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Obesity has been reported to be related to memory impairment and decline in
cognitive function, possibly further leading to the development of Alzheimer’s disease
(AD). However, observational studies revealed both negative and positive associations
between body shape (BS) and AD, thereby making it difficult to confirm causality due
to residual confounds and reverse causation. Thus, using genome-wide association
study summary data, two-sample Mendelian randomization (MR) analyses were applied
to identify whether there exists a causal association between BS and AD. BS was
measured using anthropometric traits (ATs) in this study, including body mass index
(BMI), waist-to-hip ratio (WHR), waist-to-hip ratio adjusted by body mass index
(WHRadjBMI), and waist circumference (WC). The associations of single nucleotide
polymorphisms (SNP) with each AT and AD were obtained separately from aggregated
data from the Genetic Investigation of Anthropometric Traits (GIANT) consortium and
International Genomics of Alzheimer’s Project (IGAP) summary data (17,008 cases with
AD and 37,154 controls). An inverse-variance weighted method was applied to obtain
the overall causal estimate for multiple instrumental SNPs. The odds ratio (OR) [95%
confidence interval (CI)] for AD risk per 1-SD difference in BMI was 1.04 (0.88, 1.23),
in WHR was 1.01 (0.77, 1.33), in WHRadjBMI was 1.12 (0.89, 1.41), and in WC was
1.02 (0.82, 1.27). Furthermore, simulation analyses of survivor bias indicated the overall
causal effect of BMI on risk of AD was not biased. In conclusion, the evidence from MR
analyses showed no casual effect of BS on AD risk, which is inconsistent with the results
from previous observational studies. The biological mechanism underlying the findings
warrants further study.

Keywords: Alzheimer’s disease, body shape, Mendelian randomization, survivor bias, simulation analysis

Abbreviations: Aβ, Amyloid β; AD, Alzheimer’s disease; APOE, apolipoprotein E; AT, anthropometric trait; BBB, blood
brain-barrier; BMI, body mass index; BS, body shape; CI, confidence interval; CNS, central nervous system; GIANT,
Genetic Investigation of Anthropometric Traits; GWAS, genome-wide association study; IAGP, International Genomics
of Alzheimer’s Project; IGF-1, insulin-like growth factor-1; IV, instrumental variable; IVW, inverse-variance weighted; LD,
linkage disequilibrium; MR, Mendelian randomization; OR, odds ratio; Phewas, phenome-wide association studies; RCT,
randomized controlled trial; SNP, signal nucleotide polymorphism; WC, waist circumference; WHR, waist-to-hip ratio;
WHRadjBMI, waist-to-hip ratio adjusted for body mass index.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia
worldwide in older individuals, accounting for 60–80% of cases
(Mathys et al., 2017). It is widely reported that body shape
(BS), generally acknowledged to be measured and reflected by
anthropometric traits (ATs) such as body mass index (BMI), waist
circumference (WC), waist-to-hip ratio (WHR), and waist-to-hip
ratio adjusted for body mass index (WHRadjBMI), is associated
with the development of several diseases (Winkler et al., 2015;
Noyce et al., 2017).

Although there have been many conventional observational
studies probing the influence of BS on the risk of AD, the reported
results have been controversial. A meta-analysis based on prior
systematic reviews provided a pooled relative risk estimate of 1.60
[95% confidence interval (CI): 1.34, 1.92] for BMI with AD, which
was confirmed in a more recent meta-analysis of cohort studies
(Barnes and Yaffe, 2011; Loef and Walach, 2013). However,
another prospective population-based study indicated that each
unit increase in BMI was associated with an 8% decreased risk
of dementia (Dahl et al., 2008). A case-control study concluded
that WC in older adults was significantly lower in the AD
group than in the healthy cognition group, inconsistent with
the findings of two cohort studies and another cross-sectional
study (Luchsinger et al., 2007, 2012; Chu et al., 2009; Habes
et al., 2016). Nevertheless, conventional studies could not identify
whether these observed links are causal. Evidence that probes
the causality between BS and AD is urgently needed to establish
preventive measures.

Mendelian randomization (MR) analysis, which is a method
based on instrumental variables (IVs), has been widely used to
assess the potential causality between exposure and outcome.
Two recent MR studies suggested high and low BMI were not
the causal risk factors for AD, but were both limited by survivor
bias and BS (Mukherjee et al., 2015; Nordestgaard et al., 2017).
Although Mukherjee et al. (2015) suggested that adiposity was
not statistically associated with a risk of dementia and AD in
sensitivity analyses, the effect of different BS on AD risk warrants
further exploration. Therefore, we performed a large-scale MR
analysis to assess the causal effect of BS on the risk of AD and
simulation analyses to quantify the likely effect of BMI on risk of
AD due to survivor bias.

MATERIALS AND METHODS

Study Design
Compared with conventional observational analyses, MR
analyses could provide stronger evidence regarding causal
inference (Figure 1). MR analyses are analogous to randomized
controlled trials (RCTs) and have been widely applied to
investigate the potential causal relationship between exposure
and the outcome variable. An individual’s genotype at a signal
nucleotide polymorphism (SNP) was randomized at conception.
This process is almost identical to an individual randomized
to receive treatment or not in a RCT; therefore, an SNP could
be considered to be an IV in MR analysis (Geng et al., 2018;

Hemani et al., 2018). The study design of this MR analysis
is mainly composed of the selection and validation of IVs,
and the examination of causal effect between BS and risk of
AD (Figure 2).

Data Source
Two-sample MR analyses were conducted using genome-wide
association study (GWAS) summary data. The two datasets were
required to have a population of homogeneous characteristics
(similar genetic ancestry), and in this study all participants were
of European descent. This research did not require the consent of
each participant because individual-level data were not used.

The association of SNPs with ATs were obtained from 2015
summary data from the Genetic Investigation of Anthropometric
Traits (GIANT) consortium (Locke et al., 2015; Shungin et al.,
2015). The dataset of associations of SNPs with BMI, WHR,
WHRadjBMI, and WC includes a total of 2,554,637 SNPs
in 322,154 individuals, 2,560,781 SNPs, 2,542,431 SNPs, and
2,565,407 SNPs in 210,088 individuals of European descent after
imputation, respectively. The SNPs-AD dataset was from the
stage I GWAS meta-analysis undertaken by the International
Genomics of Alzheimer’s Project (IGAP), including genotype-
AD associations for 7,055,881 SNPs after imputation in 17,008
AD cases and 37,154 controls of European descent (Lambert
et al., 2013). However, sample overlap of the two datasets could
bias the estimated causal effect. GWAS summary data contain
meta-analyses of many larger and independent population-based
cohorts; thus, the same cohort may be included in the SNPs-
exposure and SNPs-outcome datasets simultaneously, i.e., sample
overlap (Hemani et al., 2018). As a result, we estimated the
degree of sample overlap between the SNPs-each AT GWAS
dataset and the SNPs-AD study (Table 1). In addition, strong
IVs (i.e., F statistic far greater than 10) could reduce bias
from sample overlap.

Furthermore, the data in the two datasets for each SNP
involved effect and other alleles, allele frequency of effect allele,
beta-coefficient (SNPs-AD dataset: log-odds ratio [log-OR] of
AD), standard error, and P-value, as well as corresponding
chromosome and position.

The Selection and Validation of
Instrumental Variables
Instrumental Variables selected for exposure should be
independent of each other, because linkage disequilibrium
(LD) would introduce bias and lead to over-precise estimates
in subsequent analysis, which could be ensured by clumping
a large number of variants to a set of index SNPs (Noyce
et al., 2017). Index SNPs were obtained by clumping all SNPs
based on LD (R2 threshold of 0.001) or the physical distance
threshold of 10,000 kb, while the robust associations between
index SNPs and each AT reached genome-wide significance level
(i.e., P < 5 × 10−8). After clumping, partial index SNPs were
selected as IVs according to the following filtering conditions.
First, the causal effects of BS on AD risk may be obscured
by some known possible confounders; thus, the correlation
coefficient (r2) between SNPs related to these confounders (i.e.,
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FIGURE 1 | The explanation of Mendelian randomization analysis by a directed acyclic graph. The accuracy of estimating causality using Mendelian randomization
(MR) analyses is based on the following three assumptions: (1) The instrumental variable (IV) associate robustly with the exposure (IV assumption 1). This assumption
can be satisfied by ensuring F statistic > 10 and that SNPs are selected using genome-wide significance levels (P < 5 × 10−8), which suggests that potential bias
from weak IV should not be substantial (Nordestgaard et al., 2017). (2) The IV is independent of combined influence of all confounders (IV assumption 2). For the
same population and reference, we assess correlation of linkage disequilibrium between SNPs associated robustly with exposure and SNPs linked to possible known
confounders. If the correlation coefficient is higher (i.e., r2

≥ 0.5), the corresponding selected SNPs will be discarded (Geng et al., 2018). (3) The IV is independent of
the outcome given the exposure and confounders (IV assumption 3). Horizontal pleiotropy, that IVs influence the outcome through alternative pathways other than
the exposure, could violate this assumption. It can be checked by using MR-Egger regression and MR-PRESSO method (Noyce et al., 2017; Verbanck et al., 2018).

FIGURE 2 | Study design of two-sample Mendelian randomization analysis. In this MR analysis, exposure and outcome refer to body shape and Alzheimer’s disease
separately. MR, Mendelian randomization.

Bonferroni-corrected P < 5 × 10−8) and IVs should be less
than 0.5 (Lawlor et al., 2008). Second, it is widely acknowledged
that three major alleles of apolipoprotein E (APOE ε2/ε3/ε4)
are the most significant known genetic factors for AD in

various ethnic groups, determined by rs429358 and rs7412
sites that should be irrelevant to IVs (Strittmatter et al., 1993).
Index SNPs mismatching the above conditions were discarded
and the remaining were selected as IVs. Furthermore, the
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TABLE 1 | Possible sample overlap between the SNPs-each anthropometric trait
and SNPs-Alzheimer’s disease datasets.

Cohorts Number of participants

AD BMI WHR WHRadjBMI WC

AGES-RS 2772 3207 0 0 0

CHS 2255 3228 0 0 0

FHS 3344 8904 0 0 0

KORA F4 434 1811 0 0 0

Sum 8795 17150 0 0 0

Total European
participants

54162 322,154 210,088 210,088 210,088

Proportion of participants
of overlapping cohorts in
total participants

16.24% 5.32% 0.00% 0.00% 0.00%

AD, Alzheimer’s disease; BMI, body mass index; WC, waist circumference; WHR,
waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for body mass index.

statistical association between IVs and each AT was assessed
using the F statistic, the calculation of which is detailed in
the Supplementary Methods. The sub-dataset of IVs-each
AT was then extracted and harmonized with the SNPs-AD
dataset to obtain the corresponding IVs-each AT-AD dataset.
However, some palindromic and ambiguous SNPs existed in
the harmonized dataset and some SNPs selected from the AT
dataset mismatched the AD dataset. Thus, these inappropriate
SNPs were discarded and corresponding proxy SNPs were found.
Suitable proxy SNPs must be in high LD with the inappropriate
SNPs (R2 > 0.9), and irrelevant to SNPs that may have been
associated with possible confounders and the APOE gene.

Two-Sample Mendelian Randomization
Analyses
For a single SNP, the Wald ratio is commonly used to derive
the causal estimate (Thomas et al., 2007; Haycock et al., 2016).
For multiple SNPs, inverse-variance weighted (IVW) linear
regression, MR-egger regression, weighted-median method, and
weighted-mode method were applied to obtain the overall causal
estimate. Detailed descriptions of these methods are provided in
the Supplementary Methods.

The two-sample analysis was performed as follows. First, the
pooled causal estimates for multiple IVs were calculated only
using the IVW and MR-egger methods (Burgess et al., 2013;
Bowden et al., 2017). Diagnostic and sensitivity analyses were the
implemented, after which there was no evidence of heterogeneity
or horizontal pleiotropy. Second, four overall causal estimates
for multiple IVs were separately derived. The MR analyses using
MR-egger regression, weighted-median method, and weighted-
mode method were regarded as sensitivity analyses to improve
the reliability of the causal inference from the IVW method
(Bowden et al., 2016; Hartwig et al., 2017). Third, the OR
(95% CI) for risk of AD per 1-SD increase in each AT was
reported because interpretation is easier using this metric than an
arbitrary difference, while 1-SD increment separately represents a
4.69 kg/m2 increase in BMI, 0.14 cm/cm increase in WHR, 0.08

units increase in WHRadjBMI, and 12.06 cm increase in WC
(Geng et al., 2018).

Additional Analyses
These analyses were optional. When selecting IVs, partial
index SNPs were removed because of the associations between
them and potentially possible confounders. However, if these
confounders were no longer regarded as confounders based on
the results of the above MR analyses, the excluded SNPs were
reconsidered as IVs. The MR analyses of BS and AD were
conducted again to obtain more reliable results.

Sensitivity Analyses
Diagnostic and sensitivity analyses were performed to identify
different violations of assumptions and included tests of
heterogeneity and horizontal pleiotropy, as well as four diagnostic
plots. Heterogeneity statistics, including Cochran’s Q, I2, and
H statistic, assessed heterogeneity in causal estimates from the
IVW method (Higgins and Thompson, 2002; Higgins et al.,
2003). A P-value of Cochran’s Q or H statistic less than 0.05
indicated heterogeneity in causal effects amongst all SNPs,
while I2 values of 25, 50, and 75%, respectively, represent
low, moderate, and high heterogeneity (Higgins et al., 2003).
Test of horizontal pleiotropy was conducted using MR-egger
regression and a Mendelian randomization pleiotropy residual
sum and outlier (MR-PRESSO) approach. A non-zero intercept
of the MR-egger regression suggested horizontal pleiotropy. In
addition, the horizontal pleiotropic outliers that were identified
using MR-PRESSO, along with outliers that were detected in a
leave-one-out analysis, were removed (Verbanck et al., 2018).
Moreover, phenome-wide association studies (Phewas) were used
to interpret outliers and explore the potential reason why the
IV assumptions were violated (Denny et al., 2010; Hemani
et al., 2018). Four diagnostic plots, including a scatter plot,
forest plot, leave-one-out plot, and funnel plot, were applied
to present the findings of the MR analysis of BS and AD and
aid in detecting horizontal pleiotropy and heterogeneity. Further
detailed descriptions are given in the Supplementary Methods.

Power Calculation
Statistical power is usually limited in MR analyses because of the
lower variation in exposure explained by IVs and limited sample
sizes, which could be computed using a published calculator
(Brion et al., 2013; Jiang et al., 2018).

Survivor Bias
Bias from selective mortality should be considered in
epidemiological studies, especially in degenerative neurosis.
In this MR analysis, BMI and age are widely acknowledged to
be related to mortality, which may lead to a survivor bias and
invalid causal estimate to some extent (Mayeda et al., 2016). Both
low and high BMI are unfavorable to individual survival, and
age is positively related to mortality; based on this, a simulation
for quantifying the likely effect of survivor bias on the causal
estimate was performed, assuming no association between BMI
and AD. If the effect of BMI on AD risk due to a survivor bias

Frontiers in Neuroscience | www.frontiersin.org 4 October 2019 | Volume 13 | Article 1084

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01084 October 8, 2019 Time: 11:30 # 5

Zhou et al. Body Shape and Alzheimer’s Disease

reaches a significance level of 0.05, the real causal estimate is
biased toward the null, i.e., BMI may be associated with AD.
Otherwise, the real causal estimate is not influenced. Large
sample sizes (n = 500,000) were generated in this simulation,
along with data on BMI values, age, IVs, alive/dead status, and
AD status for each individual (Davey et al., 2009; Qiu et al., 2009;
Jodrá, 2009; Lambert et al., 2013).

This simulation was performed as follows (Noyce et al., 2017):

(1) Each individual was randomly assigned alleles at
60 instrumental SNPs based on corresponding real
population-based allele frequencies. In other words, the
genotype value of each SNP for each individual was
generated and expressed as gij, which represents the
genotype value of SNP j (j = 1, 2, 3, . . . , 60) for individual i
(i = 1, 2, 3, . . . , 500,000).

(2) Based on the created genotype values, the BMI value of each
individual was generated as a function of allele frequencies
of 60 instrumental SNPs and the beta coefficients of SNPs-
BMI effects, plus a random number to obtain an individual
difference, i.e., the BMI value of each individual could be
simulated as follow: xi =

∑
gijβj + ej, where ej followed

a normal distribution with a mean of zero, and standard
deviation of VE, where VE was the residual phenotypic
variance of BMI.

(3) We simulated the age for each individual through matching
the age distribution reported in the AD meta-analysis
(Lambert et al., 2013).

(4) The alive/dead status for each individual was modeled as
a function of the age and BMI value of this individual.
Age-related mortality as baseline mortality was generated
from the Gompertz–Makeham law of mortality, based on
parameters determined by previous studies. The baseline
survival function was the obtained, with which the effect
of BMI on survival was incorporated to acquire an age-
and BMI-related survival function. According to this full
survival model, the alive/dead status of individuals was
simulated (Davey et al., 2009; Jodrá, 2009).

The cumulative distribution function of Gompertz–
Makeham law of mortality is referred to as the Gompertz–
Makeham distribution and can be described as follows:

F(t) = 1− exp
(
−λt −

a
b

(
ebt − 1

))
,

t > 0, a, b, λ > 0

The baseline survival function is derived through
Gompertz–Makeham distribution and is as follows:

Sb(t) = 1− F(t) = exp
(
−λt −

a
b

(
ebt − 1

))
,

t > 0, a, b, λ > 0

The full survival model isS(t) = Sb(t)w(x), where w(x) is a
function of the impact of BMI on mortality.

(5) The AD status of individuals was generated according
to the age-specific prevalence of AD obtained from
a previously published study (Qiu et al., 2009). This
simulation assumed that AD status was exclusively related
to age and independent of BMI values.

(6) Two subsets were selected for further analysis. All
individuals in the first subset were simulated without any
death, thus all the analyses for this subset should be
immune to the survivor bias. The second subset of AD cases
and controls involved individuals who were confirmed as
alive based on the full survival model. The observational
studies and MR analyses were performed on the two
subsets, respectively.

(7) The complete process was repeated 1000 times to produce
two distributions of BMI-AD effects separately from the
baseline and full survival models. The two distributions
were compared to assess the degree to which the effect of
BMI on AD could be driven by a survivor bias.

Software and Packages
All analyses were conducted using R software (version 3.5.1).
Based on a reference dataset of EUR population (1000 Genomes
Project), the clumping procedure was implemented using R
packages “Two-Sample MR” and “MRInstruments,” and the
procedure of looking for proxy SNPs was conducted using
R package “proxysnp.” The two-sample MR analysis was
performed using R packages “Two-SampleMR,” “MRPRESSO,”
and “Mendelian Randomization.”

RESULTS

The Selection and Validation of
Instrumental Variables
There were 69, 29, 38, and 42 index SNPs after clumping SNPs
that, respectively, related to BMI, WHR, WHRadjBMI, and WC
separately. Five of 69 index SNPs that were correlated with WHR-
associated SNPs, while six of 29, none of 38, and 30 of 42
index SNPs that were correlated with BMI-associated SNPs were
removed. None of the index SNPs correlated with the APOE gene.
Additionally, some palindromic SNPs and mismatched SNPs
were presented in the harmonized datasets, which were discarded
and replaced by suitable proxy SNPs (Supplementary Table S1).
Together 62 and 65 index SNPs for BMI, 23 and 29 index SNPs
for WHR, and 12 and 41 index SNPs for WC remained in the first
MR analysis and additional analysis, respectively, with 36 index
SNPs for WHRadjBMI in the MR analysis. All F statistics showed
far more than 10, which suggest it was unlikely for bias from weak
instrument (Table 2). Therefore, these index SNPs were chosen as
IVs for further MR analyses.

The First Mendelian Randomization
Analyses
In the MR analysis of BS and AD, the overall causal estimate from
IVW method suggested no effect on risk of AD per SD change in
each AT, which was the same as the results obtained using the
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TABLE 2 | The validation of instrumental variables.

AT The first analyses Additional analyses

Remaining
SNPs

R2 F statistic Remaining
SNPs

R2 F statistic

BMI 62 1.66% 92.30 65 2.14% 114.17

WHR 23 0.59% 88.14 29 0.77% 91.71

WC 12 0.23% 65.54 41 1.42% 119.18

WHRadjBMI 36 1.13% 108.16

Remaining SNPs refer to the partial index SNPs after harmonizing the index SNPs-
each AT dataset and the SNPs-Alzheimer’s disease dataset. AT, Anthropometric
trait; BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip
ratio adjusted for body mass index; WC, waist circumference.

other three methods comprising the MR-egger, weighted-mean,
and weighted-mode methods (Figure 3). The OR (95% CI) of
BMI, WHR, WHRadjBMI, and WC with respect to AD from
IVW methods separately using 60, 23, 36, and 12 IVs was 1.10
(0.90, 1.34) (P = 0.336), 1.05 (0.76, 1.45) (P = 0.761), 1.12 (0.89,
1.41) (P = 0.324), and 0.97 (0.59, 1.61) (P = 0.917).

Additional Mendelian Randomization
Analyses
We conducted additional MR analyses as BMI and WHR were
no longer considered confounders based on the results of the
first MR analyses. The overall causal estimate [OR (95% CI)] for
the effect of a 1-SD increase in BMI on the risk of AD using 65
IVs in the IVW method was 1.04 (0.88, 1.23) (P = 0.652), and

for the effect of per 1-SD increase in WHR on the risk of AD
using 29 IVs was 1.01 (0.77, 1.33) (P = 0.930). Moreover, there
were 38 IVs remaining for WC after sensitivity analyses, which
explained 1.33% of the variance in WC and the corresponding F
statistic was 120.97. The OR (95% CI) of AD per 1-SD increase
in WC calculated using the IVW method was 1.02 (0.82, 1.27)
(P = 0.836). All the above results were in accordance with the
conclusions of the other three methods (Figure 3).

Power Calculation
We had sufficient statistical power to identify the moderate causal
effect of BS on AD risk (Table 3).

Sensitivity Analyses
Finally, 65 IVs for BMI, 29 IVs for WHR, 36 IVs for WHRadjBMI
and 38 IVs for WC were identified (Supplementary Table
S2). For BMI, WHR, WHRadjBMI, and WC, the I2 value was
21.86, 20.46, 18.73, and 24.90%, respectively, while the P-value
of the MR-PRESSO global test was 0.0674, 0.1688, 0.1577,
and 0.0833, respectively. Sensitivity analyses of the first and
additional MR analyses were implemented, and the estimates
of causal effects were under the condition of no evidence of
heterogeneity and horizontal pleiotropy (Supplementary Table
S3 and Supplementary Figure S1).

Simulation Analyses of Survivor Bias
The simulation to assess the likely effect of survivor bias
demonstrated no evidence that the causal estimate obtained
using the IVW method was driven by survivor bias in the MR

FIGURE 3 | The overall causal effect of body shape on the risk of Alzheimer’s disease from each of four different methods (inverse-variance weighted method,
MR-egger regression method, weighted-median method and weighted-mode method). Results were reported as the odd ratio (OR) of AD per 1-SD increase in each
anthropometric trait. The results of additional MR analyses were the more reliable causal estimates of ATs on AD, and the causal effect of WHRadjBMI on AD was
displayed in this column was just for easy reading. MR, Mendelian randomization; AD, Alzheimer’s disease; AT, anthropometric traits; BMI, body mass index; OR,
odds ratio; WC, waist circumference; WHR, waist-to-hip ratio, WHRadjBMI, waist-to-hip ratio adjusted for body mass index.
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analysis of BMI and AD. Based on the results of observational
studies and the MR analyses of the simulated dataset, the mean
estimated causal effects and distribution of effects in the presence
of survivor bias were similar to those without survivor bias, which
both obeyed a Gaussian distribution. In conclusion, the result of
the MR analysis using the IVW method compared with that using
the MR-Egger method was more robust to bias from selected
mortality (Figure 4 and Supplementary Figure S2).

DISCUSSION

Mendelian randomization analyses findings in this study
suggested that BS has no influence on the risk of AD. To the best
of our knowledge, there have been two MR studies of BMI and
AD, which were limited by the possible influence from survivor
bias and BS (Mukherjee et al., 2015; Nordestgaard et al., 2017).
Mukherjee et al. (2015) reported the non-significance of the
relationship between adiposity and AD by using mechanism-
specific polygenic scores as IVs; however, their sensitivity analysis
could not explore the influence of different BS on the risk
of AD. This study of BMI and AD used large sample sizes
to implement the MR analysis and simulation to explain the
influence of survivor bias on the causal effect, with an MR analysis
of WHRadjBMI being conducted, which demonstrated again that
a causal effect of BMI on risk of AD, independent of survivor
bias and BS, was not present. Additionally, to the best of our
knowledge, this is the first MR analysis to explore the causal effect
of BS on AD and no evidence of an effect was found.

Associations observed in available conventional epidemiologic
evidence between BS and AD remained controversial
(Supplementary Table S4). These observational studies defined
an AT as a discrete or continuous variable and applied different
methods to perform analyses, together with a study-specific bias,
which contributed to the heterogeneity of the results. A follow-
up study and cohort study indicated that low BMI was a risk
factor of AD, whereas one case-control study found a U-shaped
association (Razay et al., 2006; Hughes et al., 2009; Nordestgaard
et al., 2017). Three cohort studies investigated the influence of
BMI as a continuous variable on AD, two of which supported
our results, and the other reported a positive correlation between
them (Luchsinger et al., 2007; Luchsinger et al., 2012; Joo et al.,
2018). Some studies proposed that lower BMI was linked with
lower blood pressure, which mitigated the risk of AD, because
hypertension could cause dysfunction of blood brain-barrier
(BBB) via the formation of free oxygen radicals (Reitz et al.,
2010; Nordestgaard et al., 2017). Other interpretations of the
U-shaped association were that lower BMI was related to a higher
risk of AD because of reverse causation or it was a predictor of
preclinical AD, and associations of higher BMI with an elevated
risk of AD could be considered as evidence that obesity was
related to a greater risk of AD (Luchsinger et al., 2007, 2012).
Moreover, two cohort studies showed a clear positive association
between WHR as a continuous variable and risk of AD, contrary
to the conclusions drawn by a case-control study (Razay et al.,
2006; Reitz et al., 2010; Luchsinger et al., 2012). Two cohort
studies concluded there was no association between WC and

TABLE 3 | Statistical power in Mendelian randomization analyses of body shape
and the risk of Alzheimer’s disease.

Each AT R2 Statistical
power

Minimal/Maximal
detectable OR

BMI

Positive/negative correlated with
AD risk

2.14% 81% 1.19/0.83

Previous association (Razay et al.,
2006)

2.14% >99% 1.80∗

WHR

Positive/negative correlated with
AD risk

0.77% 80% 1.33/0.73

Previous association (Razay et al.,
2006)

0.77% >99% 2.00∗

WHRadjBMI

Positive/negative correlated with
AD risk

1.13% 82% 1.27/0.77

WC

Positive/negative correlated with
AD risk

1.33% 80% 1.24/0.79

Based on our sample size (case/control: 17,008/37,154, total: 54,162),
minimal/maximal detectable odds ratio (OR) was calculated at a significance
level of 0.05. R2 refers to the proportion of variance explained by IVs in
each anthropometric trait. The statistical power of previous association in each
AT means the power to detect previous association in this MR analysis. AD,
Alzheimer’s disease; AT, anthropometric traits; BMI, body mass index; WC, waist
circumference; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted
for body mass index. ∗Association provided by a previous observational study.

risk of AD (Luchsinger et al., 2007, 2012). Another observational
study that performed multivariate analyses suggested that low
BMI and WC were pre-clinical markers of AD (Chu et al., 2009).

We investigated the potential causal relationship between
commonly used BS-related indexes, including BMI, WHR,
WHRadjBMI, WC, and AD, and concluded that BS may play no
causal role in AD. Regarding the relationship between obesity and
AD, we further selected 18 obesity-related SNPs from 65 BMI-
related SNPs as IVs to perform an MR analysis of obesity and
AD, which explained 8.33% of the variance in obesity and the
corresponding F statistic was 498.12. The ORs (95% CI) for AD
per 1-SD increase in obesity calculated using the IVW method,
MR-Egger method, weighted-median method, and weighted-
mode method were, respectively, 0.97 (0.89, 1.04) (P = 0.387),
0.96 (0.77, 1.20) (P = 0.728), 1.00 (0.89, 1.12) (P = 0.974),
and 1.02 (0.88, 1.17) (P = 0.824) separately. However, such
findings together with the negative association of BMI and
WHRadjBMI with AD (Figure 3) do not allow us to definitely
conclude that obesity has no causal relationship with AD, which
is often difficult to clarify. In fact, there often exist different
pathways linking SNPs, obesity, and AD. Furthermore, it may be
challenging to construct a reasonable counterfactual and causal
inference model. Overall, exploring the real causal association
and underlying mechanism between obesity and a disease such as
AD is a challenging issue. Some explanations have been suggested
and need to be examined in the future. Adiposity is closely
related to stroke and vascular risk factors, such as hypertension,
which could affect the deposition of amyloid β (Aβ), alter
brain structure, and enhance BBB permeability. Meanwhile,
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FIGURE 4 | Survivor bias. The causal effects of these simulation analyses were obtained separately from base survivor model and full survivor model using
observational study, inverse-variance weighted method and MR-egger method. Each point and horizontal line denote the mean estimated causal effect and 95%
confidence interval (CI) from corresponding model and method. AD, Alzheimer’s disease; BMI, body mass index; baseline, baseline survivor model without survivor
bias; full, full survivor model with selected mortality.

many cytokines secreted by adipose tissue penetrate the BBB to
influence normal brain function and thereby increase the risk
of AD (Luchsinger et al., 2012; Nordestgaard et al., 2017). The
association between AD and abdominal obesity was supported
by a study that proposed higher WHR could affect brain
normal structures and functionality through neurodegenerative,
vascular, or metabolic processes (Jagust et al., 2005). However,
this mechanism was thought to be unclear and partially explained
by insulin resistance (Razay et al., 2006). Insulin resistance is
always accompanied by type 2 diabetes and hyperinsulinemia.
Diabetes may be related to AD through mediating oxidative
stress and protein glycosylation (Mayeda et al., 2016); however,
peripheral insulin could directly damage normal brain structures
and functionality by crossing the BBB to act on insulin receptors
located in the central nervous system (CNS). Insulin plays an
important role in the up-regulation of extracellular Aβ levels
and phosphorylation of tau protein, which could accelerate
the process of AD (Mayeda et al., 2016). Another one study
showed lower serum insulin-like growth factor-1 (IGF-1) levels
were a risk factor for AD whereas higher IGF-1 levels could
protect individuals against AD at the subclinical and clinical
stages (Westwood et al., 2014). The evidence from conventional
epidemiological studies regarding the effects of peripheral insulin

and IGF-1 levels on the risk of AD has been weak and conflicting.
Experimental findings showed that altered peripheral blood levels
of insulin or IGF-1 were irrelevant to the normal functionality of
the CNS, but insulin or IGF-1 locally produced in the CNS played
a more important role in regulating CNS neuronal functions,
corresponding with the consistent result of a recent two-sample
MR analysis (Steen et al., 2005; Williams et al., 2018).

This study has several strengths. First, avoiding reverse
causation, a large sample size, and sufficient statistical power
were ensured in this two-summary data MR design to identify
a causal reference. Second, various methods including IVW,
MR-egger, weighted-median, and weighted-mode method were
applied in the MR analyses, the causal estimates of which were
consistent, thus increasing the robustness of our findings. Third,
the influence of confounding factors on the causal estimate was
weakened to some extent over the strict selection of IVs. For each
AT and AD, the results from two MR analyses were consistent
with each other, showing no evidence of a causal effect of BS
on AD risk. The APOE gene that plays an important role in
modulating the deposition of Aβ and neurofibrillary tangles of
AD is the most common genetic cause of AD and was not in
LD with any IVs (Ghayeghran et al., 2017). Fourth, the MR-egger
regression and MR-PRESSO methods were both used to check the
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possible horizontal pleiotropy and identify outliers. Furthermore,
the source of horizontal pleiotropy could be detected through the
Phewas of outliers. Fifth, our MR analyses of BS and AD risk
had sufficient statistical power to detect moderate causal effects
as noted in observational studies. However, there are several
limitations. First, the two-sample MR summary data analysis
assumed a linear relationship between each AT and AD. Indeed,
a U- or J-shaped association between each AT and related disease
is common in observational studies (Cerhan et al., 2014). A non-
linear causal effect warrants other methods that need individual
level data (Burgess et al., 2014). Second, it was impossible to
compare the difference in the causal estimates in subgroups using
summary data. Third, Table 1 shows that there was a minimal
proportion of sample overlap in this study, the influence of which
could be minimized by using strong IVs. Finally, reasonable
biological interpretations for the results of the MR analyses were
not provided. Therefore, the results from these MR analyses could
not be considered as a definite answer and should be generalized
to the rest of the population with caution.

CONCLUSION

In conclusion, the evidence from MR analyses showed no
causal effect of BS on AD risk. An RCT is not feasible; hence,
experimental findings from biological mechanisms are expected
to provide a reasonable interpretation for these results. It is
plausible and recommended that our findings are replicated in
other MR studies with individual-level genotyping data and in
other ethnic groups. Although BS is not associated with AD risk
based on our results, maintaining body weight in the normal
range is beneficial.
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