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A unique clinical course of Alzheimer’s disease (AD), beginning with memory deficit
as the earliest symptom, is well-correlated with a progressive pattern of intracellular
aggregates of tau (neurofibrillary tangles), which spread from the medial temporal
lobe to other brain areas in a stereotypical manner. Recent findings from basic
research using in vitro and in vivo models demonstrated that pathological forms of
extracellular tau can be taken up by cells and induce intracellular tau aggregates.
On the basis of these neuropathological observations and experimental findings,
the “tau propagation hypothesis” has been proposed, in which the stereotypical
spreading of the tau pathology observed in the brain of AD patients can be explained
by the interneuron transfer of the pathological form of tau. The concept of tau
propagation remains controversial, and many unsolved questions exist; however, it has
been attracting attention as a potential therapeutic target for halting AD progression.
This article reviews the recent findings regarding the tau propagation hypothesis,
including the basic concept and evidence of interneuron tau transfer, potentials as a
diagnostic and therapeutic target, and unsolved questions for a better understanding of
tau propagation.
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INTRODUCTION

Tau, a microtubule-associated protein mainly expressed in neurons, is involved in polymerizing
microtubules and maintaining microtubule stability under physiological conditions (Grundke-
Iqbal et al., 1986; Lewis and Dickson, 2016; Wang and Mandelkow, 2016). The majority of soluble
tau is bound to microtubules, stabilizing them by shifting the equilibrium from free tubulin and
microtubules toward polymerization. The physiological functions of tau are highly regulated by a
wide range of posttranslational modifications, including phosphorylation, acetylation, glycation,
isomerization, nitration, SUMOylation, and ubiquitination (Morris et al., 2011). The alteration
of these modifications can affect tau functions and potentially lead to pathological conditions.
Hyperphosphorylation of tau causes its detachment from microtubules, thereby impairing the
axonal stability and trafficking necessary for normal neuronal activities (Morris et al., 2011).
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Research indicates that the interaction of tau with
microtubules is not as stable as previously believed (Janning et al.,
2014), and tau exerts diverse functions that interact with multiple
binding partners (Morris et al., 2011). Using single-molecule
tracking experiments, Janning et al. (2014) showed that tau
interacts with microtubules in a highly dynamic manner, with
dwell time in the milliseconds range. The dynamic behavior of
tau may underlie the regulation of microtubule dynamics and
other functions coordinated with multiple binding partners.
Tau interacts with plasma membrane-binding protein annexins,
which may contribute to the enrichment and distribution of
tau intracellularly and contribute to tau’s release from the cells
(Gauthier-Kemper et al., 2018). The rapid, dynamic behavior of
tau may be essential for its non-microtubule-related functions
and its interactions with multiple binding partners in the cell
(Morris et al., 2011).

Tau is also known as a major component of neurofibrillary
tangles (NFTs), one of the cardinal pathological features in
Alzheimer’s disease (AD) (Hyman, 1997; Serrano-Pozo et al.,
2011). A cross-sectional neuropathological study showed that
the tau pathology of AD typically spreads from one area to
another in a stereotypical pattern along a neural network (Braak
and Braak, 1991). In early stage AD, NFTs appear in the
transentorhinal cortex in the medial temporal lobe and later
spread across the entire cerebral cortex via the hippocampal
areas (Braak staging of NFT) (Braak and Braak, 1991). The
mechanism underlying the stereotypical progression pattern of
NFT in AD has not been elucidated; however, findings from
recent studies suggest that tau pathology potentially spreads
by the interneuronal transfer of the pathological from of
tau (Figure 1; Hyman, 2014; Mudher et al., 2017; Gibbons
et al., 2019). This phenomenon, called “tau propagation,”
gains attention as a pathological hypothesis explaining the
reason why AD progresses over time and also as a new
therapeutic target for AD.

TAU PATHOLOGY IN THE BRAIN OF
PATIENTS WITH DEMENTIA

Tauopathy and Isoforms of Tau
A class of neurodegenerative disorders characterized by
intracellular aggregates of tau in the brain, including AD, Pick’s
disease, corticobasal degeneration, progressive supranuclear
palsy, and argyrophilic grain disease, are collectively called
tauopathy. Six isoforms of tau are known to be present in
the human adult brain, and, in terms of the number of
microtubule-binding repeats, tau isoforms are divided into two
groups: 3-repeat and 4-repeat tau. A distinct pattern of tau
accumulation is observed in each tauopathy: tau aggregates are
present in either or both forms of tau isoforms – for example,
3-repeat tau in Pick’s disease; 4-repeat tau in corticobasal
degeneration, progressive supranuclear palsy, and argyrophilic
grain disease; and both 3-repeat and 4-repeat tau in AD
(Lewis and Dickson, 2016). The differences in biochemical
characteristics, including isoforms, of accumulated tau, are
closely related to the pattern of progression of the tau pathology

FIGURE 1 | Propagation of tau pathology in Alzheimer’s disease (AD) brain.
The tau pathology in the AD brain [neurofibrillary tangles (NFTs)] is known to
spread along a neural network in a stereotypical manner. Interneuron transfer
of the pathological form of tau may underlie the stereotypical progression of
AD neuropathology (tau propagation hypothesis).

in each tauopathy (initial region and/or patterns of subsequent
progression), which is important in understanding the tau
propagation hypothesis.

Progression Pattern of Tau Pathology in
the Brain of AD Patients
Neurofibrillary tangles in AD patients appear first in the
transentorhinal cortex or the entorhinal cortex in the medial
temporal lobe (Braak stages I and II), then gradually progress
to the hippocampal region (Braak stages III and IV), and finally
involve the association neocortex or the primary areas of the
neocortex (Braak stages V and VI) (Serrano-Pozo et al., 2011).
This pattern of NFT progression closely resembles the clinical
course of AD, which starts with severe memory deficit and slowly
progresses to another cognitive dysfunction, indicating that the
spread of the tau pathology is deeply associated with neurological
dysfunction (Qian et al., 2017; DeVos et al., 2018). Since
the progression of the tau pathology appears to spread along
neuroanatomical connections, in other words, a brain region to
another via axonal projections, the tau propagation hypothesis
has been proposed, in which the pathological form of tau transfers
between neurons (Clavaguera et al., 2013; Walker et al., 2013).

TAU PROPAGATION

Tau Propagation in vitro
In vitro experiments performed by Frost et al. (2009) showed
that a tau seed added to a culture medium can be taken up into
cells via endocytosis and form new intracellular aggregates of tau.
This finding provided theoretical evidence for the interneuronal
transfer of tau as a mechanism underlying tau propagation.
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TABLE 1 | The nature of tau species involved in propagation.

The nature of tau species Origin of tau seeds Experimental model References

Tau monomer Recombinant tau Tau uptake in cell culture model Michel et al. (2014)

Tau trimers Recombinant tauBrain-derived
tau from AD brain

Tau uptake in cell culture model Mirbaha et al. (2015)

Tau oligomers (dimer/trimer) Brain-derived tau from AD brain Intracereberal injections of tau seeds in
mouse model

Lasagna-Reeves et al. (2012)

Low-molecular-weight aggregates (spherical
oligomers with diameters ranging from 10 to 30 nm)

Recombinant tau Trans-synaptic transfer of tau in
microfluidic devices

Wu et al. (2013)

Phosphorylated large tau oligomers (>10 mers) Brain-derived tau from
tau-transgenic mice

Tau uptake in cell culture
modelIntracereberal injections of tau
seeds in mouse model

Jackson et al. (2016)

Phosphorylated high-molecular-weight tau
(>600 kDa)

Brain-derived tau from AD
brainBrain-derived tau from
tau-transgenic mice

Tau uptake in cell culture
modelTrans-synaptic transfer of tau in
microfluidic devicesIntracereberal
injections of tau seeds in mouse model

Takeda et al. (2015)

Tau aggregates Recombinant tau Tau uptake in cell culture model Frost et al. (2009)

Tau aggregates Exosomal tau from primary
neurons or cerebrospinal fluid
of AD patients

Tau uptake in cell culture
modelTrans-synaptic transfer of tau in
microfluidic devices

Wang et al. (2017)

Tau fibrils Recombinant tau Intracereberal injections of tau seeds in
mouse model

Iba et al. (2013)

Tau fibrils Brain-derived tau from AD brain Intracereberal injections of tau seeds in
mouse model

Guo et al. (2016)

AD, Alzheimer’s disease.

Following the paper by Frost et al. (2009) multiple research
groups reported on the mechanisms of the cellular uptake
of extracellular tau and subsequent intracellular aggregation.
A better understanding of the biochemical features of the tau
involved in propagation is important in developing therapeutic
strategies (Sanders et al., 2014; Panza et al., 2016). The first report
by Frost et al. (2009) showed that the fibrillar form of tau is
more easily taken up into the cells than the monomeric form
of tau. On the other hand, Mirbaha et al. (2015) reported that
the tau trimer is the minimal unit that is capable of inducing
intracellular aggregates of tau. Wu et al. (2013) and Takeda
et al. (2015) performed experiments using a unique chamber
for neuronal cell culture with a microfluidic chip demonstrating
that the tau oligomer is more easily propagated than the tau
monomer. Another report demonstrated that the monomeric
form of tau can mediate tau propagation (Michel et al., 2014).
To date, which form of tau is really involved in interneuronal
propagation remains controversial (Table 1).

The aggregation and propagation properties of tau also
depend on its isoforms (Nonaka et al., 2010; Dinkel et al.,
2011). Variations of the tau isoform can affect posttranslational
modification, such as the fragmentation and phosphorylation
of tau, which can potentially modify intracellular uptake and
aggregation capability (Despres et al., 2017). The propagation
activity of tau can also be affected by the type of genetic mutation
or the origin of tau (synthetic or brain-derived tau protein)
(Lewis and Dickson, 2016).

Tau Propagation in Animal Models
Clavaguera et al. (2009) reported that intracellular tau aggregates
can be induced in the mouse brain that was injected

with seed-competent tau aggregates, demonstrating that tau
propagation may occur even in vivo. In this experiment, brain
homogenates from tau-transgenic mice that overexpress the
mutant form of tau in the brain were injected into another
mouse brain that does not have the tau pathology; 12 months
later, tau aggregates were observed in the neurons of the
recipient mouse brain.

In 2012, three research groups independently reported almost
similar mouse models of tau propagation (de Calignon et al.,
2012; Harris et al., 2012; Liu et al., 2012). Transgenic mice
overexpressing human mutant tau (P301L) only in the entorhinal
cortex were generated using a region-specific promoter, and
the neuropathological changes were examined over time up to
2 years. First, the tau pathology appeared in the entorhinal
cortex (where the human mutant tau was overexpressed) at the
age of 12 months and then appeared in the neurons of the
dentate gyrus, which has strong neuroanatomical connection to
the entorhinal cortex but is not supposed to express the human
mutant tau, at the age of about 18 months. These experiments
demonstrated that, although there are some problems/limitations
including the region specificity of the promoter, tau pathologies
that comprise the human mutant tau in neurons of the
entorhinal cortex can potentially spread likely via synaptic
transmission to neurons in the dentate gyrus, a major target of
axonal projections.

Along the same line, Iba et al. (2013) and Ahmed et al.
(2014) conducted in vivo experiments wherein the fibrillar
form of recombinant tau, or tau-transgenic mouse brain-
derived tau, was injected into a specific region of the mouse
brain that does harbor the tau pathology. Newly induced tau
pathology appeared in the brain regions along a neural network
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from the injection site. The region where the tau pathology
appeared was not related to the distance from the tau seed
injection site but to a neuroanatomical connection (along
the axonal projection), implying that tau propagation possibly
occurs via synapses.

Mechanism of Tau Propagation
Although researchers have demonstrated that certain forms of
pathological tau have the property of transmission between
neurons (Calafate et al., 2015), the molecular mechanisms
underlying tau propagation are still largely unknown. The
interneuronal propagation of tau is divided into three steps: the
intracellular pathological tau (1) is released into the extracellular
space, (2) is taken up by recipient cells, and (3) forms new
intracellular aggregates in the recipient cells (Figure 2).

Regarding tau release into the extracellular space, passive
leakage from degenerated cells and tau dissociation from ghost
tangles likely contribute to it. Recent studies have shown a
possibility that physiological active tau release could occur
without neurodegeneration (Yamada et al., 2011, 2014; Pooler
et al., 2013), which may be involved in tau propagation
(Wu et al., 2016). The cellular uptake of extracellular tau
can potentially be mediated by endocytosis (Holmes et al.,
2013) occurring on the cell surface or during synaptic
transmission. A recent study by Falcon et al. (2018) showed
that seed-competent tau enters cells via clathrin-independent
endocytosis and escape from damaged endomembranes into
the cytosol, triggering cytosolic tau aggregation. The galectin-
8-dependent autophagy system mediated the delivery of
tau seeds from the endo-lysosomal pathway to the cytosol,

implying a role for autophagy in intracellular tau aggregation
and propagation.

Tau propagation is known to occur in both directions
(retrograde and anterograde) along a neural network (Ahmed
et al., 2014; Takeda et al., 2015), which indicates that tau
propagation does not necessarily occur only via synaptic
transmission. Asai et al. and other researchers reported that
exosomes are also involved in the mechanism that mediates
interneuronal tau transfer (Asai et al., 2015; Wang et al., 2017).

Propagation of Other Pathological
Proteins
Researchers have reported on other proteins implicated in
neurodegenerative diseases, including amyloid-β (Petkova et al.,
2005; Watts et al., 2014; Sengupta et al., 2016; Condello and
Stoehr, 2018; Ruiz-Riquelme et al., 2018) or α-synuclein (Dehay
et al., 2016; McCann et al., 2016; Steiner et al., 2018), which
show the key biochemical properties and capabilities of cell-to-
cell propagation. Although they show distinct distributions in
the human brain, misfolded forms of these pathological proteins
may propagate through mechanisms similar to tau (Goedert
et al., 2017). In the brains of AD patients, amyloid-β plaques
develop in the basal temporal and orbitofrontal cortex in the
early phase before reaching other areas, such as the neocortex,
hippocampal formation, and basal ganglia, and then finally
spreading to the lower brain stem. Inclusions of α-synuclein first
develop in the peripheral nervous system and olfactory bulb,
ascend to the brainstem and midbrain, and then spread to the
basal forebrain and neocortex (Braak et al., 2003; Goedert et al.,
2017). Distinct conformations of each pathological protein may

FIGURE 2 | Neuron-to-neuron transfer of tau. The processes involved in tau propagation can be divided into three basic steps: (1) the pathological form of tau is
released into the extracellular space from the donor cell; (2) the pathological tau released into the extracellular space is taken up by recipient cells; and (3) the
pathological tau taken up into the recipient cells forms new intracellular aggregates. Tau exists in various forms in terms of biochemical property, including
monomeric, oligomeric, truncated, and phosphorylated forms. Additionally, tau may undergo a wide range of posttranslational modifications, including acetylation,
glycation, isomerization, nitration, SUMOylation, and ubiquitination or a mixture of these modifications. It is still largely unknown which forms of tau are released into
the extracellular space and involved in tau propagation.
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determine the distribution pattern and speed of spread and may
underlie the phenotypic diversity of neurodegenerative diseases.
Although the molecular mechanisms mediating the propagation
of pathological proteins have not been fully understood, they can
be specific targets for therapeutic interventions.

UNSOLVED QUESTIONS REGARDING
TAU PROPAGATION HYPOTHESIS

Tau propagation is an intriguing pathological hypothesis
for explaining the fundamental characteristics of dementia
that progresses over time, but many questions regarding
its mechanisms or the validity of the hypothesis still
remain unsolved.

It is necessary to carefully examine how exactly the tau
pathology in cultured cells and brains of animal models reflects
the tau pathology observed in the human brain. So far, there is
no clear evidence showing biochemical and biological similarities
between the structures of tau aggregates in cultured cells or
mouse brains and those of the NFTs in AD patients.

In humans, the accumulation of tau aggregates is accompanied
by various cognitive dysfunctions associated with neuronal death;
however, with some exceptions, the tau pathology induced in
cell lines or mouse brains is often not accompanied by neuronal
death or dysfunction. This may be because the tau seeds used
in experimental models for propagation study are not identical
to the species that exert neurotoxicity in human tauopathies.
Moreover, scientists do not know which species of tau is really
involved in neurotoxicity (Ballatore et al., 2007). Propagation
property and neurotoxicity may be independent features of
distinct forms of tau. Additionally, most experiments based on
cell or animal models with overexpression of the mutant form of
tau may not accurately reflect the brain pathology in patients with
sporadic AD without genetic mutation.

There are some issues regarding the validity of the concept of
tau propagation. In the tau propagation hypothesis, the medial
temporal lobe is considered an initial site of origin for tau
propagation starting in the brain of AD patients. However,
the tau pathology in AD is known to begin in areas such
as the dorsal raphe nuclei (Grinberg et al., 2009) and the
locus coeruleus (Satoh and Iijima, 2019) or it can also begin
in the area of the neocortex rather than the medial temporal
lobe (Braak and Braak, 1991; Lewis and Dickson, 2016). The
dorsal raphe nuclei and locus coeruleus are connected with
the transentorhinal cortex where tau pathology develops in
the early stages of AD. These nuclei may be affected by tau
pathology even before the transentorhinal cortex, and they
may act as an initiation site for the subsequent spread of
tau pathology throughout the brain (Grinberg et al., 2009;
Satoh and Iijima, 2019).

The heterogenicity of the distribution of the AD tau pathology
should also be taken into consideration when understanding
the propagation hypothesis; the initial site of origin for tau
propagation may not be limited to only one site, but multiple
brain regions could be the starting points of propagation
instead. Tau aggregates also appear in glial cells in some types

of tauopathies, but the applicability of the tau propagation
hypothesis to glial tau pathology remains unclear.

Some fundamental issues have not been solved, including why
conformational changes and aggregation initiate at the initial
site of origin for tau propagation. What is the most upstream
trigger of tau aggregation in the initial site? In human tauopathy,
even in cases caused by genetic mutation in which all cells are
supposed to uniformly possess the same mutation, a striking
laterality of neuropathology is occasionally observed. Can the
tau propagation hypothesis explain the asymmetricity observed
in some cases of tauopathy? These unsolved questions need
to be discussed and answered for a better understanding of
tau propagation.

FUTURE DIRECTIONS: TOWARD
DIAGNOSIS AND TREATMENT BASED
ON THE TAU PROPAGATION
HYPOTHESIS

A stereotypical pattern of the progression of the tau pathology
in the brains of patients with sporadic AD may be explained by
the tau propagation hypothesis, which can potentially lead to
the development of diagnostic and treatment strategies for AD
(Sigurdsson, 2016; Takeda, 2019).

Takeda et al. (2016) examined the biological and biochemical
properties of brain extracellular tau from various sources
including lumbar cerebrospinal fluid (CSF) from AD patients.
They found that the bioactive tau species involved in propagation
is present in the CSF from AD patients, and its concentrations
were significantly higher than those in control subjects or patients
with frontotemporal dementia. This finding suggests that the tau
species involved in propagation could be useful as a biomarker
for AD, specifically for monitoring tau propagation activity.

The tau propagation hypothesis, based on the concept that
the clinical progression of AD is linked with the spreading
of the tau pathology, supports the idea that clearing the
tau involved in propagation may slow the spread of the tau
pathology and possibly of cognitive decline (Nicholls et al.,
2017; Nobuhara et al., 2017). The potential efficacy of antibody-
based therapeutics targeting tau has been demonstrated in several
studies using animal models (Yanamandra et al., 2013; Pedersen
and Sigurdsson, 2015), although it is unclear how an antibody
can exert its therapeutic efficacy against an intracellular protein
such as tau. In this regard, the tau propagation hypothesis may
provide a rationale for the antibody-based strategy targeting tau
propagation that could be mediated by extracellular tau, which
can be captured and neutralized by an anti-tau antibody; the
antibody does not need to be incorporated into the cell to exert
its therapeutic efficacy (Takeda, 2019).

Identifying the most efficient epitope should be critical in
therapeutic development for tau-based immunotherapy. So far,
various antibodies against distinct epitopes of tau have been
tested (Takeda, 2019). Some antibodies successfully ameliorated
the cognitive deficit and neuropathology in mouse models.
Nobuhara et al. (2017) used a cell culture model to assess the
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effect of multiple anti-tau antibodies on tau propagation to
identify suitable target epitopes for blocking tau uptake and
propagation. The blocking efficacy varied depending on the
epitope that each anti-tau antibody targeted, and the antibody
against the N-terminal and phospho-site of tau showed the most
effectiveness (Nobuhara et al., 2017). Other processes involved
in tau propagation, including tau release, cellular uptake, and
intracellular aggregation, could be therapeutic targets for halting
the spread of the tau pathology, which need further investigation.

CONCLUSION

This article reviewed the recent findings regarding the tau
propagation hypothesis, namely, the basic concept and evidence
of tau propagation, potential as a diagnostic and therapeutic
target, and unsolved questions. The hypothesis has been
attracting considerable attention in the research field of
ADbecause it may explain the stereotypical progression of the tau

pathology in the brain of AD patients and provides a rationale for
tau-based therapies. Numerous questions regarding the detailed
molecular mechanisms underlying the tau propagation remain
unanswered. Identifying the specific tau species involved in
propagation, molecules mediating tau release and uptake, and
surrogate markers for propagation activity should be the key
research targets for tackling tau propagation.
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