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Hemodynamic fluctuations in the default mode network (DMN), observed through
functional magnetic resonance imaging (fMRI), have been linked to electrophysiological
oscillations detected by electroencephalography (EEG). It has been reported that,
among the electrophysiological oscillations, those in the alpha frequency range
(8–13 Hz) are the most dominant during resting state. We hypothesized that DMN spatial
configuration closely depends on the specific neuronal oscillations considered, and that
alpha oscillations would mainly correlate with increased blood oxygen-level dependent
(BOLD) signal in the DMN. To test this hypothesis, we used high-density EEG (hdEEG)
data simultaneously collected with fMRI scanning in 20 healthy volunteers at rest. We
first detected the DMN from source reconstructed hdEEG data for multiple frequency
bands, and we then mapped the correlation between temporal profile of hdEEG-
derived DMN activity and fMRI–BOLD signals on a voxel-by-voxel basis. In line with our
hypothesis, we found that the correlation map associated with alpha oscillations, more
than with any other frequency bands, displayed a larger overlap with DMN regions.
Overall, our study provided further evidence for a primary role of alpha oscillations in
supporting DMN functioning. We suggest that simultaneous EEG–fMRI may represent a
powerful tool to investigate the neurophysiological basis of human brain networks.

Keywords: resting state, high-density EEG, fMRI, DMN, alpha rhythm

INTRODUCTION

The default mode network (DMN) is a large-scale brain network comprising a specific constellation
of cortical regions, including left and right angular gyrus (LANG and RANG), posterior cingulate
cortex (PCC), and medial prefrontal cortex (MPFC). The activity of DMN typically decreases
during performance of goal-directed cognitive tasks and increases during resting state (Raichle
et al., 2001), undertaking a relevant role in mediating the communication with other brain
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networks (Mantini et al., 2013), and in modulating attention
processes from external to internal sources (Goldman et al., 2002;
Laufs et al., 2003a; Hanslmayr et al., 2011; Mo et al., 2013).

DMN functioning has been investigated using slow
hemodynamic fluctuations observed through functional
magnetic resonance imaging (fMRI) (Greicius et al., 2003). fMRI
has proved to be very accurate in displaying brain activations with
high spatial resolution, of a few millimeters (Ogawa et al., 1990;
Biswal et al., 1995), but inadequate for directly detecting the fast
oscillations associated with neuronal processes. This limitation
has boosted the interest toward the simultaneous combination
of fMRI with electroencephalography (EEG), which, contrary to
fMRI, provides a direct measure of electrophysiological activity,
with high temporal resolution, on the scale of milliseconds
(Nunez and Silberstein, 2000). Starting from the evidence
that EEG and fMRI measurements reflect the same brain
activity (Logothetis et al., 2001; Eichele et al., 2009; Jorge et al.,
2014), simultaneous EEG–fMRI was used to shed light on the
hemodynamic correlates of electrophysiological DMN activity
(Laufs et al., 2003a; Mantini et al., 2007; Scheeringa et al., 2012;
Mayhew et al., 2013a; Mo et al., 2013).

To explore the hemodynamic correlates of
electrophysiological activity, EEG neural power is typically
calculated in one or more frequency bands, convolved with
a canonical hemodynamic response function (HRF), and
correlated with fMRI signals (Goldman et al., 2002; Laufs,
2008). Notably, this approach has been extensively used for
investigating brain activity especially in relation to alpha, which
is known to be the dominant idling electroencephalographic
rhythm during resting state. In most of these studies, alpha
power oscillations were calculated from occipital EEG sensors
and correlated with fMRI time series from all voxels in the
brain (Goldman et al., 2002; Laufs et al., 2003a; Scheeringa
et al., 2012; Mo et al., 2013). Widespread negative alpha power
correlation was mainly found in brain regions involved in
attention processes (Laufs et al., 2003a), and belonging to
the visual system (Goldman et al., 2002; Scheeringa et al.,
2012; Mayhew et al., 2016), whereas positive alpha power
correlation was reported in brain regions belonging to the DMN
(Jann et al., 2009; Knyazev et al., 2011; Mo et al., 2013). In a
previous study (Mantini et al., 2007), we further explored the
electrophysiological correlates of resting state brain networks,
by considering all the other frequency bands, including delta,
theta, beta, and gamma. We found that the DMN presents
a specific electrophysiological signature, which involves the
coalescence of different electrical oscillations, among which
alpha and beta rhythms play a dominant role (Mantini et al.,
2007). Other studies reported significant correlations of DMN
activity with other frequency bands, including positive beta
power correlation in PCC and dorsal MPFC (Laufs et al., 2003b),
and negative theta power correlation in MPFC (Scheeringa
et al., 2008). All these results, however, have the common
drawback of being derived from EEG power oscillations
evaluated at the sensor level. In fact, approaches based on
EEG recordings do not enable an exact match between EEG
and fMRI measurements in a common reference system, i.e.,
the brain volume (Laufs, 2008; Ostwald et al., 2011). Recent

technological advances enabled the detection of the DMN using
source reconstructed high-density EEG (hdEEG) data (Liu et al.,
2017, 2018; Marino et al., 2019). These opened the way for the
investigation of band-limited neural power at the source level
(Samogin et al., 2019). Notably, source-space analyses of hdEEG
data in simultaneous EEG–fMRI studies could enable the direct
comparison between electrophysiological and hemodynamic
activity. This may enable the characterization of the brain
rhythms contributing to hemodynamic activity in the DMN, as
well as other brain networks.

In this study, we aimed to test the hypothesis that different
brain rhythms contribute to DMN functioning. In particular, we
postulate that DMN spatial configuration closely relates to the
specific neuronal oscillations considered, and that alpha rhythm,
more than other frequency bands, correlates with hemodynamic
activity in brain regions belonging to the DMN nodes.

MATERIALS AND METHODS

Subjects and Experimental Design
Eyes-open resting EEG and fMRI data were simultaneously
acquired for 10 min in 20 healthy young adults volunteers
(age 24 ± 3.3 years, 10 females). All participants reported
normal or corrected-to-normal vision, and had no psychiatric
or neurological history. Before undergoing the examination,
they gave their written informed consent to the experimental
procedures, which were approved by the Medical Ethics
Committee of the UZ Leuven.

EEG Data Acquisition
Electroencephalography signals were recorded by the
MR-compatible 256-channel HydroCel Geodesic Sensor
Net (GSN) (EGI, Eugene, OR, United States). The impedance
of each electrode was maintained lower than 50 k� across the
full recording, in line with recommendations for the HydroCel
GSN, by soaking the sponge contained in each electrode
with a saline solution. In order to maintain the contact of
the EEG electrodes with the patient scalp, an elastic bandage
was placed above the EEG net. The electrocardiographic
(ECG) signal was also acquired by using two MR-compatible
electrodes positioned on the chest, in correspondence to the
apical and the left side of the heart, respectively. The EEG
and ECG cables were connected to the EEG amplifier, which
was contained in a field isolation containment system (FICS)
and positioned next to the MR bore. EEG data were recorded
at a sampling rate of 1 KHz, and were synchronized to the
MR scanner internal clock. The collected signals were sent via
an optical cable to the EEG recording computer outside the
MR scanner room.

MRI Data Acquisition
Functional magnetic resonance imaging data acquisition
was performed using a 3T Philips Achieva MR scanner
(Philips Medical Systems, Best, Netherlands) using a T2∗-
weighted SENSE sequence. The scanning parameters were
TR = 2000 ms, TE = 30 ms, 36 slices, 80 × 80 matrix, voxel size
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2.75 × 2.75 × 3.75 mm3, flip angle = 90◦. During simultaneous
EEG–fMRI recordings, the helium pump of the magnet was
switched off for the full duration of the functional acquisition.
A T1-weighted whole-head structural MR image (sMRI), to
be used for head tissue modeling, was collected with a turbo
field echo sequence with the following scanning parameters:
TR = 8.25 ms, TE = 3.8 ms, flip angle = 8◦, voxel size: 1 mm3

isotropic. A T1-weighted whole-head ultrashort echo time
(UTE) image, to be used for electrode localization, was collected
with a fast field echo sequence with the following scanning
parameters: TR = 8 ms, TE = 0.14 ms, flip angle = 10◦, voxel size:
1 mm3 isotropic.

MRI Data Processing
Processing of MRI data was carried out using built-in MATLAB
(MathWorks, Natick, MA, United States) functions and the
SPM12 software1. sMRI data preprocessing included intensity
non-uniformity (INU) correction and image segmentation,
which were carried out by using the unified segmentation
algorithm implemented in SPM12, using a regularization
parameter equal to 0.0001 and a smoothing parameter equal
to 40 mm FWHM. UTE images were processed using a new
method for EEG electrodes localization from MR images (Marino
et al., 2016). This procedure consists of an image-processing
step to improve image quality, perform image segmentation
and detect the head shape, and an electrode-detection and -
labeling step. In the first part, a search volume is defined
around the external border of the head, i.e., the scalp, where
the electrodes are positioned. Secondly, candidate electrodes are
identified within the search volume in the UTE images, filtered,
and matched with template EEG points, allowing for direct
electrode labeling. fMRI data were preprocessed by means of an
automated pipeline developed using SPM12, including motion
correction, spatial alignment to sMRI, bias field correction, co-
registration to standard space, and spatial smoothing at 6 mm
full width half maximum (Mantini et al., 2013). The fMRI
images were analyzed to obtain DMN spatial maps from each
individual, as well as a DMN group-level map. Connectivity
analysis was performed, separately for each subject, using spatial
independent component analysis (sICA), which was used for
decomposing the fMRI data into brain activity patterns starting
from the spatial covariance of the measured signals (McKeown
et al., 1998). We estimated the number of ICs by using the
minimum description length criterion (Calhoun et al., 2001).
Accordingly, 26–43 ICs were extracted, depending on the specific
fMRI dataset. ICs were calculated using the FastICA algorithm,
with a deflation approach and hyperbolic tangent non-linearity
(Esposito et al., 2005). For each IC, a spatial map and an
associated time series are extracted. The spatial map expresses
the intensity of the activity across the voxels of that pattern,
whereas the time series corresponds to its course over time
(Mantini et al., 2007, 2009). The spatial map was converted
to z-scores by subtracting the average intensity across voxels,
and dividing the resulting map by the standard deviation
across voxels. The IC corresponding to DMN was identified

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

using an automated template-matching procedure, in which
the considered DMN-template was derived from our previous
fMRI study (Mantini et al., 2013). Specifically, the DMN was
identified as the IC showing the highest spatial correlation with
the DMN template map in Montreal Neurological Institute
(MNI) space. We derived DMN group-level correlation map
by performing a one-sample one-sided t-test, using a mass-
univariate analysis on the individual DMN maps. According to
this approach, each voxel displayed as significant in the results
indicates that there was significant correlation at the group level.
We corrected the significance level for multiple comparisons (for
multiple voxels involved in the analysis) between single-subject
z-scores correlation maps using the Benjamini-Yekutieli false
discovery rate (BY-FDR) procedure (Benjamini and Yekutieli,
2001), which does not make any assumptions about sample
dependency. The significance threshold for the DMN group-level
correlation map derived from the fMRI data was set to p < 0.05,
BY-FDR corrected.

EEG Data Processing
EEG data were processed using built-in MATLAB (MathWorks,
Natick, MA, United States) functions and the EEGLAB toolbox2

(Delorme and Makeig, 2004) (Figure 1). EEG signals acquired
during simultaneous fMRI scanning are affected by various
artifacts (Yan et al., 2009; Marino et al., 2018a), which
contaminate the EEG signal changes associated with neuronal
activity. The EEG data processing pipeline proposed in this
work (Figure 1) enabled the removal of MR-related artifacts
and optimized the generation of the realistic head model, by
using advanced head modeling techniques, including accurate
information about EEG electrode positions.

We first attenuated MR-related artifacts using the fMRI
artifact template removal (FASTR) method implemented in
EEGLAB (Niazy et al., 2005), and the ballistocardiographic
(BCG) artifact by means of the adaptive optimal basis set
(aOBS) method (Marino et al., 2018b). Then, hdEEG data were
given as input to an automated analysis workflow we previously
developed and validated for brain network reconstruction from
hdEEG data (Liu et al., 2017, 2018; Marino et al., 2019).
This in-house processing pipeline consists of the following
steps: (1) signal preprocessing, (2) head model generation, (3)
source reconstruction, and (4) connectivity analysis. As for
signal preprocessing, channels with poor signal quality were
first identified based on either the Pearson correlation, in
the frequency band (1–80 Hz), between each channel signal
and the signal from all the other channels, or according
to the variance of each channel’s noise, estimated in the
frequency band (200–250 Hz) where the contribution of the
brain activity can be considered negligible. Bad channels were
defined as those channels for which at least one of the
two abovementioned parameters was an outlier as compared
to its total values distribution. These bad channels were
corrected by interpolating the time courses from the neighboring
channels. Then, EEG data were filtered in the frequency band
(1–80 Hz), and ICA was applied to remove biological artifacts,

2https://sccn.ucsd.edu/eeglab/
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FIGURE 1 | Analysis workflow for investigating the relationship between EEG and fMRI measurements. The workflow consists of the following processing steps: (A)
fMRI processing, including motion correction, spatial alignment to sMRI, bias field correction, co-registration to standard space, and spatial smoothing. The resulting
fMRI signals will be used for the EEG–fMRI correlation analysis; (B) EEG preprocessing, including removal of MR-related artifacts, i.e., gradient artifact, displayed on
the left, and BCG, displayed in the middle, and removal of other biological artifacts, e.g., EOG, and EMG. On the right, artifacts-free EEG recordings are shown; (C)
sMRI processing, including INU correction and image segmentation in 12 head tissues; (D) UTE processing for detecting EEG electrode positions; (E) Head model,
generated by integrating the information about EEG electrode positions and segmented sMR image, in which electrical properties are assigned to each head tissue.
Following source reconstruction, in which cleaned EEG data are combined with the realistic head model, (F) EEG connectivity analysis is performed. To this end, the
power in alpha band is calculated from source-reconstructed EEG signals. Then, power signals are given in input to an ICA algorithm for separating patterns, each
consisting of a spatial map and a time-course, of coordinated activity in the brain and artifactual sources. From these patterns, the one associated with the DMN is
automatically selected using a template-matching procedure; (G,H) EEG–fMRI correlation analysis; (G) The power in alpha band from occipital channels (1) is
calculated from artifact-free EEG recordings obtained in panel (B), and, after convolving it with a canonical HRF (2), it is correlated with the fMRI signals processed in
panel (A) (3); (H) the DMN time-course (1), calculated in panel (F), is convolved with a canonical HRF (2), and correlated with the fMRI signals processed in panel
(A) (3).

including electrooculographic (EOG) and electromyographic
(EMG) artifacts, from the EEG recordings. Independent
components (ICs) were estimated with a fast fixed-point

ICA (FastICA) algorithm based on a deflation approach and
hyperbolic tangent as contrast function (Mantini et al., 2008).
Artifactual ICs were automatically classified based on three
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parameters, including correlation values between ICs and
reference EOG and EMG signals, similarity of ICs power
spectrum with a 1/f function, and kurtosis of ICs timecourse.
Following artifacts rejection, EEG signals were re-referenced in
average reference (Liu et al., 2015). For head model generation,
the integration of information about subject’s head geometry,
tissues electrical properties, and EEG electrodes position is
required. Head geometry was derived from the participant’s
sMRI. A high-resolution head template in MNI space, segmented
into 12 tissue classes (skin, eyes, muscle, fat, spongy bone,
compact bone, cortical gray matter, cerebellar gray matter,
cortical white matter, cerebellar white matter, cerebrospinal
fluid, and brain stem) (Haueisen et al., 1997) was warped to
subject space, with a non-linear deformation calculated using
the normalization tool in SPM12 (as in Liu et al., 2017). The
conductivity of the different head tissues was defined based on
previous literature (Liu et al., 2017, 2018; Samogin et al., 2019).
EEG electrode positions, extracted from the participant’s UTE
image (Marino et al., 2016), were rigidly co-registered to the
individual head shape. Following EEG electrodes position co-
registration and head tissues segmentation, the leadfield matrix,
which translates the activation of each assumed brain source
to scalp electrical potentials, was calculated by using SimBio3

(Wolters et al., 2004). For source reconstruction, preprocessed
hdEEG signals and generated head model were given as input
to the exact low-resolution brain electromagnetic tomography
(eLORETA) algorithm (Pascual-Marqui et al., 2011), to estimate
brain activity in the source space, defined by a 6 mm grid
spanning the whole cortex. Since brain activity in the source
space is expressed, for each voxel, with three dimensions, power
time-courses were computed by summing up, at each time point,
the power calculated along each direction. Following hdEEG
signals source reconstruction, for each time-course in the gray
matter, we calculated the short-time Fourier transform using a
Hamming window of 2 s, with 50% overlap between consecutive
windows, to reconstruct power in delta (1–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz), and
full (1–80 Hz) band, at steps of 1 Hz. Then, we performed
connectivity analysis, separately for each subject, using temporal
ICA (tICA) (Marques et al., 2009; Formaggio et al., 2011; Yuan
et al., 2016). The number of ICs was estimated by using the
minimum description length criterion (Calhoun et al., 2001).
Accordingly, 19 to 44 ICs were extracted, depending on the
specific hdEEG dataset. ICs were calculated using the FastICA
algorithm, with a deflation approach and hyperbolic tangent non-
linearity (Esposito et al., 2005). Following tICA decomposition,
we obtained a set of temporally ICs. The IC time-courses were
temporally correlated with the band-limited power in each brain
voxel, thereby obtaining a spatial map associated with the IC
(Brookes et al., 2011). Z-score maps at the single-subject level
were derived by applying the Fisher’s r-to-z transform to the
correlation maps. The IC corresponding to DMN was identified
using an automated template-matching procedure, in which the
considered DMN template was derived from previous hdEEG
studies (Liu et al., 2017, 2018). Specifically, the DMN-template

3https://www.mrt.uni-jena.de/simbio

was warped to the individual MR space, and the DMN was
identified as the IC showing the highest spatial correlation with
the DMN template map in individual space. The whole procedure
for EEG data processing was run separately for each subject.

Neural Power Correlation for EEG
Sensors
In order to replicate findings from previous studies, we
extracted the alpha power from channels located in the occipital
cortex (Goldman et al., 2002; Laufs et al., 2003a; Scheeringa
et al., 2012). Alpha power was calculated from EEG signals,
preprocessed using the automated pipeline described above.
Then, to assess the relationship between electrophysiological and
hemodynamic measurements, these power time-courses were
convolved with a canonical HRF (Friston et al., 1998), and
correlated voxel-by-voxel with the fMRI signals simultaneously
acquired with the EEG data. The resulting correlation map was
transformed to z-scores using the Fischer’s r-to-z transform,
as previously done for the DMN map. In particular, for
each subject, the average of the EEG signals was correlated
with the fMRI time-course for each voxel. fMRI data were
previously upsampled to the EEG power temporal resolution,
i.e., one sample per second. We derived group-level correlation
maps by stacking the z-score maps of each subject. To assess
the statistical significance of the z-score maps at the group-
level, we performed a one-sample one-sided t-test, separately
for each voxel, according to a mass-univariate approach.
Significance for each voxel was defined as the result of the
one-sided t-test considering 20 observations, i.e., the number
of participants, and the z-scores as dependent variable. We
conducted separate mass-univariate analyses for each frequency
band, and we corrected the significance level for multiple
comparisons (due to the involvement of multiple voxels
and different frequency bands) using the BY-FDR procedure
(Benjamini and Yekutieli, 2001), as also done for the fMRI-
derived DMN. The significance threshold was set to p < 0.05,
BY-FDR corrected.

Neural Power Correlation for EEG
Networks
To study the relationship between networks identified from EEG
data and fMRI signals, we focused on the electrophysiological
characterization of hemodynamic DMN. Thus, for each
frequency band, we used the power time-course associated with
DMN time-course obtained from source-reconstructed EEG
data. This was convolved with a canonical HRF and correlated
voxel-by-voxel with the fMRI signals (Yuan et al., 2016). fMRI
data were previously upsampled to the EEG power temporal
resolution, i.e., one sample per second. A group-level analysis
was carried out using the same statistical approach described in
the previous section. The significance threshold for correlation
maps between EEG network neural power and voxel-by-voxel
fMRI signals was set to p < 0.05, and BY-FDR corrected. To
assess the spectral specificity of the hemodynamic DMN, we
quantified the spatial correspondence between the spatial map
of the fMRI-derived DMN and the spatial pattern obtained
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correlating the hdEEG-derived DMN time-course with the
fMRI signals. To this end, we used the Pearson correlation, i.e.,
correlation coefficient (CC), and the dice coefficient (DC). The
latter is an index that ranges between 0 and 1, and is equal to 0
when there is no overlap between patterns and is instead equal to
1 when the patterns are perfectly overlapping.

RESULTS

To disentangle the relationship between EEG and fMRI
measurements during resting state, we used hdEEG data
simultaneously acquired during fMRI scanning. We first looked
at the correlation between EEG neural power calculated from
occipital sensors and fMRI signals to replicate findings from
previous studies. Then, we investigated the link between
EEG neural power associated with hdEEG-derived DMN
and fMRI signals to identify the hemodynamic correlates of
electrophysiological activity in the DMN.

Ballistocardiographic artifact was successfully reduced
following the application of the aOBS method, as shown in
Figure 2, left. Applying ICA after the attenuation of MR-related
artifacts, when non-stationary artifactual sources were not
present anymore, enabled the removal of other biological
artifacts, including EOG and EMG, and gradient artifact
residuals. Following the application of each preprocessing
step, we reported progressive artifacts removal and consistent
neuronal signal preservation as also revealed by the profile of
power spectra, in which only a slightly reduction in the peak in
alpha power was visible (Figure 2, right).

Neural Power Correlation for EEG
Sensors
By correlating EEG occipital sensors power with voxel-by-
voxel fMRI signals, for the alpha band, we found widespread
negative correlation in both left and right frontal and parietal
lobes, displaying spatial patterns resembling the ones typically
characterizing attention-related networks (Figure 3D) (p < 0.05,
BY-FDR corrected), and in the left and right low-lateral occipital
cortex (Figure 3D), in areas belonging to the visual system.
These correlation patterns were clearly depicted only following
the complete application of all the artifact removal steps, whereas
we did not report any significant negative correlations at the
group level for the intermediate steps (Figures 3A–C). On the
other hand, we found positive correlation roughly in the ventral-
MPFC, which emerged following the correction of the gradient
artifact and it was consistently present following each subsequent
artifact removal step.

Neural Power Correlation for EEG
Networks
Our analysis workflow for source reconstructing hdEEG data
enabled the detection of the DMN for EEG recordings
simultaneously acquired with fMRI scanning, as previously
achieved with hdEEG data acquired outside the MR environment
(Liu et al., 2017). Next, we analyzed the hemodynamic correlates
of electrophysiological DMN activity in different frequency

bands. The time-course corresponding to DMN IC was correlated
with the fMRI signal waveforms on a voxel-by-voxel basis. By
correlating voxel-by-voxel fMRI signals with the time-course
associated with hdEEG-derived DMN spatial map, we found
widespread significant positive correlation for alpha and full
band (Figure 4) (p < 0.05, BY-FDR corrected). In particular, the
correlation patterns displayed a spatial distribution specifically
depicting DMN areas, including PCC and MPFC (for full band),
and also LANG and RANG (only for alpha band) (Figure 4).
Also, negative correlations were present in ventral anterior
cingulate cortex (ACC) for alpha, beta, and for the full band,
but not for the other frequency bands. Furthermore, we noticed
that the spatial configuration of the hdEEG-derived DMN largely
depended on the frequency band considered, with a foremost
contribution given by the alpha band, as shown by the highest
CC and DC values, 0.64 and 0.58, respectively (Table 1).

DISCUSSION

In this study, we investigated to what extent electrophysiological
power modulations can account for hemodynamic activity in
the DMN. To this end, we employed an analysis workflow for
source-reconstructing hdEEG data acquired during simultaneous
fMRI scanning and for studying the relationship between
electrophysiological oscillations and hemodynamic activity in
the DMN for multiple frequency bands. Our results suggested
that alpha power oscillations derived either from EEG sensors
data or source-reconstructed EEG network present significant
correlation with hemodynamic signals. Concerning the former
approach, we found patterns of negative correlations to be
significant for voxels belonging to attention-related regions.
For the latter analysis, following the detection of hdEEG-
derived DMN in multiple frequency bands, the correlation
map in alpha band especially displayed a remarkable spatial
overlap with DMN regions. This finding supports the hypothesis
that DMN spatial configuration is closely associated with the
specific neuronal oscillations considered, and that alpha power
oscillations might play a dominant role in explaining DMN
hemodynamic activity. We will further elaborate on the points
above in the following paragraphs.

Correlation Maps for EEG Sensors Power
Simultaneous EEG–fMRI has already shown to be a viable
approach for investigating how changes in electrophysiological
oscillations may be linked to hemodynamic functional
interactions within and between brain networks (Mantini
et al., 2007; Ostwald et al., 2010; Porcaro et al., 2010; Mayhew
et al., 2013b, 2017; Lei et al., 2014). Nonetheless, the relationship
between electrophysiological oscillations and hemodynamic
brain network interactions has been still poorly understood.
A large body of simultaneous EEG–fMRI studies was focused on
the correlation between EEG sensors alpha power fluctuations
and either voxel-by-voxel fMRI signals in the gray matter
(Goldman et al., 2002; Laufs et al., 2003a) or fMRI-derived
resting state networks (Mantini et al., 2007; Jann et al., 2009;
Neuner et al., 2014). The latter, especially, aimed to test
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FIGURE 2 | Illustrative example of EEG data collected during simultaneous EEG–fMRI following the artifacts removal steps. EEG data are displayed: (A) before
gradient artifact correction, i.e., raw data, (B) after gradient artifact correction, (C) after BCG artifact correction, and (D) after ICA-based artifacts removal. On the left,
EEG signals are reported for five representative channels. On the right, power spectrum density is shown for all EEG recording channels.
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FIGURE 3 | Occipital EEG alpha power correlating with fMRI signals. Correlation maps are displayed for EEG data: (A) before gradient artifact correction, i.e., raw
data, (B) after gradient artifact correction, (C) after BCG artifact correction, and (D) after ICA-based artifacts removal. Group-level correlation maps between occipital
alpha power time-course and voxel-by-voxel fMRI signals (n = 20, significance level p < 0.05 BY-FDR corrected).

whether hemodynamic networks were dependent on global
synchronization in specific frequency bands, e.g., DMN mainly
by alpha and beta band (Mantini et al., 2007). Several studies
reported positive correlations between sensor EEG alpha power
fluctuations and fMRI-derived DMN topography (Jann et al.,
2009; Knyazev et al., 2011). In these works, it was assumed
that positive correlation of electrical oscillatory activity with
fMRI signals underlies neuronal synchronization whereas
negative correlation underlies neuronal desynchronization.
This interpretation is supported by several studies, suggesting
that increased alpha activity is associated with increased DMN
activity (Jann et al., 2009; Mo et al., 2013), whereas widespread
negative correlation with EEG sensors alpha power fluctuations
characterize bilateral fronto-parietal network encompassing
brain regions involved in attention processes (Laufs et al., 2003a;
Moosmann et al., 2003; Haufe et al., 2018). The prevalence of
alpha oscillations in the EEG has been unambiguously related
to vigilance, but its correlates with BOLD signal still showed
diverging results. In particular, other studies reported that the
alpha power did not increase in the regions belonging to the
DMN (Chang et al., 2013), but increased within attention-
related brain regions (Sadaghiani et al., 2012). Also, regions of
the cingulo-opercular (Power et al., 2011) or salience (Seeley
et al., 2007) network, involved in sustained maintenance of
non-selective alertness, were identified. This suggests that
EEG alpha power fluctuations emerge when subjects are less
focused on performing a goal directed task, as it occurs during
resting state, but does not give a definitive answer concerning

the relationship between EEG power and fMRI signals. Our
findings are consistent with previous EEG–fMRI studies that
reported widespread negative occipital alpha power correlation
with voxel-by-voxel fMRI signals in brain regions belonging
to attention-related networks (Laufs et al., 2003a,b; Gonçalves
et al., 2006; de Munck et al., 2007). Interestingly, these studies
showed that the correlation patterns did not largely depend
on the EEG sensors chosen for the EEG–fMRI analysis (Laufs
et al., 2003b; Gonçalves et al., 2006; de Munck et al., 2007).
Also, we reported a pronounced positive correlation in the
MPFC, a region notably involved in mediating the processing
of information from internal or external sources, which
was previously described for occipital alpha power analysis
(Scheeringa et al., 2012).

Correlation Maps for hdEEG Source
Reconstructed DMN
In this study, we contributed to elucidate the electrophysiological
basis of hemodynamic activity in brain networks. In particular,
we substantiated the feasibility of hdEEG for detecting resting
state networks, by further improving the hdEEG processing
pipeline (Liu et al., 2017) for enabling reliable resting state
networks identification also from data simultaneously acquired
with fMRI. By correlating voxel-by-voxel fMRI signals with the
time-course associated with the hdEEG-derived DMN spatial
map, we found a positive correlation pattern displaying a
spatial distribution depicting DMN areas in alpha and full band
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FIGURE 4 | Temporal profile of the hdEEG-derived DMN activity correlating with fMRI signals in delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–80 Hz), and full (1–80 Hz) band. Group-level correlation maps between DMN time-course and voxel-by-voxel fMRI signals (n = 20, significance level
p < 0.05 BY-FDR corrected).

(Figure 4 and Table 1). Following a similar approach, a previous
study, exclusively considering full band power correlation,
reported significant correlations especially in MPFC (Yuan et al.,
2016), and only partially to other DMN nodes. In our study, we
also extended this approach to all frequency bands to investigate
how different brain rhythms contribute to DMN functioning.
Notably, the temporal profiles of DMN activity in alpha and full
band were the only ones displaying spatial pattern depicting brain

TABLE 1 | Quantification of the spectral specificity of the hemodynamic DMN.

Full Delta Theta Alpha Beta Gamma

CC 0.26 0.08 0.14 0.64 0.09 0.13

DC 0.13 0.01 0.04 0.58 0.02 0.03

The spatial correspondence between the fMRI-derived DMN map and the spatial
map obtained by correlating the hdEEG-derived DMN time-course with the fMRI
signals was assessed using the correlation coefficient (CC) and dice coefficient
(DC). The metrics were calculated on the basis of on the group-level maps.

regions typically associated with DMN (see Figure 4). Taken
together, our findings suggest that DMN spatial configuration
closely relates to the specific neuronal oscillations considered
and that alpha rhythm especially contribute to DMN activity
(Samogin et al., 2019). By showing that the spatial pattern derived
by alpha power correlation with the fMRI signals yields large
overlap with DMN regions (see Table 1), this study further
corroborates the idea that alpha-band oscillations at rest support
DMN functioning (Mantini et al., 2007; Samogin et al., 2019).

CONCLUSION

By using resting-state data from simultaneous EEG–fMRI, we
investigated the neural correlates of hemodynamic activity
in the DMN for multiple frequency bands, and we provided
new insights into DMN functioning. In particular, we found
that the DMN spatial configuration depends on the specific
neuronal oscillations considered, and that alpha rhythm
is mainly associated with DMN activity, especially when
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source-reconstructed data are analyzed. Importantly, our
approach for hdEEG–fMRI data integration can be applied
to investigate the neurophysiological basis of human brain
networks, and open new ways for defining a coupling model
between EEG and fMRI data. The spatial arrangement of
network correlation maps might be used as a starting point for
identifying functionally relevant cortical sites in the network
of interest. This might be used to disentangle the relationship
between source-reconstructed electrophysiological activity and
hemodynamic measurements, and distinguish the frequency
bands that support hemodynamic functional interactions
between distant brain areas.
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