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Magnetic resonance imaging (MRI) has been proposed as a source of information for
automatic prediction of individual diagnosis in schizophrenia. Optimal integration of
data from different MRI modalities is an active area of research aimed at increasing
diagnostic accuracy. Based on a sample of 96 patients with schizophrenia and a
matched sample of 115 healthy controls that had undergone a single multimodal
MRI session, we generated individual brain maps of gray matter vbm, 1back, and
2back levels of activation (nback fMRI), maps of amplitude of low-frequency fluctuations
(resting-state fMRI), and maps of weighted global brain connectivity (resting-state fMRI).
Four unimodal classifiers (Ridge, Lasso, Random Forests, and Gradient boosting)
were applied to these maps to evaluate their classification accuracies. Based on the
assignments made by the algorithms on test individuals, we quantified the amount of
predictive information shared between maps (what we call redundancy analysis). Finally,
we explored the added accuracy provided by a set of multimodal strategies that included
post-classification integration based on probabilities, two-step sequential integration,
and voxel-level multimodal integration through one-dimensional-convolutional neural
networks (1D-CNNs). All four unimodal classifiers showed the highest test accuracies
with the 2back maps (80% on average) achieving a maximum of 84% with the Lasso.
Redundancy levels between brain maps were generally low (overall mean redundancy
score of 0.14 in a 0–1 range), indicating that each brain map contained differential
predictive information. The highest multimodal accuracy was delivered by the two-
step Ridge classifier (87%) followed by the Ridge maximum and mean probability
classifiers (both with 85% accuracy) and by the 1D-CNN, which achieved the same
accuracy as the best unimodal classifier (84%). From these results, we conclude that
from all MRI modalities evaluated task-based fMRI may be the best unimodal diagnostic
option in schizophrenia. Low redundancy values point to ample potential for accuracy
improvements through multimodal integration, with the two-step Ridge emerging as a
suitable strategy.

Keywords: multimodal integration, schizophrenia, machine learning, computer-aided diagnosis, convolutional
neural network, lasso, ridge
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INTRODUCTION

In recent years, there has been growing interest in employing
brain magnetic resonance imaging (MRI) datasets for medical
diagnosis (Wang and Summers, 2012). Specifically, in the field
of schizophrenia, a considerable number of studies have been
carried out to evaluate the predictive power of machine learning
algorithms based on MRI data (Wolfers et al., 2015; Arbabshirani
et al., 2017). To improve the accuracy levels provided by
unimodal data sources, some authors have explored ways to
combine the information contained in images generated by
different MRI modalities. These include methods with different
levels of data integration and of a very different nature,
ranging from simple post-classification majority-vote strategies
to multimodal fusion techniques (Calhoun and Adali, 2009; Sui
et al., 2013), including also multiple kernel learning (Peruzzo
et al., 2015; Zu et al., 2016), multimodal Gaussian process
classifiers (Young et al., 2013), and deep learning (Suk et al.,
2014; Shi et al., 2018) among other techniques. Accordingly,
multimodal MRI integration for clinical diagnosis is an open and
dynamic area of research, but one that still requires investigation
(Arbabshirani et al., 2017; Tulay et al., 2019).

Here, relying on two matched samples of patients with
schizophrenia (N = 96) and healthy controls (N = 115) for
which structural T1, task-based (nback task), and resting-state
fMRI had been acquired in a single MRI session, we pursue
three objectives: (i) to evaluate the differential discriminative
power of brain maps derived from the different modalities; (ii)
to quantify the degree to which the different types of images
have similar or distinct predictive patterns; and (iii) to explore
the added accuracy provided by a set of multimodal strategies
based on different levels of data integration, including novel
approaches such as a two-step data integration scheme and a
one-dimensional-convolutional neural network (1D-CNN).

MATERIALS AND METHODS

Sample, Image Acquisition, and
Preprocessing
One hundred fifteen healthy controls and 96 patients with
a diagnosis of schizophrenia according to DSM-IV criteria
underwent a single MRI session where images were acquired
with three different modalities. Both groups were matched for
age (mean = 36.5, SD = 10.6, and range = 18–63 in controls;
mean = 36.3, SD = 10.9, and range = 16–65 in patients), gender
(67% of males in both groups), and premorbid IQ as estimated
using the Word Accentuation Test (Test de Acentuación de
Palabras, TAP) (Del Ser et al., 1997) (mean TAP controls
23.17, mean TAP patients 22.37, t = 1.2373, p = 0.2176). MRI
acquisitions included a T1 structural image, a resting-state fMRI
sequence, and an fMRI acquisition obtained during performance
of the nback task (a working memory task). Acquisition
parameters as well as a detailed description of the preprocessing
steps applied to the images can be found in previous reports:
T1 (Salvador et al., 2017b), resting-state fMRI (Salvador et al.,
2017a), and the n-back task (Fuentes-Claramonte et al., 2019).

Images from all modalities were coregistered to the same
standard MNI152 T1 2 mm template. For the functional images,
this involved an initial linear registration to the individual T1
image followed by a non-linear transformation to the standard
MNI template. A generic mask only containing gray matter
voxels was generated by applying a threshold on the gray
matter probabilistic MNI template available from the FieldMap
SPM toolbox1. Finally, only voxels that contained data in all
modalities were included in the analyses. All participants gave
written informed consent prior to participation. All the study
procedures had been previously approved by the local research
ethical committee and adhered to the Declaration of Helsinki.

Brain Maps
From preprocessed images of the three different modalities, five
different brain maps were generated. Individual gray matter
voxel-based morphometry (GMVBM) maps were derived from
the T1 images. GMVBM maps were selected from among other
T1-related data formats because they had delivered optimal
accuracy levels in a previous study (Salvador et al., 2017b).

We used images containing the individual regression
coefficients for the two main contrasts of the n-bask task:
1back-vs.-baseline and 2back-vs.-baseline (Gevins and Cutillo,
1993; Fuentes-Claramonte et al., 2019). Finally, from the resting-
state fMRI sequences, we derived two brain maps containing
complementary information. On the one hand, we calculated
maps of the amplitude of low-frequency fluctuations (ALFF)
(Zang et al., 2007), and on the other hand, we generated weighted
global brain connectivity (GBC) maps, which are functional
connectivity maps based on averaging correlations between each
voxel and all the remaining gray matter voxels (Cole et al., 2010;
Salvador et al., 2016). Once the five different maps had been
generated (Figure 1, top), their resolution was downsampled
to 4 mm to reduce computational and memory-storage costs
(leading to each final map containing 19,660 voxels).

Unimodal Machine Learning
Initially, we applied four different machine learning algorithms
to evaluate the relative accuracy provided by the five brain
maps. These algorithms included two linear additive classifiers:
the Ridge and the Lasso logistic classifiers (Hastie et al.,
2009). While the Ridge, with its L2 regularization, provides
models in which all voxels had some weight, the Lasso (L1
regularization) provides sparse solutions with only few voxels
contributing to the predictive model. Specifically, the functions
contained in the glmnet package were applied through the R api
(Friedman et al., 2010).

To lessen the linearity and additivity restrictions, two tree-
based methods were further considered: a Random Forest and a
Gradient Boosting algorithm (Hastie et al., 2009). For Random
Forest, we considered 1000 trees and (number of voxels)1/2

variables per split, and for Gradient Boosting we carried
out an internal cross-validation for the selection of optimal
regularization and depth values. R libraries randomForest and
gbm were used for the calculations.

1https://www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap
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A 10-fold cross-validation was used to obtain unbiased
accuracy estimates of the different algorithms applied to the five
brain maps by quantifying success rates in the test individuals. In
each fold, prior to fitting the machine learning algorithms, linear
models accounting for age and gender effects were fitted to the
training sample. Later, coefficients of these models were applied
to each corresponding test sample.

Redundancy Assessment
A simple index to quantify the degree to which diagnostic
predictive traits in a type of brain map are also present in
another map (what we call here redundancy) can be easily derived
from the success rates achieved in test samples. If Prob(M1)
and Prob(M2) are the probabilities of successfully classifying a
specific individual using brain maps of type 1 and type 2, we
can simply quantify this redundancy with Prob(M2| M1) (i.e.,
the conditional probability of predicting successfully with map
2 provided that map 1 predicted the right class).

Conditional probabilities will be constrained by two limiting
scenarios:

(1) Total redundancy: All predictive features of map 1 are
contained in map 2. Then

Prob(M2|M1) = 1 (1)

(i.e., if map 1 classifies correctly an individual, then map 2
will also do it).

(2) Complete independence: Maps do not share any predictive
traits. Then

Prob(M2|M1) = Prob(M2) (2)

(i.e., the fact that map1 classifies correctly does not increase
the probability of success with map2).

Since conditional probabilities will be in the [Prob(M2), 1]
interval, a redundancy score (RSC) in the [0,1] interval will be
given by

RSC(M2|M1) = (Prob(M2|M1)− Prob(M2))/(1− Prob(M2))
(3)

Note that, obviously, RSC(M2| M1) will usually differ from
RSC(M1| M2). RSCs will be useful for evaluating the potential
increase in predictive power provided by merging both brain
maps in a single classification (i.e., while low RSC values will
indicate potential benefits from merging, RSC values close to
1 will not, as the maps will contain very similar predictive
information). In our study, estimates of RSC for each pair of maps
were obtained from the relative frequencies of individuals being
correctly classified with each, or both, brain maps.

Multimodal Integration
To take full advantage of the predictive power of the five brain
maps, we followed three strategies with increasing levels of
multimodal integration (Figure 1).

(1) Post-classification integration based on probabilities: After
building unimodal classification algorithms based on the five
brain maps and applying them to a test individual, this approach

FIGURE 1 | Diagram showing the three multimodal integrative strategies
starting from the five different brain maps pictured on top of the figure.
(1) Post-classification integration based on functions of output probabilities
delivered by unimodal classifiers. (2) Two-step sequential integration based on
an initial unimodal classification used to select the most informative voxels
from each map, and followed by a second classification only considering the
values of these voxels as inputs of the algorithm. (3) Voxel-level multimodal
integration with 1D-convolutional neural networks (1D-CNNs). In this last
approach, one-dimensional convolutions are applied across brain maps
generating new maps that are combinations of the original ones. This is
followed by a second fully connected layer linked to the two-node output layer
(patient–control labels).

considered simple functions of the five outcome probabilities
(delivered by the five brain maps) such as the mean probability
or the maximum probability, finally classifying the individual
according to this latter value. Alternatively, the log-odds of the
same outcome probabilities but calculated for individuals in
the training sets were considered as independent variables in
a logistic model with diagnosis as the dependent variable. The
fitted logistic model was then used to predict diagnosis for test
individuals (using the log-odds of their outcome probabilities
from unimodal algorithms as predictors).

(2) Two-step sequential integration: After applying unimodal
machine learning on the training sets, the subset of “most
relevant” voxels from each brain map was merged in a single
dataset that, in turn, was used to train a final model. In Lasso
and Ridge, relevance was defined by the magnitude of regression
coefficients in the logistic model. Since Lasso is a sparse method,
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we selected all voxels with non-null coefficients, while for Ridge
20% of the voxels with the largest coefficients (in absolute value)
were retained. For both tree-based methods, importance scores
were used to select voxels. As Gradient Boosting showed a high
level of sparsity, all voxels with non-zero importance scores
were selected. For Random Forests the same 20% criterion as
in Ridge was used.

(3) Voxel-level multimodal integration with 1D-CNNs: Unlike
previous approaches, applying 1D convolutions at the voxel level
across brain maps may permit finding optimal, within voxel
combinations of modalities. In our study a two-layer neural

network with one 1D convolutional layer including 10 filters
and a standard fully connected layer with 50 hidden units was
considered (Figure 1). Other parameters used were as follows:
number of iterations = 50, batch size = 4, learning rate = 0.001,
momentum = 0.9, wd = 0.0005, activation function = Relu.
Network training was carried out with the mxnet library2.

The same 10-fold cross-validation scheme previously used for
unimodal machine learning was applied in all analyses based on

2https://mxnet.apache.org/

FIGURE 2 | Plots of accuracy levels achieved by the four unimodal algorithms applied to the five brain maps. Mean accuracies extracted from test samples are
shown by a continuous line. 2back maps show the strongest predictive power using all algorithms and GBC maps deliver the weakest. Gray dashed lines, 95%
bootstrap intervals of mean accuracies and gray dotted lines, maximum and minimum accuracies delivered by the 10-fold scheme. 0.5 accuracy indicates chance
accuracy (no real predictive power).
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FIGURE 3 | Color-coded values for the redundancy scores (RSC) that quantify the degree to which predictive features of Brain map 2 are also present in Brain map
1. An RSC value close to 1 indicates that map 2 brings almost no predictive information apart from that contained in map 1 (high redundancy) while a value of RSC
close to 0 indicates that map 1 contains hardly any of the predictive patterns present in map 2 (both maps convey independent information). The highest RSCs tend
to occur between maps derived from the same image modality, although these hardly ever reach values >0.50. Most of the RSCs are well below this number,
indicating very low levels of redundancy and potential increases in accuracy through multimodal integration. cope1: 1back maps; cope2: 2back maps.

multimodal integration in order to secure unbiased accuracies
from the test data.

RESULTS

Unimodal Machine Learning
The main results from applying the different machine learning
algorithms to the five brain maps are shown in Figure 2. In
all four unimodal algorithms 2back maps showed the highest
test accuracies (80% on average), achieving a maximum of
84% with Lasso. In contrast, GBC maps tended to deliver the
lowest values (with an overall average of 60%). GMVBM (73%),
1back (65%), and ALFF (71%) maps had intermediate accuracy
values. All accuracies are well >50%, indicating above-chance
predictive power.

Redundancy Assessment
As shown in Figure 3, in general redundancy levels between
brain maps were quite low, thus indicating that each brain map

contained differential predictive information. As expected, the
highest redundancies were observed between pairs of maps that
came from the same MRI modality (i.e., 1back-2back maps and
ALFF-GBC maps) but even these rarely reached RSCs of 0.5 [this
only occurred for RSC(GBC|ALFF) = 0.51 with Random Forests].
In contrast, much lower redundancies were observed between
maps derived from different MRI modalities, which in some
cases showed almost complete independence in their predictive
information, with RSC values as small as 0.002. Overall mean RSC
was 0.14. In all, redundancy assessment indicated ample potential
for accuracy improvements through multimodal integration. See
the tables in the Supplementary Material 1 for numerical values
of the RSC and the conditional probabilities.

Multimodal Integration
Accuracy levels achieved by the first two multimodal integration
strategies (i.e., probability based and two-step sequential
integration) are shown in Figure 4 together with the accuracies
delivered by their respective best unimodal models and by
the 1D-CNN classifier. Apart from the Ridge algorithm where
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FIGURE 4 | Accuracy levels reported by probability-based and two-step multimodal integration approaches. Mean accuracy (black line) and its bootstrap 95%
confidence levels (dashed lines) are shown for each classifier. Mean accuracies achieved by the best unimodal classification (red line) and by the 1D-CNN algorithm
(green line) are also shown for the purposes of comparison. Max prob, maximum output probability algorithm; mean prob, mean output probability algorithm; logistic,
logistic model on the probabilities.

the highest multimodal accuracies were achieved, all other
multimodal accuracies were lower than that of the 1D-CNN
classifier. Even so, the 1D-CNN classifier, with 84% accuracy,
did not outperform the best unimodal result (i.e. Lasso on
the 2back images, which also had 84% accuracy). The highest
accuracies of all were obtained by the two-step Ridge classifier
(87% accuracy) followed by the Ridge maximum and mean
probability classifiers (both with 85% accuracy). From Figure 4 it
can also be concluded that, while Ridge is an algorithm that seems
to adjust well to multimodal integration, Lasso is not – as with

the later multimodal strategies provide clearly lower accuracies
than the best unimodal classifier. A similar pattern, although not
as clear-cut as in Lasso was observed for Gradient Boosting, while
Random Forests delivered multimodal accuracies similar to those
from the best unimodal classifier.

The anatomical overlap between voxels selected in the first
step of the sequential Ridge algorithm (the best performing
algorithm) was remarkably low (Figure 5). As expected, the
largest overlaps occurred between maps from the same image
modalities (i.e., 1back-2back 39.5%, ALFF-GBC 25.6%) while the
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FIGURE 5 | Images showing, for each pair of brain maps, the degree of
overlap between voxels selected in the first step of the sequential Ridge
algorithm. Percentages of overlap are given for each pair. Chance overlap
under a scenario of complete spatial independence is 4%.

remaining pairs had values near 20%. Although this is clearly
larger than the 4% overlap expected by complete chance (as the
top 0.2 voxels were selected for each map), the observed levels of
spatial overlap were, in general, low. This is in agreement with the
low levels of redundancy reported in Figure 3. Supplementary
Figure 1 shows the distribution of values for the regression
coefficients selected in the first step of the two-step Ridge
classifier. As a summary of all findings Figure 6 shows the highest
test accuracy provided by the unimodal classifiers and by each one
of the three multimodal integration strategies.

DISCUSSION AND CONCLUSION

The main results from the four unimodal classifiers have given
the highest predictive power to the 2back maps, suggesting that
task-based fMRI may have a more relevant role than other
MRI data sources in diagnostic prediction. On the other hand,
although multimodal classifiers have not led to accuracies much
higher than those provided by the unimodal classifiers, the low
redundancy levels observed between modalities indicate that
multimodal integration is a potentially valuable strategy that
should be pursued in future studies.

It is remarkable that a single brain map (the 2back map)
allowed for a high accuracy between patients and controls, and
this is quite likely to be behind the best accuracies reached
by the two-step Ridge classifier (87%). This figure is higher
than the accuracies reported in recent multimodal classification

FIGURE 6 | Accuracies achieved by the best-performing algorithm in the
unimodal setting and for the three multimodal integrative strategies, namely,
unimodal Lasso applied to the 2back maps, the mean of the output
probabilities from Ridge (which performed equally well as the maximum
probability algorithm), the two-step sequential Ridge algorithm, and the
one-dimensional convolutional neural network. Continuous line, mean
accuracies; gray dashed lines, 95% bootstrap intervals of mean accuracies;
gray doted lines, maximum and minimum accuracies delivered by the 10-fold
scheme.

studies in schizophrenia such as the 83% of Wu et al. (2018)
and substantially higher than the 75% of Cabral et al. (2016).
However, these studies did not include task-based fMRI data
as in ours. It is noteworthy that classification studies involving
patients with schizophrenia in which task fMRI data were used
for prediction have usually reported high accuracy levels (Wolfers
et al., 2015; Arbabshirani et al., 2017) although some of these
studies, especially the older ones, may have been unreliable due
to small sample sizes.

Interestingly, the best-performing multimodal classifiers in
our study were based on the Ridge logistic regression, which is a
rather simple and inflexible algorithm (it implies both additivity
and linearity). This is in contrast with the general trend in the
broad machine learning community, which favors more flexible
methods based on neural networks and the gradient boosting
algorithm (Chollet, 2018). Although success of the Ridge classifier
could be explained by the specific nature of the information
contained in the images, it is also probable that its performance
over more flexible methods is partly due to the fact that the
latter usually require substantially larger amounts of data to
exceed other methods. In this sense, our proposed 1D-CNN
could have been better trained, its structure could have been
enriched with the inclusion of several hidden layers, and it might
have delivered higher accuracies if a larger dataset was available.
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Of interest are the low levels of redundancy reported between
the different brain maps. These low redundancies, together with
the small degree of anatomical overlap observed between voxels
of the different maps as selected in the first step of the sequential
Ridge algorithm, point to valuable exclusive information and
to a wide margin of potential improvement by multimodal
integration. In spite of this, such improvement was not large
(from 84 to 87%), reflecting the intrinsic difficulties of efficiently
combining information from different sources. At the same time,
it may have been unrealistic to expect accuracies significantly
larger than those achieved as the patient sample used in the
study was rather heterogeneous, including individuals with a
wide range of clinical profiles and of illness durations, ranging
from subjects on a first episode to subjects with many years of
illness evolution.

The profile of the patient sample has also other implications
for the applicability of the developed algorithms. Ideally, the
development of an MRI-based diagnostic tool should be based
on and aimed at the appropriate target population, which in the
case of schizophrenia would be individuals at risk or undergoing
a first episode of psychosis. To date, however, there are few studies
of multimodal MRI integration entirely based on samples of first-
episode patients. Two examples are the study by Peruzzo et al.
(2015), which used small sample sizes or the more recent study
by Ebdrup et al. (2018), which found no predictive power in
the MRI datasets.

Finally, it is also appropriate to consider another limitation
of the study. As explained in the section “Materials and
Methods,” downsampling to 4-mm voxels was made in order
to reduce computational and memory-storage costs. Machine
learning algorithms heavily rely on computational power, and
their implementation may easily lead to the saturation of
computational resources. In our study, this was especially
relevant as, due to the multimodality, we were dealing with
several datasets for each individual. Reduction of spatial
resolution through voxel downsampling or ROI averaging may
lead to some loss of relevant information. Still, it is difficult to
evaluate the extent of this effect as downsampling differentially
affects each modality and it has been shown to depend on the
specific target groups (Gardumi et al., 2016; Mandelkow et al.,
2017; Lancaster et al., 2018).

In summary, several conclusions may be drawn from our
study. First, out of all MRI modalities evaluated, task-based
fMRI appears to be the best option for unimodal diagnosis in
schizophrenia. Secondly, the low levels of redundancy found
between modalities suggest that multimodal integration is a
potentially valuable strategy. Specifically, a simple and robust
two-step algorithm based on the Ridge regression emerges as
a suitable approach to multimodal diagnostic prediction in
schizophrenia. Nevertheless, new studies based on samples of

high-risk and first-episode patients will be required to develop
valid multimodal MRI diagnostic tools in the disorder.
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