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Adding noise to a weak input signal can enhance the response of a non-linear system,
a phenomenon known as stochastic resonance (SR). SR has been demonstrated
in a variety of diverse sensory systems including the visual system, where visual
noise enhances human motion perception and detection performance. The SR effect
has not been extensively studied in brain-computer interface (BCI) applications. This
study compares the performance of BCIs based on SR-influenced steady-state motion
visual evoked potentials. Stimulation paradigms were used between a periodically
monochromatic motion-reversing simple ring and complex alternating checkerboard
stimuli. To induce the SR effect, dynamic visual noise was masked on both the periodic
simple and complex stimuli. Offline results showed that the recognition accuracy of
different stimulation targets followed an inverted U-shaped function of noise level,
which is a hallmark of SR. With the optimal visual noise level, the proposed visual
noise masked checkerboard BCI paradigm achieved faster and more stable detection
performance due to the noise-enhanced brain responses. This work demonstrates
that the SR effect can be employed in BCI applications and can achieve considerable
performance improvements.

Keywords: brain-computer interface (BCI), visual noise, stochastic resonance (SR), motion-reversing stimulation,
checkerboard, single ring
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INTRODUCTION

A brain-computer interface (BCI) is a system that can
translate people’s intentions from brain activity into commands
to control external devices (Wolpaw et al., 2000). Several
electroencephalogram (EEG) signals can be employed to develop
BCIs, such as the P300 component of event-related potentials
(ERP), slow cortical potentials (SCP), and steady-state visual
evoked potentials (SSVEP). Among these, SSVEP is a type
of periodic brain response elicited by repetitive visual stimuli
at a specific frequency (Muller-Putz and Pfurtscheller, 2008).
SSVEP-based BCIs have been widely studied due to their high
information transfer rate (ITR) and little required training
(Moghimi et al., 2013). However, SSVEP-based BCIs still
meet a number of challenges in practical applications. For
example, the conventional SSVEP stimulation (e.g., flickering of
monochromatic rectangles on a computer screen) is not user
friendly and can quickly cause visual fatigue, which leads to poor
performance. To alleviate the user’s visual fatigue, BCI paradigms
based on motion perception have been proposed in recent
years (Heinrich and Bach, 2003). For example, Xie et al. (2012)
designed a novel BCI paradigm with motion-reversed Newton’s
rings to elicit steady-state motion visual evoked potentials
(SSMVEP). This improves the BCI performance and achieves a
higher recognition accuracy with less visual discomfort.

Two types of visual stimulation paradigms, i.e., motion-
reversing simple single ring stimulus (Xie et al., 2014) and
motion-reversing complex alternating checkerboard stimuli
(Han et al., 2018), have been used to evoke SSMVEP for
BCI applications. In this study, the complex checkerboard was
composed of concentric simple rings, all of which shared the same
motion-reversing frequency (MRF) as a single ring. The effects
of simple and complex stimulation patterns on BCI performance
have been investigated in many studies. It has been reported that
both complex and simple patterns showed different features when
evoking brain responses. Complex stimuli produced stronger
brain responses than simple stimuli at the same frequency, which
is a clear advantage of complex stimuli over simple stimuli
(Vialatte et al., 2010). Lalor et al. (2005) indicated that BCI based
on complex visual stimulation enabled improved performance
compared to BCI based on simple stimulation. Waytowich et al.
(2016) also reported that BCI based on a complex stimulation
achieved a higher information transfer rate than BCI based on
a simple stimulation under specific conditions. For a complex
stimulation, Yan et al. (2017) designed an equal-luminance
colored ring-shaped complex checkerboard paradigm that evokes
prominent SSMVEP with high signal-to-noise ratios (SNR) in the
low-frequency range. These studies show that complex stimuli
promotes prominent responses compared to simple stimuli.
However, the effect of stochastic resonance (SR) in selecting
stimulation patterns remains unclear. This is particularly the case
when considering the enhanced SR effects on BCI performance
(Xie et al., 2014), on the influence of mental load and fatigue in
BCI application (Xie et al., 2017; Zhang and Gao, 2019), as well
as on eliciting plasticity in BCI interventions (Xie et al., 2018).
To the best of our knowledge, the different influences of the SR
mechanism on the performance of motion-reversing complex

alternating checkerboard and a simple single ring based BCIs has,
to date, not been directly compared.

It is well known that the human brain is intrinsically noisy. As
a random fluctuation, noise is widely observed in both the human
visual system and other sensory systems (Manjarrez et al., 2007;
Faisal et al., 2008). Several studies have demonstrated that the
human central nervous system has exploited this inherent neural
noise to its structural and functional benefit. Noise was found to
contribute to information transfer over axons by increasing the
synchronization of neuronal firing (Neiman et al., 1999; Wang
et al., 2004). Aihara et al. (2008) have shown that internal noise
plays a vital role in enhancing the detectability of weak input
signals in the visual system. These phenomena can be explained
by the SR mechanism, which was first proposed by Benzi et al.
(1981) to explain the periodic recurrence of ice ages. SR is a
phenomenon that exists in non-linear systems where the output
of a weak periodic input signal can be enhanced by a non-zero
level of noise. Moreover, researchers have found that subjects can
benefit from SR effects when presented with external visual noise
in visual detection tasks, which indicates that the SR effect not
only depends on internal but also on external noise (Manjarrez
et al., 2002; Long et al., 2004). Experiments showed that the
addition of an optimal level of external noise could enhance the
detectability of weak input signals, while excessive noise leads to a
deterioration of performance (Chatterjee and Oba, 2005). Srebro
and Malladi (1999) reported that external noise could induce the
SR effect in visually evoked potentials (VEP), which inspired the
employment of the SR effect on BCI applications in this study.

A few existing studies utilize the SR effects for BCI
applications. Xie et al. (2014) designed a SSMVEP-based BCI
by masking visual noise on a motion-reversing ring to achieve
better offline and online performance than the simple motion
ring stimulation due to the SR effect. The work demonstrated
that the addition of visual noise on the motion stimulation
could enhance BCI performance. However, only the influence
of external noise on the performance of simple stimulation (i.e.,
motion-reversing single ring stimulation) has been explored to
date, while the influence on complex stimulation (i.e., motion-
reversing checkerboard stimulation) has not been evaluated.
Given that a motion-reversing checkerboard stimulation may
perform better than a motion-reversing single ring stimulation,
the optimized external visual noise on the motion-reversing
checkerboard may achieve superior BCI performance.

Therefore, the present study compares different influences of
external visual noise on simple motion-reversing single ring and
complex alternating motion-reversing checkerboard stimulation
paradigms. To investigate the SR effect on these two types
of motion stimuli, visual noise of different intensity levels
was used to mask the stimulation. The visual noise intensity
level was graded by noise standard deviation (NSD) values
of 0, 24, 40, or 56, respectively. First, the characteristics of
the brain response under the SR mechanism were examined
via amplitudes of the evoked SSMVEP. To observe the SR
effect of recognition accuracy under different noise intensity
levels, canonical correlation analysis (CCA) was introduced to
calculate the recognition accuracy within a short stimulation
duration. The number of EEG recording channels required
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for an accurate analysis of both types of stimuli was then
compared. Furthermore, time-frequency analysis of these two
types of motion stimulations under different intensity levels was
implemented, which showed that visual noise could help evoke
much stronger SSMVEP in the early stage of stimulation. Finally,
the recognition accuracies of both the simple motion-reversing
single ring and the complex motion-reversing checkerboard
paradigms with different noise intensity levels were compared.
This work further corroborated that BCI applications could
benefit from the SR effect, and a high-performance BCI paradigm
was obtained in this study.

MATERIALS AND METHODS

Subjects
Seven male and three female (aged between 22 and 27 years)
graduate students from Xi’an Jiaotong University (Shaanxi,
China) were recruited as subjects for this study. All subjects
had normal or corrected-to-normal vision and had no history of
neurologic and psychiatric disorders. All subjects participated in
SSVEP-based BCI experiments before but were naive to the visual
noise-masked SSMVEP-based BCI paradigm. The experiment
was undertaken in accordance with the recommendations of the
Declaration of Helsinki, and each participant provided written
informed consent and agreed to participate in this study. The
study was approved by the institutional review board of Xi’an
Jiaotong University.

EEG Recordings
The EEG signals were recorded from the occipital region of
channels PO3, POz, PO4, O1, Oz, and O2 with a common ground
at the frontal position (Fpz) and a reference at unilateral earlobe
(A1) according to the international 10–20 system, as shown in
Figure 1. A g. USBamp system (g.tec, Graz, Austria) with an
Ag/AgCI active electrode system g.GAMMAbox was used to
acquire EEG signals at a sampling rate of 1200 Hz. All electrode
impedances were retained below 5 k� during the experiments.

Stimulation Design
To compare the performance of simple and complex motion
paradigms under different noise intensity levels, both simple
motion-reversing single ring and complex motion-reversing
checkerboard stimuli were designed using the Psychophysics
Toolbox Version 31 (Brainard, 1997). As shown in Figure 2A,
the width of the motion-reversing single ring remained
constant during the expansion-contraction motion procedure.
The motion-reversing ring patterns are generated as:

I =
{
I0 + NSD · randn, Rϕ−D < r

(
x, y

)
< Rϕ

I1 + NSD · randn, other
(1)

where I represents the luminance of the stimulation, I0 represents
the luminance of constant width of the motion ring with a gray
level of 256 (i.e., white color), I1 represents the luminance of the

1http://psychtoolbox.org/

FIGURE 1 | Electrode montage used in this study. EEG signals were recorded
from six electrodes: PO3, POz, PO4, O1, Oz, and O2.

background with a gray level of 128 (i.e., gray color), the noise
intensity level is graded by noise standard deviation (NSD) values
of 0, 24, 40, and 56 in this study, randn represents a Matlab
function that generates random noise with zero mean and unit
standard deviation, r(x, y) represents the radius of the pattern
pixel points (x, y), D represents the constant width of the motion
ring and was set to 60 pixels, Rϕ represents a radius modulated
by the sinusoidal function, which controls the contraction and
expansion of the motion ring. Rϕ can be defined as:

Rϕ = A ·
sin(2π · fc · t)+ 1

2
+ Rinner (2)

where A represents the amplitude of the expansion-contraction
motion process and was set to 60 pixels, Rinner represents the
minimum radius of motion ring and was set to 60 pixels, fc
represents the MRF and was set to 6 Hz, 7 Hz, 8 Hz, and 9 Hz
in this study. When the phase of the sinusoidal function shifts
from 0 to π, the motion ring contracts and then, expansion of
the motion ring is achieved with phase shifting from π to 0.
Consequently, the radius of the moving ring ranges from 60
to 120 pixels throughout the contraction-expansion procedure.
Figure 2A shows the contraction-expansion procedure of the
motion-reversing single ring for an NSD value of 0.

The motion checkerboard pattern under an NSD value
of 0 is shown in Figure 2B. The method of constructing
motion checkerboard patterns is similar to that for the motion-
reversing single ring but more complex. The checkerboard is
composed of a series of concentric single rings, each of which
is divided into 24 equal grids with an alternative arrangement
of gray and white squares. The outer and inner diameters
of the motion checkerboard were set to 12 and 120 pixels,
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FIGURE 2 | Stimulus paradigms used in this study. (A) Contraction-expansion
procedure of the motion-reversing single ring under an NSD value of 0.
(B) Contraction-expansion procedure of the motion-reversing checkerboard
under an NSD value of 0. The red boundary line shows a single ring on the
checkerboard. (C) Distribution of four simple ring stimulators on the screen
under an NSD value of 24. (D) Distribution of four complex checkerboard
stimulators on the screen under an NSD value of 24.

respectively. The visual noise used in this study consisted
of two-dimensional (2D) spatial-temporal noise speckles that
obeyed 2D Gaussian intensity distributions and was updated at
a refresh rate of 120 Hz.

In this experiment, a Philips 27-inch LCD screen with a
1,920 × 1,080-pixel resolution (0.31 mm width per pixel) and
a 120 Hz refresh rate was used to present the stimulation. Four
stimulators were simultaneously displayed on the screen and
were distributed in a rhombus layout. The distances of the screen
center to the centroid of each stimulator were 410 pixels and
were approximately at a 10.4◦ visual angle when viewed by the
subjects at a fixed distance of 0.7 m. The MRFs of the right, left,
up, and down stimulators were 6 Hz, 7 Hz, 8 Hz, and 9 Hz,
respectively, with a 120 Hz refresh rate. Figures 2C,D show the
distribution of the four stimulators on the computer screen under
an NSD value of 24.

Experimental Procedure
In the offline experiments, each subject participated in two
separate sessions. The motion-reversing single ring paradigm was
presented in session 1 and the motion-reversing checkerboard
paradigm was presented in session 2. Each session was comprised
of four tasks corresponding to four different stimulation
frequencies (i.e., 6, 7, 8, and 9 Hz). For each task, four runs
were conducted with NSD values of 0, 24, 40, and 56. Each run
contained 20 trials and each trial lasted for 5 s. The interval
between two adjacent trials was fixed at 2 s. Therefore, the time of
each single run was about 138 s. Subjects were instructed to focus
their attention only on the target stimulator and to avoid any
physical movement during each run. A short break was allowed
between two runs. Figure 3 shows the experimental procedure.
Each experimental session lasted for about 1 h per subject.

An online experiment was proposed to demonstrate the BCI
performance of the noise masked motion-reversing checkerboard

FIGURE 3 | Experimental procedure.
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paradigm. In the online experiments, the subjects were asked
to perform two tasks, including checkerboard with noise at
NSD value of 40 and checkerboard without noise. The motion-
reversing frequency of stimuli was set at 6, 7, 8, and 9 Hz in both
the noise-masked and the non-noise task. Each frequency task
contains 20 trials and every trial lasts 2 s with a 0.5 s inter-trial
interval for gaze shifting.

In our experiments, four targets (their motion frequencies
were 6, 7, 8, and 9 Hz) were simultaneously presented on the
screen in each trial, and subjects were requested to focus on the
specific target in each trial. The recognition accuracy was defined
as the percentage of correctly judged trials by the CCA detection
method in total trials.

Preprocessing of the EEG Data
The EEG data collected from each subject was analyzed offline.
Band pass filtering from 2 to 45 Hz was performed to remove
unwarranted signals. The EEG data segments were extracted from
the starting time to the ending time of each trial.

CCA Analysis
CCA is a multivariable statistical method for the exploration
of the underlying correlation between two multivariate sets
of variables (Hotelling, 1936). The CCA method has been
successfully applied for multi-channel SSVEP detection (Bin
et al., 2009). Suppose that there are K stimulators with K
stimulation frequencies fi (i = 1, . . ., K), for the recognition of
the target stimulator, two sets of signals should be introduced
to CCA. One set of signals is the EEG signals X, which are
collected from C channels with S sampling points. A further
set of signals is the reference signals Yi, which are constructed
at the stimulation frequency fi and its multi-harmonics:

Yi =


cos

(
2π · fi · t

)
sin
(
2π · fi · t

)
...

cos
(
2π ·Hfi · t

)
sin
(
2π ·Hfi · t

)

 , t =
1
Fs

, · · · ,
S
Fs

(3)

where Fs represents the sampling rate, and H represents
the number of harmonics. A vector of correlation
coefficients [ρi1, ρi2, . . ., ρimin(C,2H )] between X and
Yi can be obtained by solving the following problem:

max
Wx,Wyi

ρ(x, yi) =
E
(
WT

x XY
T
i Wyi

)√
E
(
WT

x XXTWx
)
E
(
WT

yiYiYT
i Wyi

) (4)

The maximum of ρ corresponds to the maximum
canonical correlation between X and Yi. When each
canonical correlation of fi (i = 1, . . ., K) was calculated
separately, the target could be judged by the maximum ρ of
K coefficients.

In this study, we use a deformation modality of the CCA
method (Valeria et al., 2018). We utilize the top N canonical
correlation coefficients rather than the maximum one. The top

N canonical correlation coefficients is combined using the
Euclidean norm:

ri =

√√√√ N∑
j=1

ρ2
ij (5)

The resulting combination ri will be regarded as the recognition
basis for the stimulation frequency fi. When the combination ri
of each stimulation frequency fi (i = 1, 2, . . ., K) is calculated
separately, the target ftarget can be assigned to the stimulation
frequency with the maximum combination ri:

ftarget = max
i=1,···K

ri (6)

In this study, the stimulation frequency fi (i = 1,..., K, K = 4) was
set to the frequency of each checkerboard or motion ring, the
number of channels of C was set to 6, the harmonics of H was
set to 2, and the number of canonical correlation coefficients of
N was set to 4.

Statistical Analyses
The values of each individual subject across the non-noise and
noise-masked BCI conditions were used by a one-way and
three-way analysis of variance (ANOVA) statistic for statistical
analysis. To determine the significance, the level of statistical
significance was set to p < 0.05. The Bonferroni correction was
employed in multiple comparisons. The results are expressed as
means± standard deviation (SD).

Information Transfer Rate (ITR)
Information transfer rate (ITR) is an important criterion to
describe the recognition accuracy and the time required by a BCI
system. ITR was calculated by:

ITR =
60
T

[
log2 N + p log2 p+ (1− p) log2

(
1− p
N − 1

)]
(7)

Where T is the sum of stimulation time of each trial and the time
interval between two trials, N is the number of targets, and p is
the average recognition accuracy.

RESULTS

SR Phenomena in Both Evoked SSMVEP
and Recognition Accuracy
Figure 4 shows the averaged EEG waveform and amplitude
spectra of Subject S1 from both POz and Oz channels. For this
analysis, the averaged EEG waveform was first obtained from the
mean value of 20-trial EEG data under the same noise intensity
level within the time length of 5 s (i.e., 6000 sampling points).
Then, rectangular sliding windows, corresponding to the sample
length of two stimulation cycles of the four MRFs (i.e., 400
sampling points for MRF of 6 Hz, 344 sampling points for MRF
of 7 Hz, 300 sampling points for MRF of 8 Hz, and 266 sampling
points for MRF of 9 Hz), were slid over the averaged EEG data,
without overlap, to generate a sequence of data segments. Third,
the averaged time-domain waveform of SSMVEP (illustrated

Frontiers in Neuroscience | www.frontiersin.org 5 November 2019 | Volume 13 | Article 1192

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01192 November 7, 2019 Time: 15:47 # 6

Xie et al. Performance Comparison of Visual-Noise BCIs

FIGURE 4 | Averaged SSMVEP waveform and corresponding power spectra
of Subject S1 at different motion reversion frequencies (MRFs). (A) Averaged
SSMVEP waveform and power spectra at an MRF of 6 Hz. (B)
Averaged SSMVEP waveform and power spectra at an MRF of 7 Hz.
(C) Averaged SSMVEP waveform and power spectra at an MRF of 8 Hz.
(D) Averaged SSMVEP waveform and power spectra at an MRF of 9 Hz.

in the top row of each panel in Figure 4) was obtained by
averaging all data segments under the same noise intensity level.
Here, Figure 4 shows the averaged SSMVEP for two stimulation
cycles (i.e., four motion reversals) under the noise intensity
level marked above. The two stimulation cycles were separated
by vertical dotted red lines, and contraction and expansion
motion procedures within one stimulation cycle were separated

by dotted gray lines. The time-domain EEG waveform in Figure 4
indicates that the amplitude of averaged SSMVEP evoked by 6 Hz
motion-reversing checkerboard was progressively enhanced by
NSD values of 24 and 40 and diminished with further increasing
NSD value. It showed an inverted-U-like resonance shape as a
function of the noise intensity level, i.e., the SR characteristic.
Similar results were found in motion-reversing checkerboard
stimulations at MRFs of 7, 8, and 9 Hz where SSMVEP responses
were progressively enhanced by visual noise and peaked in
amplitude at an NSD value of 24. The averaged SSMVEP evoked
by the motion-reversing single ring also exhibited a similar
hallmark of the SR effect. Moreover, the amplitudes of the
averaged SSMVEP evoked by motion-reversing checkerboard
exceeded those evoked by the motion-reversing single ring. The
maxima of averaged SSMVEP magnitudes evoked by the motion-
reversing checkerboard at MRFs of 6, 7, 8, and 9 Hz were
about two to three times higher than the corresponding single
ring paradigm. For the SSMVEP spectra, the averaged EEG data
were submitted to a fast Fourier transform (FFT) operation for
frequency-domain analysis. The bottom row of each panel in
Figure 4 shows the power spectra at NSD values marked above.
The power spectra also exhibited an inverted-U-like resonance
shape as a function of their noise intensity level. The SSMVEP
spectra evoked by motion-reversing checkerboard at MRFs of
6, 7, 8, and 9 Hz increased about two to four times compared
to the corresponding single ring stimulation. Interestingly, the
checkerboard stimulation evoked fewer harmonic components in
SSMVEP spectra than that evoked by the single ring paradigm.
This indicates that the SSMVEP evoked by the checkerboard
stimulation have the properties of a high energy concentration
in the evoking frequency.

The EEG data of all subjects recorded from six occipital
channels (PO3, POz, PO4, O1, Oz, and O2) were used for
CCA-based SSMVEP detection. The recognition accuracy of
subjects was evaluated as the percentage of correctly judged
trial numbers within each run under a certain noise level.
Considering that if the stimulation duration is sufficiently long,
the SSMVEP detection accuracy during that time-window length
would generally be high (da Cruz et al., 2015), it may be that the
exhibit differences between the recognition accuracies of different
noise levels are not evident. Therefore, the accuracies of the
four-target recognition tasks under a short time-window length
(i.e., 2 s adopted for this analysis) were obtained to estimate
the visual noise induced SR effect in both motion-reversing
checkerboard and single ring paradigms. The top row of Figure 5
shows the averaged recognition accuracies of different noise levels
across all subjects with NSD values marked below. The averaged
recognition accuracies also exhibited an inverted-U-shaped
relationship with the intensity level of visual noise, i.e., all noise-
masked stimulations showed a certain degree of enhancement
of recognition accuracies compared to stimulation with an NSD
value of 0, which is similar to the trend of SSMVEP magnitudes
and spectral characteristics. For the checkerboard paradigm, the
recognition accuracies at the resonance points of the four MRFs
of the noise-masked condition significantly increased by 10.1%
(resonance points: 94.5% ± 7.2, non-noise points: 85% ± 12.2;
F = 8.422, p = 0.006) compared to the non-noise condition
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FIGURE 5 | Grand-averaged detection accuracies as a function of NSD values. (A) Averaged detection accuracies with a time-window length of 2 s for all subjects.
(B) Standard deviations of the averaged detection accuracies across subjects.

across all subjects. Furthermore, the non-noise checkerboard
paradigm also achieved significantly higher accuracies over the
noise-masked single ring paradigm at the resonance points of
the four MRFs (for the resonance points of the noise-masked
single ring paradigm: 73.5% ± 21.9; F = 4.226, p = 0.046).
This indicates that the noise-masked checkerboard paradigm
achieved superior performance in comparison to the other three
paradigms. Furthermore, the bottom row of Figure 5 shows that
the standard deviations of the average recognition accuracies
followed a U-shaped relationship with noise and the resonance
points at which the curves in the top row of Figure 5 reached
their peaks had the lowest standard deviations. This finding
was associated with the hallmark of SR, which is the inverted
U-shape relationship between the BCI performance and noise,
and the BCI paradigms at the resonance points had a more
stable performance with relatively lower standard deviations.
Both average accuracies and SSMVEP magnitudes of both types
of stimulation exhibited this signature.

Influence of Selected Channel Number
on Recognition Accuracy
EEG signals from multiple channels are always required for
the CCA detection method. However, employing too many
channels may introduce redundant information, which degrades
the BCI performance (Arvaneh et al., 2011). To further exploit
the advantages of this noise-masked motion checkerboard
stimulation, the relationship between the number of selected
channels and recognition accuracies was compared. The EEG
signals of all subjects were selected for the channel selection
analysis. The recognition accuracies of all subjects were calculated
with the CCA method from one EEG channel (i.e., Oz), three
EEG channels (i.e., O1, Oz, and O2), and six EEG channels

(i.e., PO3, POz, PO4, O1, Oz, and O2), respectively. Therefore,
for each of the motion-reversing checkerboard and single ring
paradigms, different numbers of channels, ranging from one
to all six channels, were selected by varying the NSD value.
The results shown in Figure 6 indicate that the use of the
checkerboard paradigm instead of the single ring paradigm leads
better channel selection accuracies, particularly when the number
of the selected channels is relatively small. The checkerboard
paradigm maintained stable performance when the number
of the selected channels varied from one to all six channels.
In contrast, the single ring-based paradigm required more
channels to achieve higher accuracy compared to the complex
checkerboard paradigm, i.e., all accuracy curves of the single
ring stimulation followed an increasing trend with an increased
number of channels. Specifically, the single ring-based paradigm
decreased significantly by an average of 26.3% of the performance
in accuracy with a decrease of the channel number from 6
to 3 (F = 18.908, p < 0.001) and from 3 to 1 (F = 28.612,
p < 0.001) in both non-noise and noise-masked conditions.
The noise-masked single ring paradigm at the resonance
points provided significantly higher accuracies compared to
the non-noise single ring paradigm (F = 4.294, p = 0.042).
Moreover, the improvement in accuracy and the reduction
in number of channels were more salient when the complex
checkerboard paradigm was applied as compared to the single
ring paradigm. On average, the noise-masked checkerboard
paradigm, using a single Oz channel at its resonance points,
achieved significantly better detection accuracies than the noise-
masked single ring paradigm that used all six channels at its
resonance points (F = 4.547, p = 0.047). This suggests that the
single channel of EEG signals in the checkerboard paradigm
contains sufficient SSMVEP information. Therefore, the CCA
method requires fewer EEG channels for recognition in the
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FIGURE 6 | Performance comparisons for different channel selections. (A) Averaged detection accuracies of different channel selections at an MRF of 6 Hz.
(B) Averaged detection accuracies of different channel selections at an MRF of 7 Hz. (C) Averaged detection accuracies of different channel selections at an MRF of
8 Hz. (D) Averaged detection accuracies of different channel selections at an MRF of 9 Hz.

checkerboard paradigm, while the CCA method requires more
EEG channels for the detection of the SSMVEP responses
in the single ring paradigm. So, the proposed visual noise
masked complex checkerboard paradigm is capable of removing
redundant channels in the SSMVEP detection. If fewer electrodes
are used in BCI experiments, it could consequently reduce
the preparation time and increase the convenience of the
BCI application.

Addition of Visual Noise Promoted the
BCI Performance
Since the SSMVEP evoked by stimulation can be
enhanced by the SR effect, this study further examined
whether BCI performance would benefit from visual
noise. To evaluate the BCI performance, both the time-
varying characteristics of the brain responses and the

recognition accuracies under different time-window lengths
were investigated.

To explore the time-varying characteristics of the brain
responses in response to the SR effect, the elicited SSMVEP were
analyzed via a continuous wavelet transform (CWT). Figure 7
shows a complex Morlet CWT time-frequency analysis of Subject
S1 at an MRF of 7 Hz. The top and bottom row of the
time-frequency graph shows the results of the time-frequency
analysis of the SSMVEP evoked by motion-reversing single
ring and checkerboard stimulations, respectively. The time-
frequency graph shows that the spectral power in the whole time
duration corresponding to the MRF of 7 Hz in the checkerboard
stimulation was stronger than that of single ring stimulation. In
particular, the motion checkerboard stimulation for NSD values
of 24, 40, and 56 evoked pronounced SSMVEP in about 0.5 s
after stimulus onset, while the SSMVEP appearance in the non-
noise checkerboard stimulation was about 1 s. This indicates that
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FIGURE 7 | Time-frequency analysis results of SSVMEP signals based on a complex Morlet CWT with a time-window length of 5 s (i.e., 6000 sampling points).
(A) Time-frequency graph of SSMVEP signals at an MRF of 7 Hz under different NSD values in the single ring paradigm. (B) Time-frequency graph of SSMVEP
signals at an MRF of 7 Hz under different NSD values in the checkerboard paradigm.

the noise-masked motion-reversing checkerboard stimulation
evoked stable SSMVEP responses throughout the stimulation
duration. This phenomenon illustrates that the visual noise could
help to evoke strong SSMVEP in the early stage of the stimulation.
As a result, the frequency components of SSMVEP can be
detected within a short time-window length with the help of
visual noise, which consequently leads to high performance in
BCI recognition tasks. In other words, the required stimulation
duration in response to visual noise can be shortened compared
to the non-noise stimulation condition.

To further quantitatively compare the SR effect on the
performance of checkerboard and single ring based BCI
paradigms, the offline recognition accuracies of both types of
stimulations were calculated using the CCA method. Figure 8
depicts the average accuracy across all subjects with time-
window lengths from 1 s to 5 s. For the non-noise and noise-
masked checkerboard and single ring paradigms, the recognition
accuracies showed steady increases with increasing time-window
lengths. Overall, the noise-masked checkerboard and single
ring stimulation consistently outperformed their corresponding
stimulations without visual noise for all time windows from
1 to 5 s. Furthermore, the non-noise checkerboard paradigm
also achieved higher accuracies over the noise-masked single
ring paradigm. Here, we refer to the checkerboard/single ring
patterns as the “stimulation pattern” factor, the MRFs of
6 Hz/7 Hz/8 Hz/9 Hz as the “stimulation frequency” factor,
and the noise level of NSD value of 0/56 as the “noise level”
factor. Three-way ANOVA test revealed that there are no
significant interactions between factors of “stimulation pattern,”
“stimulation frequency,” and “noise level” (p > 0.05 for all three

two-factor interactions). And the above three-way ANOVA test
indicated that the noise-masked stimulation pattern provided
significantly higher detection accuracies compared to the non-
noise pattern for all time window lengths (p < 0.001). Most
importantly, the noise-masked checkerboard paradigm provided
the most significant higher detection accuracies compared to each
of the three other paradigms for all four MRFs of all time window
lengths (p < 0.001 for all time windows, one-way ANOVA with
Bonferroni-corrected post hoc tests). The average accuracy of
the motion-reversing checkerboard stimulation under an NSD
value of 56 exceeded 80% for a time-window length of 2 s, and
90% for a time-window length of 3 s, indicating that this noise-
masked checkerboard paradigm could achieve a high accuracy at
a fast speed. Comparisons of the standard deviation between non-
noise and noise-masked checkerboard and single ring paradigms
are depicted with dotted lines in Figure 8. The significantly
lower standard deviations associated with the noise-masked
checkerboard paradigm (F = 9.757, p < 0.001, one-way ANOVA
with Bonferroni-corrected post hoc tests) suggest that this
paradigm achieves a more stable system performance compared
to the three other paradigms. These afore-mentioned results
indicate that the motion-reversing checkerboard stimulation
with optimized visual noise could provide a more accurate and
efficient BCI solution to achieve effective communication with
stable recognition performance.

Online Experiment Results
Table 1 shows the online accuracies and ITRs of the motion-
reversing checkerboard paradigm with noise at NSD value of 40
and checkerboard without noise for all subjects. We averaged
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FIGURE 8 | Grand-averaged recognition accuracies and their standard deviations in checkerboard and single ring paradigms with different time-window lengths.
(A) Averaged recognition accuracies and standard deviations at an MRF of 6 Hz. (B) Averaged recognition accuracies and standard deviations at an MRF of 7 Hz.
(C) Averaged recognition accuracies and standard deviations at an MRF of 8 Hz. (D) Averaged recognition accuracies and standard deviations at an MRF of 9 Hz.

the accuracies of all subjects for four stimuli frequencies
of experimentation. All subjects except S4 exhibited higher
recognition accuracies and ITRs in the motion-reversing
checkerboard paradigm with noise at NSD value of 40, indicating
that the motion-reversing noise masked checkerboard paradigm
is a high-performance BCI paradigm.

DISCUSSION

Noise is benefit for the signal detection of diverse sensory systems
via a mechanism known as SR (Douglass et al., 1993; Simonotto
et al., 1997; Patrick et al., 2018). However, little research so far
utilized the SR mechanism in neural engineering applications.
This paper proposes a noise-enhanced BCI paradigm based on

a periodic motion checkerboard with dynamic visual noise (see
Figure 2B). The evoked brain responses of the noise-enhanced
paradigm exhibit an inverted-U shaped relationship with noise
intensity, i.e., typical of the SR phenomenon. This provides
evidence that visual noise can enhance the detectability of human
visual evoked responses. In addition, by combining the SR effect
and the advantages of complex motion stimulation, the proposed
BCI paradigm evoked much stronger SSMVEP responses and
thus achieved a better performance with higher recognition
accuracy within a short time window. This suggests that the SR
effect has strong potential for BCI applications.

In this study, offline target recognition tasks were
implemented with the proposed noise-enhanced paradigm.
The experimental results show that the evoked SSMVEP are
progressively enhanced by visual noise, up to a maximum point,
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TABLE 1 | BCI performance of all subjects in the online experiment.

Subjects Checkerboard with NSD 40 Checkerboard with NSD 0

Accuracy (%) ITR (bits/min) Accuracy (%) ITR (bits/min)

S1 92.50 35.92 76.25 19.99

S2 92.50 35.92 91.25 34.40

S3 90.00 32.94 83.75 26.45

S4 98.75 45.20 100.00 48

S5 78.75 22.01 73.75 18.08

S6 66.25 13.02 62.50 10.83

S7 75.25 19.21 63.75 11.54

S8 95.00 39.22 78.75 22.01

S9 77.50 20.98 63.75 11.54

S10 97.50 43.00 88.75 31.54

Average 86.50 ± 10.97 30.74 ± 11.10 78.25 ± 12.80 23.44 ± 11.94

after which they declined. Moreover, the average recognition
accuracies across all subjects for a 2 s duration of both motion-
reversing checkerboard and single ring stimulation patterns
exhibited an inverted-U shaped pattern as a function of the visual
noise level, which is a hallmark feature of the SR phenomenon
(Benzi et al., 1981). Nevertheless, the optimal noise intensity
at which the curves reached their peaks showed a slight
difference. This might be because the intensity of internal noise
in living neurons varies widely across subjects and therefore,
the intensity of the required optimal external noise differs
(Srebro and Malladi, 1999). Despite the slight inconsistency
between individual inverted U-shaped curves, the overall SR
phenomenon is pronounced. According to previous studies
showing that periodic motion stimulation patterns mainly rely
on the human perception of motions to elicit the SSMVEP
(Xie et al., 2012), the results obtained in this study suggest that
external visual noise can enhance the motion perception of the
human visual system via the SR effect. This is consistent with
previous studies where SR enhanced central mechanisms of
perception (van der Groen and Wenderoth, 2016). This finding
is also consistent with previous studies, which showed that visual
noise could improve visual motion perception in a random
dot motion (RDM) task (Mario et al., 2016). SR mechanisms
in human visual perception might be roughly explained with
moderate intensity visual noise assisting sub-threshold periodic
stimulation signals to exceed the firing threshold to increase
neural firing, and thus to improve the neural signal transmission
(Moss et al., 2004). Furthermore, the standard deviations of the
average recognition accuracies in the resonance points tended to
be the lowest points of the standard deviation curve, implying
that the SR effect not only increased the recognition accuracy but
also improved the stability of the detection of visual perception.

The motion stimulation can avoid visual fatigue when
compared to flicker stimulation (Xie et al., 2012). Similar to
the classification of flicker stimulation, the motion stimulation
can also be divided into two types, i.e., a complex motion
stimulation pattern and a simple motion stimulation pattern
(Xie et al., 2014; Han et al., 2018). In this study, the
motion-reversing checkerboard was chosen as the complex
stimulation pattern. According to previous studies, complex

flicker stimulation generates more pronounced SSVEP than
simple flicker stimulation (Vialatte et al., 2010); therefore,
this study assumed that complex motion stimulation achieves
better performance than simple motion stimulation with the
enhancement of SR effect. To test this hypothesis, the motion-
reversing single ring was chosen as contrast, which is a simple
stimulation pattern (see Figure 2A). The offline experimental
results showed that the magnitude of the evoked SSMVEP and
their Fourier components are higher than that of the single
ring stimulation at all stimulation frequencies in both non-
noise and noise-masked conditions. These results show that
the noise-masked complex motion stimulation pattern elicited
much stronger SSMVEP responses than the simple pattern, which
extends the findings of previous studies (Lalor et al., 2005). In
addition, the performances of both types of motion stimulation
patterns were compared if different numbers of channels (ranging
from one to six channels) were selected for the CCA method.
The recognition accuracies corresponding to each set of selected
channels were calculated. According to previous studies, multiple
channels might help to increase the recognition accuracy (Bin
et al., 2009). However, an excessive number of channels might
introduce redundant information, which would not significantly
improve the recognition accuracy (Arvaneh et al., 2011). Figure 6
shows that the proposed noise-masked motion checkerboard
stimulation pattern requires fewer channels to perform CCA
detection because the limited number of channels in this
stimulation might already contain sufficient information. These
results suggest that the visual noise-masked motion checkerboard
stimulation pattern designed in this study offers the advantage of
less recording channels needed for target detection, which thus
increases the convenience of the BCI application.

The performance of visual noise masked checkerboard
paradigm yielded satisfactory results including the speed,
accuracy, reliability and other aspects. In this study, a total
of 10 subjects participated in the online experiment. Among
them, six subjects achieved high accuracy and ITR (>90%
/ >32 bits·min−1). This indicated that the visual noise masked
checkerboard paradigm can provide excellent performance for
the BCI application. For the other four subjects, except S4, though
they do not achieve a very high accuracy, their performance
also benefited from the noise enhanced effect with accuracy
improvements of 15.20%± 8.16. Additionally, in future work, we
will explore other effective classifiers in order to obtain a better
performance for the noise enhanced BCI system.

CONCLUSION

Combining the SR effect with the advantage of the complex
motion stimulation pattern, the proposed noise-enhanced
motion checkerboard paradigm achieved a better and more
stable performance with regard to speed and accuracy. These
experimental results show that the motion checkerboard
stimulation, with optimal noise intensity, elicited a stable
SSMVEP with a short stimulation duration delay. Moreover, the
comparison of the accuracy curves indicates that the proposed
noise-enhanced motion checkerboard paradigm has the best
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performance in the four types of stimulation patterns. This
study demonstrates that the SR effect can be utilized in BCI
applications where it provides a considerable improvement of
BCI performance.
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