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Synchronization of neuronal activity in the brain underlies the emergence of neuronal
oscillations termed “brain waves”, which serve various physiological functions and
correlate with different behavioral states. It has been postulated that at least ten distinct
mechanisms are involved in the formulation of these brain waves, including variations
in the concentration of extracellular neurotransmitters and ions, as well as changes
in cellular excitability. In this mini review we highlight the contribution of astrocytes, a
subtype of glia, in the formation and modulation of brain waves mainly due to their close
association with synapses that allows their bidirectional interaction with neurons, and
their syncytium-like activity via gap junctions that facilitate communication to distal brain
regions through Ca2+ waves. These capabilities allow astrocytes to regulate neuronal
excitability via glutamate uptake, gliotransmission and tight control of the extracellular K+

levels via a process termed K+ clearance. Spatio-temporal synchrony of activity across
neuronal and astrocytic networks, both locally and distributed across cortical regions,
underpins brain states and thereby behavioral states, and it is becoming apparent that
astrocytes play an important role in the development and maintenance of neural activity
underlying these complex behavioral states.

Keywords: brain waves, oscillations, astrocytes, spatial buffering, K+ clearance

INTRODUCTION

Neuronal Oscillations
In the central nervous system (CNS), neurons communicate via electrochemical signals which
leads to flow of ionic currents through synaptic contacts (Schaul, 1998). At the network level,
the synchronization of the neuron’s electrical activity gives rise to rhythmic voltage fluctuations
traveling across brain regions, known as neuronal oscillations or brain waves (Buzsaki, 2006).

Neuronal oscillations can be modulated in space and time and are affected by the dynamic
interplay between neuronal connectivity patterns, cellular membrane properties, intrinsic circuitry,
speed of axonal conduction and synaptic delays (Nunez, 1995; Sanchez-Vives and McCormick,
2000; Cunningham et al., 2006; Buskila et al., 2013; Tapson et al., 2013). At the cellular level,
these synchronous oscillations fluctuate between two main states, known as “up states” and
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“down states”, which occur in the neocortex both in vitro and
in vivo (Sanchez-Vives and McCormick, 2000). Whereas Down
states refer to resting activity and membrane hyperpolarization,
Up states are associated with neuronal depolarization and firing
bursts of action potentials (Cossart et al., 2003). Importantly,
Up states occurring within spatially organized cortical ensembles
have been postulated to interact with each other to produce
a temporal window for neuronal network communication and
coordination (Fries, 2005). This network coherence was found to
be essential for several sensory and motor processes, as well as
for cognitive flexibility (i.e., attention, memory), thereby playing
a fundamental role in the brain’s basic functions (Fries et al., 2001;
Tallon-Baudry et al., 2004).

Emerging technologies during the past decades led to the
description of multiple neuronal oscillations displaying different
electrophysiological and connectivity properties across brain
areas including the neocortex, thalamus and hippocampus
(Steriade, 2006). Using power spectrum analysis, investigators
identified that neuronal oscillations fluctuate within specific
frequency bands, ranging from very slow (<0.01 Hz) to
ultra-fast (>1,000 Hz) oscillations, mediated by at least ten
different mechanisms (Penttonen and Buzsáki, 2003). Whereas
fast oscillators are found to be more localized within a
restricted neural volume (Contreras and Llinas, 2001), slow
oscillations typically involve large synchronous membrane
voltage fluctuations in wider areas of the brain (He et al., 2008).
These network dynamics and connectivity patterns can change
according to the behavioral state, with some frequency bands
being associated with sleep, while other frequencies predominate
during arousal or conscious states (Brooks, 1968; Achermann and
Borbély, 1997; Murthy and Fetz, 2006) (Table 1). Interestingly,
neuronal oscillations interact across different frequency bands
to modulate each other and engage specific behaviors (Buzsaki,
2006; Steriade, 2006), and previous studies have postulated
that different oscillation frequencies either compete with each
other or cooperate in a specific manner to participate in
distinct physiological processes such as bias of input selection,
temporal linkage of neurons into assemblies and facilitation
of synaptic plasticity (Buzsáki and Draguhn, 2004; Isomura
et al., 2006). Moreover, oscillation phase relationships between
regions are diverse and can be modulated by sensory and
motor experiences (Maris et al., 2016), thereby adding greater
complexity in deciphering how brain waves coordinate to
subserve important functions in both the developing and
adult human brain.

The common view of oscillatory frequency bands is that
they represent groups of neuronal oscillations acting as
distinct entities that work similarly during particular brain
functions (Watson, 2015), and therefore, can serve as a
fundamental tool for both clinical diagnosis and brain research
(Huber et al., 2004; Buzsaki, 2006). In addition, the fact
that brain waves expressed in many species (e.g., human,
macaque, cat, rabbit, rat) and their behavioral correlates
are preserved throughout evolution is a testament to their
fundamental role in mediating synchronization across
neuronal ensembles to efficiently coordinate and propagate
neuronal signals at the network level (Hughes et al., 2004;

Bereshpolova et al., 2007; Skaggs et al., 2007; Nir et al., 2011;
Peyrache et al., 2011).

Mechanisms Underpinning Neuronal
Oscillations
Neuronal oscillations show a linear progression on a natural
logarithmic scale with little overlap (Penttonen and Buzsáki,
2003), leading to the suggestion that at least ten distinct
and independent mechanisms are required to cover the large
frequency range of brain waves, and it has been reported that
several oscillations are driven by multiple mechanisms (Buzsáki
and Draguhn, 2004; Buzsaki, 2006). Some of the suggested
mechanisms underlying the generation of network oscillations
are summarized in Table 1, and most of them include reciprocal
interactions between excitatory and inhibitory mechanisms
(Singer, 1993) or changes in cellular excitability (Liljenström and
Hasselmo, 1993; Ainsworth et al., 2011; Bellot-Saez et al., 2018).
The latter is often associated with alterations in extracellular
ions (e.g., K+; Ca2+) and the hyperpolarization-activated inward
current (Ih) (Steriade et al., 1993), which can regulate intrinsic
membrane properties such as the resonance frequency (Tohidi
and Nadim, 2009; Bellot-Saez et al., 2018), as well as the strength
and frequency of network oscillations (Yue and Huguenard,
2001). In this mini-review we will focus on mechanisms by which
astrocytes effect neuronal excitability.

Neurons consist of inherent membrane resonance and
frequency preference properties (Hutcheon and Yarom, 2000;
Buskila et al., 2013) that allow them to act as resonators
or transient oscillators that amplify inputs within certain
frequencies (Alonso and Llinás, 1989). This oscillatory behavior
at multiple frequencies depends on the accurate combination
of both low-pass (i.e., passive leak conductance, membrane
capacitance) and high-pass (i.e., voltage-gated channels activated
close to the resting membrane potential, RMP) filtering
properties (Buzsaki, 2006), which endow neurons with a wide
repertoire to respond faster and more efficiently to spike trains
or fast inputs (Pike et al., 2000). Therefore, alterations in
membrane conductance or excitability along the somatodendritic
compartments result in differential tuning of the resonant
response in different cell types (e.g., interneurons vs. pyramidal
or cholinergic cells), which on the one hand filter inputs from
neurons that are not synchronized [see Hutcheon and Yarom
(2000) and Laudanski et al. (2014) for comprehensive review],
and on the other hand is essential for the synchronization of
neurons that express similar resonance, therefore, sculpting the
functionality of a neuronal network (Hutcheon and Yarom,
2000; Whittington and Traub, 2003; Laudanski et al., 2014;
Kékesi et al., 2019).

Consequently, changes in the concentration of extracellular
ions that impact the excitability and resonance behavior
of individual neurons (e.g., K+, Mg2+, Ca2+), can affect
brain rhythms. Indeed, a recent comprehensive report from
Nedergaard’s group, in which they have recorded different
brain rhythms during the sleep-awake cycle show that
different rhythms are linked with alterations in extracellular
concentrations of K+, Ca2+, Mg2+, and H+ (Ding et al., 2016),
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TABLE 1 | Common characteristics of brain waves.

Band Delta – δ Theta – θ Alpha – α Beta – β Gamma – γ

Frequency 1–4 Hz 4–10 Hz 8–12 Hz 12–30 Hz >30 Hz

EEG traces

Brain area Neocortex, Thalamus,
Basal ganglia

Hippocampus, Dentate
gyrus, Cortex, Amygdala

Neocortex, Thalamus Neocortex, Olfactory bulb,
Striatum, Thalamus

Hippocampus

Neocortex, Olfactory bulb,
Hippocampus

Brain
functions

(a) Slow wave sleep and
deep NREM sleep

(b) Signal detection and
decision making

(c) Memory consolidation
(d) Concentration,

motivation and
focused attention

(e) Facilitation of
interlaminar
interactions in the
cortex to control
synaptic rescaling

(a) REM sleep
(b) Selective attention,

arousal, orienting, and
voluntary control of
movement

(c) Modulation of
synaptic strength and
coordination of phase
coding of active
neuronal ensembles

(d) Episodic memory,
word integration and
environmental
encoding

(a) Drowsiness and
relaxation

(b) Sensory function,
movement and visual
perceptual framing

(c) Task engagement,
speed of working
memory and cognitive
performance

(a) Sensorimotor control,
motor preparation.

(b) Sensory processing-
amplification of
olfactory and visual
stimuli

(c) Top-down attention
and working memory
allocation

(a) Focused attention
and motor task
execution

(b) Responses to evoked
auditory and visual
stimuli

(c) Facilitation of neuronal
communication and
efficient cognitive
processing

(d) Spatial working and
recognition memory

Rhythm
generators

(1) Interplay between low
threshold Ca2+

transient current and
hyperpolarization
activated cation
current (McCormick
and Pape, 1990;
Soltesz et al., 1991)

(2) NMDAR-driven
depolarization of
intrinsically bursting
neurons (Connors
et al., 1982;
Carracedo et al.,
2013; Steriade et al.,
2018)

(3) Neuron-glia
interactions to
regulate extracellular
K+ through Ca2+

waves (Amzica et al.,
1997, 2002;
Kozachkov and
Michmizos, 2017)

(1) Interplay between
inhibitory and
excitatory
hippocampal neurons
that is modulated by
cholinergic and
GABAergic input from
the medial septum
(Freund and Antal,
1988; Buzsáki, 2002;
Hangya et al., 2009)

(2) Interplay between
slow inward K+

currents and
persistent Na+

current (D’Angelo
et al., 2001)

(3) ACh-mediated Ca2+

release from
astrocytic internal
stores (Foley et al.,
2017)

(4) Neuromodulation of
the prefrontal cortex
by Dopamine (Eckart
et al., 2016)

(1) Cholinergic
modulation of the
prefrontal cortex
(Dipoppa and Gutkin,
2013)

(2) Activation of mGluR1
in the GJ connected
high-threshold
bursting neurons in
the lateral geniculate
nucleus (Hughes
et al., 2004, 2011)

(3) Activation of the
noradrenergic
neurons in the locus
ceruleus, mediated by
Corticotropin
releasing hormone
(McCormick, 1992;
Jedema, 2004; Enoch
et al., 2008)

(1) Activation of gap
junction-coupled layer
V neurons, mediated
by the M-type K+

current (Roopun
et al., 2006)

(2) ACh modulation of
synaptic interactions
between layer V
pyramidal neurons
and low-threshold
spiking interneurons
(Roopun et al., 2010)

(1) Tonic activation of
interneurons by
mGluR (Whittington
et al., 1995)

(2) Cholinergic
modulation of
pyramidal neurons
(Fisahn et al., 1998)

(3) Modulation of
interneurons via gap
junctions; activation of
inhibitory interlaminar
connections
(Ainsworth et al.,
2011)

(4) Ca2+ – dependent
glutamate release
from astrocytes (Lee
et al., 2014)

(5) Increase in [K+]o
enhance activation of
fast inhibitory and
excitatory networks
(Traub et al., 2001;
LeBeau et al., 2002)

confirming that cellular mechanisms which particularly affect
the ionic composition of the extracellular fluid can modulate the
excitability and synchronous activity of neurons, thus affecting
the different brain rhythms. Accordingly, K+ channels which
mediate K+ efflux and membrane repolarization, play a crucial
role in determining the overall network excitability and have
been suggested to affect the generation of neuronal oscillations
at multiple frequencies (Buzsaki, 2006). Consistent with this
view, D’Angelo et al. (2001) showed via experimental and
computational modeling of cerebellar granule cells that slow
repolarizing K+ currents terminate the oscillatory “up state”
of theta oscillations amplified by a persistent Na+ current
and therefore, underlie the bursting and resonant behavior

of theta oscillations. In line with these results, activation
of K+ currents has been associated with enhanced spike
timing precision at gamma frequencies in both pyramidal and
basket cells in the hippocampus (Penttonen et al., 1998), as
well as with lower frequency oscillations in the delta range
(Ushimaru et al., 2012). Moreover, intracellular recordings
of cortical neurons during alterations in K+ homeostasis
indicate changes in neuronal excitability and resonance
behavior that affected the amplification of network oscillations
(Bellot-Saez et al., 2018).

K+ homeostasis in the brain is governed by the activity of
astrocytes through several mechanisms, including K+ clearance
from the extracellular fluid. Astrocytes are strategically located
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close to synapses, which allows them to critically regulate the
overall network function (Wang et al., 2012; Bellot-Saez et al.,
2017). Two major mechanisms of astrocytic K+ clearance have
been established: (i) net K+ uptake, in which the excess of
extracellular K+ ([K+]o) is taken up by K+ cotransporters
(Na+/K+/2Cl−), Na+/K+ pumps (Na+/K+ ATPase), and inward
rectifying K+ channels (K+ir) that are expressed in astrocytic
processes and (ii) K+ spatial buffering, in which K+ ions
propagate from high to low concentrations through gap-
junction (GJ) mediated astrocytic networks by employing
membrane voltage differences between the local K+ reversal
potential to the astrocytic network membrane potential, and
then released in distal regions of the astrocytic networks
(Figure 1). Ultimately, the [K+]o is returned to baseline levels
to prevent hyperexcitability (Verkhratsky and Nedergaard, 2018).
Consistent with the importance of the K+ clearance to normal
oscillatory functioning, genetically modified mice that suffer
from impaired clearance mechanisms exhibit epileptic seizures,
growth retardation, and premature lethality at the age of 2 weeks
(Kofuji et al., 2000; Bellot-Saez et al., 2017; Do-Ha et al.,
2018). However, recent reports indicate that under physiological
conditions, neuromodulators can directly trigger an increase in
[K+]o and thus signal through astrocytes to alter neural circuit
activity and regulate network oscillations (Ding et al., 2016;
Ma et al., 2016).

Astrocytic Modulation of Brain Waves
Numerous studies revealed the essential contributions
made by astrocytes to many physiological brain functions,
including synaptogenesis (Ullian et al., 2001), metabolic
coupling (Magistretti, 2006), nitrosative regulation of
synaptic release (Buskila et al., 2005; Abu-Ghanem et al.,
2008; Buskila and Amitai, 2010), synaptic transmission
(Fields and Stevens-Graham, 2002), network oscillations
(Bellot-Saez et al., 2018), and plasticity (Suzuki et al., 2011;
Oberheim et al., 2012).

Astrocytes express a plethora of receptors, ion channels,
pumps (i.e., ATPase) and cotransporters allowing them to
dynamically interact with neurons through several pathways
(Haydon and Carmignoto, 2006; Giaume and Theis, 2010; Larsen
and Macaulay, 2014). Despite lacking the ability to fire action
potentials, astrocytes communicate with neurons and other
astrocytes mainly via Ca2+ signals (Cornell-Bell et al., 1990;
Shigetomi et al., 2010). Astrocytic Ca2+ signals can occur both
independently of neuronal activity or following neurotransmitter
release and include intrinsic Ca2+ oscillations within individual
cells and Ca2+ waves that propagate from one astrocyte to
another (Zur Nieden and Deitmer, 2006; Nett et al., 2017).
Indeed, recent studies found that astrocytic Ca2+ signaling
and glutamate clearance by astrocytes play an essential role
in the regulation of the network activity and K+ homeostasis,
which ultimately affects the neuronal excitability underlying
network oscillations (Wang et al., 2012; Ding et al., 2016).
Recently, Ma et al. (2016) showed that neuromodulators can
signal through astrocytes by affecting their Ca2+ oscillations
to alter neuronal circuitry and consequently behavioral output.
In line with these observations, Nedergaard’s group further

demonstrated that bath application of neuromodulators to
cortical brain slices increased [K+]o regardless of synaptic
activity (Ding et al., 2016), suggesting that increased [K+]o
could serve as a mechanism to maximize the impact of
neuromodulators on the synchronous activity of neurons and
their recruitment into networks.

Interestingly, an in vivo study found that spontaneous
Ca2+ oscillations in astrocytes differ between cortical
layers, suggesting functional network segregation imposed
by astrocytic function (Takata and Hirase, 2008). Indeed,
the spatial and functional organization of astrocytes varies
between different brain regions (Houades et al., 2008; Chai
et al., 2017; Matias et al., 2019) establishing that astrocytes
are organized into anatomical and functional compartments
(Pannasch and Rouach, 2013). Similarly, a computational
model of three-dimensional astrocytic networks showed
that the propagation of astrocytic Ca2+ waves is highly
variable between brain regions depending on their GJ-
coupling organization within the astrocytic network, with
short-distance connections favoring spreading of Ca2+

waves over wider areas (Lallouette et al., 2014). In addition,
several studies have provided evidence that astrocytes
respond to different neuronally released neurotransmitters
and neuromodulators (e.g., Acetylcholine, 5-HT, Histamine,
Norepinephrine, Dopamine) by eliciting Ca2+ elevations
that trigger signaling cascades leading to alterations in the
concentrations of intracellular and extracellular ions (e.g., Na+,
Ca2+, K+) and gliotransmitter release (Blomstrand et al., 1999;
Jung et al., 2000; Oikawa et al., 2005; Ding et al., 2013; Jennings
et al., 2017; Covelo and Araque, 2018). These studies emphasize
the bidirectional communication pathway between neurons
and astrocytes, which establish a synergetic mechanism to affect
network oscillations.

Recently, Mariotti et al. (2016, 2018) demonstrated that
astrocytic modulation and signaling are circuit-specific, as
cortical astrocytes not only respond to excitatory inputs, but
also react to inhibitory interneurons by eliciting weak or
strong [Ca2+]i elevations. In addition, two-photon imaging
experiments revealed that cortical astrocytes are fast enough
to respond to sensory stimulation by evoking fast Ca2+ events
(Stobart et al., 2018). Together, these studies suggest that
astrocytes are able to process different patterns of network
activity with a variety of Ca2+ signals in order to decode
and integrate local synaptic activity and plasticity (Perea
and Araque, 2007; Henneberger et al., 2010; Navarrete et al.,
2012), as well as other physiological processes including
vasodilation through nitric oxide (Buskila and Amitai, 2010;
Muñoz et al., 2015), K+ signaling (Filosa et al., 2006), release
of trophic factors (Igelhorst et al., 2015), and inflammatory
mediators (Michelucci et al., 2016). Moreover, gliotransmitters
can activate neuronal receptors, including extrasynaptic
NR1/NR2B-containing NMDA receptors (Fellin et al., 2004;
Jourdain et al., 2007; Wang et al., 2013), thereby establishing
reciprocal interactions between neurons and astrocytes that
result in the overall modulation of the network excitability and
synchronous activity of groups of neurons (Sardinha et al., 2017;
Adamsky et al., 2018).
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FIGURE 1 | The impact of astrocytic K+ clearance on network oscillations. (A) Image of GFP labeled cortical astrocytes depicting their organization in
non-overlapping domains. (B) Schematic diagram describing the mechanisms of astrocytic K+ clearance. Top-right inset – K+ uptake- local increase of [K+]o is
cleared from the extracellular space through the astrocytic Kir channels, NKCC and Na+/K+ ATPase. Eventually, K+ ions flow intracellularly through GJ-connected
astrocytes (K+ spatial buffering) and promote a distal outward current to the extracellular space, where [K+]o is low (∼3 mM) as shown in the lower inset (K+

release). Arrows indicate the direction of K+ driving force. (C) The functional role of astrocytic K+ clearance processes on network oscillations. Traces of extracellular
recordings showing the network activity before and after brief (1 s) application of 30 mM KCl (red arrow), in normal aCSF (left) and after bath application of 100 µM
BaCl2 (selective blocker of astrocytic Kir4.1 channels, middle trace) or Gap-26/27 (selective blocker of Cx43, right). Note the increase in network excitability following
the increase in [K+]o depicted as increase in spiking activity. (D) Color coded spectrogram of network oscillations depicting the network activity before and after local
increase in [K+]o (black arrows, imitating high local neuronal activity) under normal conditions (aCSF, left), following impairment in K+ uptake with 100 µM BaCl2
(middle spectrogram) or following blockade of astrocytic spatial buffering with selective astrocytic gap-junction blockers (GAP-26/27, right). Adapted from
Neuroscience and Biobehavioral Reviews, vol 77, Alba Bellot-Saez, Orsolya Kékesi, John W. Morley, and Yossi Buskila, Astrocytic modulation of neuronal excitability
through K+ spatial buffering, 87–97, copyright (2017), with permission from Elsevier Ltd., under CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Astrocytes mediate long distance communication not
only via Ca2+ waves but also through ATP release (Haas
et al., 2006; Suadicani, 2006), which is followed by its
degradation to adenosine by extracellular nucleotidases, leading
to synaptic inhibition of neurotransmission (Pascual et al.,
2005). Consistently, ATP release from neocortical astrocytes
has been found to activate purinergic currents in pyramidal
neurons, followed by attenuation of synaptic and tonic
inhibition (Lalo et al., 2014). These results suggest that cortical
astrocytes, via exocytosis of ATP, could also play a role in the
modulation of neuronal GABA release and thus phasic and
tonic inhibition, which eventually contribute to the generation
of hypersynchronous oscillations at the network level.

DISCUSSION

In the 19th century, Carl Ludwig Schleich was first to
propose that neuroglia is the anatomical locus for controlling
neuronal excitation and its transmission from neuron to neuron
(Schleich, 1894; Dierig, 1994). A year later, Ramón y Cajal, the
father of modern neuroscience, proposed that astrocytes are
directly involved in modulating neuronal activity by isolating
neighboring neurons (Cajal, 1895; Navarrete and Araque, 2014).
In support of this view, Cajal further revealed that “the neuroglia
is abundant where intercellular connections are numerous and
complicated, not due to the existence of contacts, but rather
to regulate and control them, in such a manner that each
protoplasmic expansion is in an intimate relationship with only
a particular group of nerve terminal branches”, which led him to
propose that astrocytes exert a major role in modulating brain
function during different behavioral states (Cajal, 1895, 1897).
More than a century later, with the development of powerful
electrophysiological and imaging tools (Berger et al., 2007; Pál
et al., 2015), these initial insights about astrocytes as potential
modulators of the brain circuitry are gaining more support.

The close association of astrocytes with synapses led to the
concept of the tripartite synapse, (consisting the pre-synaptic
terminal, the post-synaptic membrane and the cradling astrocyte)
which allows the bidirectional interaction of astrocytes with
neurons (Araque et al., 1999). Although the molecular and
cellular pathways in which astrocytes affect neuronal network
activity and brain rhythms are not fully clear, numerous in vivo
and in vitro studies indicate that they are playing a key role in the
modulation of neuronal excitability and network synchronous

activity, thereby contribute to the “conversation in the brain”
(Verkhratsky and Nedergaard, 2018).

The fact that astrocytes can regulate the activity of individual
neurons prompted a new concept of network modulation termed
“lateral astrocyte synaptic regulation” (Covelo and Araque, 2016).
Accordingly, astrocytic regulation of synaptic transmission is
heterosynaptic and not restricted to the active synapse itself, but
involving the activity of distant tripartite synapses via paracrine
signaling of gliotransmitters that depends on the morphological
and functional properties of astrocytes, thereby acting as a
syncytium that can influence neuronal properties over wide
brain regions (Pirttimaki et al., 2017). However, the physiological
role of gliotransmission is highly debatable (see Nedergaard
and Verkhratsky, 2012; Chai et al., 2017; Papouin et al., 2017;
Fiacco and McCarthy, 2018; Savtchouk and Volterra, 2018),
as gliotransmitter release has been reliably demonstrated only
in vitro in cultures and brain slice experiments that are often
accompanied by manipulations (e.g., high frequency stimulation)
which can affect astrocytic channels or receptors leading to
impaired signaling cascades. This experimental design imposes
questions about the existence of gliotransmission (Wolosker
et al., 2016; Chai et al., 2017) and whether it plays a physiological
role in the brain (Fiacco and McCarthy, 2018). Although
previous studies found no correlation between astrocytic Ca2+

signaling and gliotransmitter release (Fiacco et al., 2007; Petravicz
et al., 2008; Agulhon et al., 2010), there is increasing evidence
supporting the importance of both the GJ-mediated connectivity
and function of astrocytic networks for neuronal-astrocytic
communication and control of neuronal network activity (Covelo
and Araque, 2016, 2018). Consequently, astrocytic alterations
likely lead to aberrant modulation of both synaptic transmission
and synchronization of network oscillations, which is also
accompanied by changes in behavioral performance.
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