, dn)

∣

∣

∣

∣

∣

∣

}M

m=1

]

,

P ∈ {0.001, 0.1, ... , 0.9} (4)

This updates computes g(ŝ[m]
l

, dn) for all m and for each value in
set P and selects the highest value of ρn from set P that satisfies
the condition in Equation (3) for all windows. From Equation (3),

we observe that ρn ≤

∣

∣

∣
corr(ŝ[m]

l
, dn)

∣

∣

∣
, allowing ρn to be between

0 and 1. Thus, we define the set P as the possible values between
0 and 1. Hence, parameter-tuned cIVA selects the highest lower
bound using Equation (4) and adaptively tunes itself with respect
to each exemplar component, allowing the method to capture
variability across windows. The use of exemplars also guides
the solution toward the optimal solution addressing the issue of
large-scale data that is observed in regular IVA, and relaxes the
independence assumption of IVA (Bhinge et al., 2017). Hence
SED-cIVA effectively captures variability of the exemplars across
windows and subjects.

In parameter-tuned cIVA, we constrain one source at a

time, ŝ[m]
1 , to one of the exemplar components, dn, whereas

the rest of the sources, ŝ[m]
l

, l = 2, . . . , L, are unconstrained.
For each dn, we obtain 10 solutions using parameter-tuned
cIVA with γn = 3, n = 1, . . . ,N, using the IVA-L-SOS
algorithm for different random initializations and select the
most consistent run using the method described in Long et al.
(2018b). IVA-L-SOS is a type of IVA algorithm that assumes
the sources are multivariate Laplacian distributed and exploits
second order statistics (SOS) (Bhinge et al., 2019). This algorithm
provides a better match to the properties of fMRI sources, since
fMRI sources are in general expected to have a super-Gaussian
distribution, like Laplacian (Calhoun and Adali, 2012), and are
correlated across windows. The estimated sources corresponding
to the constrained exemplars from the consistent run are denoted

as y[m,k]
n , n = 1, . . . ,N, m = 1, . . . ,M, k = 1, . . . ,K, whereas the

corresponding time courses are denoted as a[m,k]
n .

2.3. Post-processing
SED-cIVA estimates time-varying spatial components and
corresponding time courses for each exemplars that are further
used to compute spatial and temporal dFNC matrices. The

time courses at each window are further processed to remove
quadratic, linear and cubic trends, and low-pass filtered with
a cutoff frequency of 0.15 Hz (Allen et al., 2014). The tdFNC
matrix at the mth time window for the kth subject is denoted
as R[m,k]. Each element in R[m,k] is obtained by computing the
Pearson’s correlation coefficient between each pair of the time

courses in that time window, r[m,k]
ij = corr

(

a
[m,k]
i , a[m,k]

j

)

, i, j =

1, . . . ,N. Similarly sdFNC matrices are obtained by computing
the Pearson’s correlation coefficient between each pair of
spatial maps at each time window. The correlation can be
interpreted as the similarity in the activated sources in the
spatial maps. Although IVA, like ICA, estimates spatial maps
that are maximally independent within a time window, it also
groups together the voxels that have a similar activation pattern
(Calhoun and de Lacy, 2017). Hence, if in a time window two
sources have a similar activation pattern these sources would
be estimated as a single spatial map. Hence, we would expect
a high correlation between the estimated spatial maps of the
corresponding constrained sources. These matrices are further
used to classify subjects as patients or controls, and to obtain
spatial and temporal FC states. The post-analysis steps are shown
in Figure 1B.

2.4. Prediction Technique
In order to study how informative the spatial and temporal dFNC
features are, we evaluate the predictability of these features in
terms of predicting if a subject is a patient or a control. Note
that the aim of this experiment is to observe potential advantages
of sdFNC features and not the actual prediction accuracy, hence
we use a simpler Naïve Bayes classifier that does not require
tuning of parameters. The flowchart for the prediction technique
is shown in Figure 2. We obtain 1,000 independent Monte-
Carlo subsamplings of the data. In each subsampling, subjects
from HC and SZ group are divided into training and testing
sets, where each training group consists of 75 randomly sampled
subjects from the HC and the SZ group (Ktrain = 150). The
remaining subjects form the testing set (Ktest = 29). We then
obtain Ktrain × M observations of N(N − 1)/2 dimensional
features from the tdFNC/sdFNC matrices. In order to select
the distinguishing features from the N(N − 1)/2 features, we
perform a two-sample t-test on the features from the HC and
SZ group as shown in Figure 2B. Features that demonstrate
significant difference (p < 0.05) are used in further stages. The
indices of the significant features are recorded and used in the
testing stage. This feature selection is done separately for tdFNC
and sdFNC matrices. The selected features are clustered into C
clusters, where in this experiment we vary the number of clusters
from 3 to 30. For training the Naïve Bayes classifier, we obtain
the probability of each state for the HC group and SZ group,
pg(Ci), g = {HC, SZ}. In the testing stage, the features that
indicated significant difference in the training stage were selected
and each observation from a test subject is assigned a state with
maximum Pearson’s correlation between the observation and the
cluster centroid. We then obtain the probability of each state

using p[k](Ci) = n
[k]
i /M, i = 1, . . . ,C and use the test feature

vector to predict the class of the subject. A test subject is assigned
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FIGURE 1 | (A) SED-cIVA technique consists of two stages. In the first stage exemplars of resting-state networks are extracted using GICA. In the second stage,

these exemplars are used as reference signals in a sliding-window cIVA framework to extract their spatial and temporal dynamics. (B) Spatial or temporal dFNC

matrices are obtained at each time window by computing the Pearson’s correlation coefficient between each pair of spatial maps or time course, respectively. These

matrices are further used to classify subject as a patient or a control, and also to identify states.

to HC or SZ group using the following rule,

ŷ = arg max
g=

{

HC,SZ
}

p(g)
C

∏

i=1

[

pg(Ci)
]ni (5)

where ni denotes the number of occurrences of state i in the
test subject. Steps (B–D) from Figure 2 are performed for each
sub-sampling of the data.

For the joint analysis of spatio-temporal features, the sdFNC
and tdFNC features selected after the two-sample t-test on these
feature sets separately, are concatenated in the feature dimension
to study the effect of combining the two feature sets on prediction
accuracy. We compare the results from the combined feature set
with the results from using sdFNC and tdFNC feature set alone.
Table 1 provides some inferences regarding the comparison
results. Let QS denote the prediction accuracy obtained using
sdFNC matrices, QT denote the prediction accuracy obtained
using tdFNC matrices and QST denote the prediction accuracy
obtained using the combined feature set. We can say that if the
prediction accuracy increases after combining the sdFNC and
tdFNC features, both feature sets provide unique discriminative

features, whereas if the prediction accuracy using sdFNC features
is greater than QST, then tdFNC provide non-discriminative
features, hindering the classification performance.

2.5. Identification of States
Recent studies have shown that fluctuations in the brain networks
in resting-state are not random but exhibit structured patterns
that vary over time (Cribben et al., 2012; Allen et al., 2014;
Yang et al., 2014). In this study, we obtain these structured
patterns or states using sdFNC matrices. In the first step toward
identifying the states, we flatten the upper diagonal part of each
correlation matrix, R[m,k], to obtain a feature vector of dimension
N(N − 1)/2 yielding MK observations. For each subject, the
standard deviation across the feature dimension is computed
and a subset of FNC matrices are selected corresponding to
the maximum standard deviation as subject exemplars. Thus
the subject exemplars represent the features that are more
informative, alternatively those with higher variability. Further k-
means clustering is performed to cluster these subject exemplars
into C clusters using Pearson’s correlation coefficient as the
distance measure. The centroids resulting from clustering the
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FIGURE 2 | Flowchart to obtain the features for prediction. (A) The subjects are divided into training and testing set, where the training set consists of 150 subjects,

75 from the HC and SZ group each. The remaining 29 subjects form the testing set. (B) Each tdFNC/sdFNC matrix is flattened to a row and the distinguishing features

are extracted using a two-sample t-test. The indices of the distinguishing features are recorded and used to select the corresponding features in the testing stage. In

the combined feature set for joint analysis, the flattened features from both domains are concatenated in the feature dimension and similar steps are performed.

(C) The selected features from the training set are clustered into C clusters using K-means clustering to obtain the centroids and the state vector for each subject. (D)

The probability of occurrence of each state is computed for the HC and SZ group separately. For the testing stage the state vector for each subject is obtained using

the centroids from the training stage and probability of occurrence for each state is computed.

subject exemplars are used as initial points to cluster the entire
observation set. This two-step clustering process is performed in
order to obtain a robust solution. The performance of k-means
clustering assigns a cluster or state index to each observation
resulting in a state vector for each subject. The state vector thus
represents the evolution of the states over time. This vector is
further analyzed to obtain the transition matrix, dwell time and
fraction of time spent for each state and for each subject. The
transition matrix denotes the number of transitions from state
i to state j, i, j = {1, . . . ,C}, the dwell time denotes the amount of
time a subject remains in a particular state, and fraction of time
spent denotes the probability of occurrence of a state.

3. RESULTS AND DISCUSSION

The 17 components selected as exemplars after performing
GICA are shown in Figure 3. These components are divided
into 8 domains: auditory (AUD), sensorimotor (SM), frontal
(FRO), fronto-parietal (FP), parietal (PAR), visual (VIS),
default mode network (DMN) and cerebellum (CB). The
PAR domain comprise three networks: PAR1, PAR2, and
PAR3, corresponding to their peak activation located in
the primary somatosensory cortex, supramarginal gyrus
and somatosensory association cortex, respectively. The
DMN domain consists of one component corresponding to
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TABLE 1 | Inferences about predictability of sdFNC, tdFNC, and combined

feature set.

QST > QS,QT sdFNC and tdFNC yield unique discriminative features

jointly contributing to classify subjects

QST < QS,QT sdFNC and tdFNC both yield non-discriminative features

that are unable to classify subjects

QS or QT > QST >

QT or QS

tdFNC or sdFNC yield non-discriminative features

affecting the prediction

QST = QS or QT tdFNC or sdFNC are not providing additional information

to classify subjects

QS denotes the prediction accuracy obtained using sdFNC matrices, QT denotes the

prediction accuracy obtained using tdFNC matrices and QST denotes the prediction

accuracy obtained using the combined feature set.

posterior DMN, one component corresponding to anterior
DMN (ADMN), one DIC network and one insular (INS)
component. The DIC component shows a network of a
de-activated posterior DMN component and an activated
central executive network and right fronto-insular (INS)
network. The VIS domain comprise two networks: VIS1
and VIS2, corresponding to their peak activation situated
in the lateral and medial visual cortex, respectively. The
FRO domain comprise two networks: FRO1 and FRO2
corresponding to their peak activation in the frontal cortex
located anterior to the premotor cortex and dorsolateral
prefrontal cortex, respectively.

3.1. Prediction Results
The average prediction accuracies computed across 1,000 Monte
Carlo subsamplings, using the sdFNC, tdFNC and combined
feature set for different number of clusters is shown in Figure 4.
Figure 4A shows the result for the HC group and Figure 4B

shows the result for the SZ group. In order to test if the prediction
accuracies computed using sdFNC and tdFNC features are
significantly different from the combined feature set, we perform
a permutation test using a two-sample t-test as the hypothesis
test. The results indicate that the prediction accuracy computed
using sdFNC features is significantly higher than the one
computed using tdFNC and the combined feature set for the
SZ group for different number of clusters. This suggests the
use of tdFNC features yield non-discriminative features that
degrade the prediction performance for the SZ group. For the
HC group, the prediction accuracy computed using sdFNC
features is higher than the one computed using tdFNC features
and equal to the combined feature set for the SZ group for
different number of clusters. This suggests that the tdFNC
features are not providing additional information to classify
subjects as controls.

We also compute the sensitivity and specificity of the
prediction model obtained using sdFNC and tdFNC
features. The true positives (TP) denote the percentage
of SZ subjects that are correctly identified as SZ, true
negatives (TN) denote the percentage of HC subjects
that are correctly identified as HC, false negatives (FN)
denote the percentage of SZ subjects incorrectly identified
as HC, and false positives (FP) denote the percentage
of HC subjects incorrectly identified as SZ. Sensitivity

and specificity for each Monte Carlo subsampling is
computed as follows,

Sensitivity =
TP

TP+ FN
, Specificity =

TN

TN+ FP
.

Figure 5 shows the results of these measures computed for
sdFNC and tdFNC features. Sensitivity and specificity values
are higher using sdFNC features compared with the tdFNC
features. A higher sensitivity for sdFNC features indicates that
these features are better able to identify SZ subjects than
HC subjects.

In order to test for differences between the prediction
accuracies using sdFNC and tdFNC features, and between
the HC group and the SZ group, we perform a permutation
test between these groups using a two-sample t-test as a
hypothesis test. The distribution plots of the accuracies and
the permutation test results are shown in Figure 6. The
permutation test result indicates that the sdFNC features yield
a significantly higher prediction accuracy when compared with
tdFNC features, providing evidence that exploiting variability in
the spatial domain yields meaningful distinguishing information.
The average prediction accuracy using tdFNC features is around
50%, which is equivalent to providing random guesses regarding
the class of a subject. This provides additional evidence that
tdFNC features are not providing any additional information
as compared to a random classifier. The permutation test result
between the HC and the SZ group indicates a significantly higher
prediction accuracy for the SZ group using sdFNC features. Since
the feature used in this technique is the probability of occurrence
of each state, we can infer that patients with schizophrenia tend
to stay or transition to a certain group of states more often
than healthy controls. A natural question is the identification of
these predictable states and their differences with respect to states
associated to a healthy group of subjects. In the next section we
discuss the results obtained from the state-based analysis using
the sdFNC matrices and identify the states that are associated
with the patients and controls group.

3.2. Analysis of States
We identify six distinct states using both temporal and spatial
FNC matrices using the method described in section 2.5. The
number of clusters is estimated as six using the silhouette
criterion. We also compute the optimal number of clusters using
other criteria available in the group ICA for fMRI toolbox.
The estimated values are in the range 2–10, with the median
value being six. Hence, we choose the final values as six for
the optimal number of clusters. The group-specific states and
features that demonstrate significant differences between HC and
SZ group using sdFNC matrices are shown in Figure 7A. The
significantly different features within each state were identified
by performing a permutation test between the HC group and
the SZ group. The group-specific states show differences in the
level of connectivity between pairs of components, which are
reflected in the third row of Figure 7A that shows differences
between the HC and SZ group. The parietal component has high
positive connectivity with the auditory, sensorimotor and frontal
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FIGURE 3 | The 17 components selected are divided into 8 domains: auditory (AUD), sensorimotor (SM), frontal (FRO), fronto-parietal (FP), parietal (PAR), visual (VIS),

default mode network (DMN), and cerebellum (CB). The DMN domain includes spatial maps consisting the anterior, posterior DMN, central executive network and

insular (INS) components. The number indicated next to each domain name is number of components belonging to that domain.

FIGURE 4 | Average prediction accuracy computed over 1,000 independent Monte-Carlo samplings using tdFNC, sdFNC and combined features for (A) HC group

and (B) SZ group. A blue triangle denotes significant difference between tdFNC result and combined feature set result, whereas a read triangle denotes significant

difference between sdFNC result and combined feature set result. A triangle pointing left, “⊳,” indicates the prediction accuracy of tdFNC/sdFNC is greater than the

combined feature set result, whereas a triangle pointing right, “⊲,” indicates the prediction accuracy of tdFNC/sdFNC is less than the combined feature set result.
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components in all states and indicates simultaneous activation of
these regions. The parietal lobe plays a vital role in processing
sensory information such as touch, sound and vision, which is
obtained from different parts of the body. A subject in the scanner
is exposed to scanner noise and hence the brain is involved
in processing the auditory information, causing activation of

FIGURE 5 | Sensitivity and specificity of the prediction model trained using

sdFNC and tdFNC features. The sensitivity and specificity values are averaged

over 1,000 Monte Carlo subsamplings. The results indicate that sensitivity and

specificity is higher using sdFNC features compared with the tdFNC features.

A higher sensitivity for sdFNC indicates a better prediction ability of these

features to correctly identify SZ subjects.

parietal and auditory components. The parietal component also
plays a role in receiving signals from sensory organs, which
is then passed to motor-related regions, such as sensorimotor
and frontal components, in order to control the body posture.
Since a subject is asked to lay still in the scanner, the subject
is focusing on balancing his/her body, causing the activation
of these regions. An observed positive correlation between
the sensorimotor and frontal component provides additional
support toward the hypothesis. Cerebellum on the other hand,
receives the sensory information from different parts of the
body. Hence, a high negative correlation between the parietal
and cerebellum component indicates simultaneous deactivation
of one component while the other is active, suggesting a
process of first receiving and then processing the sensory
information. This might also help explain the observed negative
correlation between cerebellum and motor-related components.
These connections are observed in all states, indicating that these
regions form a central hub at resting-state and play a vital role
resting-state fMRI data.

We obtain the transition matrix, dwell times and fraction of
time spent in each state for each subject as described in section
2.5. For each transition pair {i, j}, i, j = 1, . . . , 6, we perform
a permutation test to identify differences between the HC and
the SZ group. Each significantly different pair denotes that one
group transitioned from state i to jmore frequently than the other
group. Similarly, we perform a permutation test on the mean
dwell time of each state and fraction of time spent in each state
to test for differences between HC and SZ group. The results for
transition matrices (TM), mean dwell time (MDT) and fraction
of time spent (FR) are shown in Figures 7B–D, respectively. The
transition matrix indicates that healthy controls tend to stay in
State 1 more frequently, whereas patients with schizophrenia
tend to transition more frequently from State 3 to State 4 and

FIGURE 6 | Predictability results using Naïve Bayes classifier. Red color indicates the histogram of prediction accuracies obtained for the SZ group whereas blue

indicates the histogram of prediction accuracies for the HC group. X-axis denotes the number of clusters, C used to cluster the features from tdFNC/sdFNC graphs.

The green “+” sign denotes the mean value and “�” sign indicates the median value. The markers at the bottom show results from a permutation test to test for

statistical differences (p < 0.05, corrected). A “*” denotes the accuracies are significantly higher using sdFNC features compared with tdFNC features. A “⊲” denotes

higher prediction accuracy for SZ group. We observe a higher prediction accuracy using sdFNC features and a significantly higher accuracy for the patients group, for

different number of clusters.
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FIGURE 7 | (A) The top two rows shows the group-specific states obtained using sdFNC matrices. The bottom row corresponds to the features that demonstrated

significant difference (p < 0.05, corrected) between HC and SZ group. Red indicates higher value for SZ whereas blue indicates higher value for HC. (B) Transition

matrix (TM) with each element in the matrix showing transitions that are significantly (p < 0.05, corrected) different. Blue indicates HCs transitioned more frequently

from current state to next state whereas red indicates SZs transitioned more frequently from current state to next state. (C) Mean dwell time of each state for the HC

and SZ group. (D) Fraction of time spent (FR) in each state by the HC group and SZ group. Results indicate that SZ subjects tend to transition more frequently from

State 3 to State 4 whereas those obtained using dsFNC graphs indicate that SZ subjects transition more frequently from State 1 to State 5. We also observe that SZ

subjects tend to stay more in State 2.

State 1 to State 5. State 3 and 4 differ in the level of positive
correlation between cerebellum and auditory component, insular
and parietal component, visual and parietal component and
anterior DMN and visual component, whereas State 1 and 5 differ
in the level of positive correlation within the visual network, and
between the cerebellum and visual component. These states also
differ in the level of negative correlation between the cerebellum
and left fronto-parietal component. These connections are also
observed in State 2 where patients demonstrate a significantly
higher mean dwell time and fraction of time spent compared
to controls. Hence patients with schizophrenia tend to reside
in or switch to a state that has high positive correlation within

the visual network and between the anterior DMN and frontal
component, visual and parietal component, anterior DMN and
frontal component, and cerebellum and visual component. The
patients group also tend to reside in or switch to a state
that has high negative correlation between the cerebellum and
left fronto-parietal component. This suggests that patients with
schizophrenia are associated to a hyperconnected brain network
and studies have shown their tendency to engage more brain
regions than healthy controls (Ma et al., 2011; Ćurčić-Blake et al.,
2015; Walther et al., 2017).

Since patients with schizophrenia demonstrate a significantly
high mean dwell time and fraction of time spent in State 2, and
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controls show a high (although not significant) mean dwell time
in State 1, we discuss these two states in detail. State 2 differs
from State 1 in terms of high positive correlation within the
visual network, between frontal and anterior DMN component,
cerebellum and parietal component, cerebellum and visual
component, and DMN and insular component. A high negative
correlation is also observed between the frontal and visual
component, parietal and anterior DMN, DMN and anterior
DMN. As discussed above, a high negative correlation between
parietal and cerebellum component is due to the cognitive
process of receiving and processing sensory information one at
a time, a positive correlation between these components in State
2 suggests abnormal connectivity. A healthy brain has shown
evidence of positive correlation between anterior and posterior
DMN, and a deactivation in DMN due to an activated INS region
(Sridharan et al., 2008; Nekovarova et al., 2014). However a high
negative correlation between the anterior DMN and posterior
DMN, and a high positive correlation between posterior DMN
and insular region in State 2 of the SZ group also provides
evidence of dysfunction in the DMN domain of schizophrenia,
which is a common trait in this group (Nekovarova et al., 2014).
A high positive correlation between anterior DMN and frontal
component might suggest the activation of both region due
to their role in social behavior and impulse control. Patients
with schizophrenia are known to have paranoia traits, causing
them to be constantly aware of the surroundings and prone to
impulse control disorder. This causes hyperactivity in the DMN
and frontal components of schizophrenic patients (Fusar-Poli
et al., 2011; Guo et al., 2017; Zhou et al., 2019). The bottom
row of Figure 7 indicates the connections that demonstrated
significant difference (p < 0.05, corrected) between the HC and
SZ group. High absolute connectivity is SZ group is indicated by
red while high absolute connectivity in the HC group is indicated
by blue. State 2 shows most connections that have significantly
high absolute correlation in the SZ group. Patients exhibit high
correlation between the cerebellum and parietal component,
posterior and anterior DMN component, posterior DMN and left
fronto-parietal, auditory and DIC component, and cerebellum
and DIC network. A significantly high correlation between these
components in the SZ group suggest a hyperconnected DMN,
which is a common trait of patients with schizophrenia (Garrity
et al., 2007; Whitfield-Gabrieli et al., 2009). A significantly higher
connectivity between the anterior DMN and frontal component,
and parietal and cerebellum component provides additional
support to the hypothesis of paranoia and abnormal behavior in
schizophrenia patients.

4. CONCLUSION AND FUTURE WORK

Dynamic functional connectivity analysis is widely studied
in the temporal domain. However there are also substantial
dynamics present in the spatial variability across networks,
an understudied area. In this work, we explore the benefits
of exploiting the variability in the spatial domain using a
prediction technique. Our results indicate that for resting-state
fMRI data, the use of spatial dFNCmatrices provides meaningful
distinguishing characteristics from healthy controls and patients
with schizophrenia.We also observe a higher prediction accuracy

for the patients group compared with healthy controls, indicating
that patients are more likely to stay in or switch among a
particular group of states. We also identify the states associated
to patients with schizophrenia and study the characteristics of
these states. Our results indicate that patients with schizophrenia
tend to stay in or switch to a state corresponding to a
hyperconnected brain network. In additional, sdFNC features
show evidence of significant association of spatial networks to
a measure of paranoia in schizophrenia group, highlighting
the benefit of the proposed approach as a possible biomarker
of illness.

The higher predictability of the sdFNC features and its
ability to capture discriminating features, enables the analysis
of dFNC in the spatial domain, and leads to a number of
future directions. A study to compare different sliding window
lengths can be applied to identify a range of lengths suitable for
capturing dFNC patterns in the spatial domain. Due to large
number of samples in this domain, the sliding window length
can be reduced below 30 s as well, in order to capture highly
fluctuating networks of interest. This study would not have been
possible with conventional methods that use time courses to
study dFNC patterns, due to limited number of samples. In this
study we identified states from sdFNC patterns and obtained
state-based metrics such as transition matrix, mean dwell time
and fraction of time spent. Other metrics derived from graph-
theoretical analysis such as connectivity strength, modularity
and centrality can also be obtained. Different robust clustering
approaches can be used to obtain states and compared with the
method used in this paper. The study of dynamic functional
connectivity is prominent during resting-state during which
the neuronal activity is under no constraint as compared with
task-related fMRI. However, the benefits of spatial dynamics
can be explored under task-constraints. The main focus of this
paper is to determine the power of the spatial dynamic features
and not achieving a high classification accuracy. Hence, we
use a simple Naïve Bayes classifier for predicting the subject
class, which ensures that the classification rates would be as
independent as possible from the tuning of classifier parameters.
However, the prediction accuracy can be improved by using
complex classifiers such as kernel support vector machines
or neural networks, e.g., a seed-based approach obtained a
classification accuracy of 86.3% by using a support vector
machine classifier (Kottaram et al., 2018).
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