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Objective: Electroencephalogram (EEG) based brain–computer interfaces (BCI) in
motor imagery (MI) have developed rapidly in recent years. A reliable feature extraction
method is essential because of a low signal-to-noise ratio (SNR) and time-dependent
covariates of EEG signals. Because of efficient application in various fields, deep learning
has been adopted in EEG signal processing and has obtained competitive results
compared with the traditional methods. However, designing and training an end-to-end
network to fully extract potential features from EEG signals remains a challenge in MI.

Approach: In this study, we propose a parallel multiscale filter bank convolutional neural
network (MSFBCNN) for MI classification. We introduce a layered end-to-end network
structure, in which a feature-extraction network is used to extract temporal and spatial
features. To enhance the transfer learning ability, we propose a network initialization
and fine-tuning strategy to train an individual model for inter-subject classification on
small datasets. We compare our MSFBCNN with the state-of-the-art approaches on
open datasets.

Results: The proposed method has a higher accuracy than the baselines in intra-
subject classification. In addition, the transfer learning experiments indicate that our
network can build an individual model and obtain acceptable results in inter-subject
classification. The results suggest that the proposed network has superior performance,
robustness, and transfer learning ability.

Keywords: EEG, BCI, motor imagery, deep learning, convolutional neural networks

INTRODUCTION

Brain–computer interfaces (BCI) establish a direct pathway between the human brain and a
computer via brain signal recording and decoding techniques (Lance et al., 2012). Early BCI systems
were mainly used for stroke rehabilitation or to improve quality of life for the disabled patients. BCI
have been applied to control the devices such as electric wheelchairs (Galán et al., 2008), text spellers
(Guan et al., 2005), and prosthetic artificial limbs (Schwartz et al., 2006). Recently, BCI have been
widely applied not only for the disabled, but also for healthy people (Lance et al., 2012; Van Erp et al.,
2012; Miranda et al., 2015; Saproo et al., 2016). Such BCI are mainly based on non-invasive systems
with electroencephalogram (EEG) features, which may be integrated into wearable devices (Mullen
et al., 2013, 2015). Functional magnetic resonance imaging (fMRI) based BCI are mainly used in
medical treatment (Dong et al., 2014, 2019; Jin et al., 2018). However, it is difficult for such BCI to
achieve real-time interaction. In general, BCI contain five major processing steps (Nicolas-Alonso
and Gomez-Gil, 2012; Vernon et al., 2018): data collection, preprocessing (Bashashati et al., 2007),
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feature extraction (Mcfarland et al., 2006), classification (Lotte
et al., 2007), and feedback. Because EEG signals have a low signal-
to-noise ratio (SNR) and time-dependent covariates, traditional
research relies on expert-level experience and prior domain
knowledge to design the paradigms and train the classifiers
(Schlögl et al., 2005; Wang et al., 2005; Mcfarland et al., 2006;
Lotte et al., 2007; Herman et al., 2008; Hsu and Sun, 2009; Suk and
Lee, 2013) that would only apply to certain datasets (Wang et al.,
2004). It is difficult to extend such strategy to other experiments
and datasets (Krepki et al., 2007; Meng et al., 2016).

As a classic paradigm, motor imagery (MI) has been
researched and developed for decades. Its physiological basis is
that the body movement can produce mu (8–12 Hz) and beta
(16–26 Hz) rhythms with event-related (de-)synchronization
(ERS/ERD) in the motor sensory areas of the brain. Some
research on MI-based devices (such as wheelchairs, prosthetics,
and robots) has medical applications and provides human
augmentation technologies. The dominant feature extraction
algorithms for MI-EEG classification are the common spatial
pattern (CSP) and its variants (Ramoser et al., 2000). The
idea of CSP is to find a set of spatial filters that optimally
discriminate multiple classes of EEG recordings. Benefiting from
manual feature selection, filter-bank CSP (FBCSP) (Keng et al.,
2012) algorithm selects optimal spatial filters to extract the
features. This method has the advantages of simplicity and
accuracy. Other CSP-based approaches also extract potentially
valuable components of EEG signals after a certain analysis.
Unfortunately, EEG features vary over time and change
significantly in different individuals (Guger et al., 2003; Blankertz
et al., 2010). For new applications of MI, a demand for
robust and more general feature extraction techniques is
gradually increasing.

Deep learning has made great achievements in computer
vision, natural language processing, and speech recognition
(Lecun et al., 2015; Schmidhuber, 2015). Currently, end-to-end
DL frameworks unify multiple processing stages into one model
and build a direct projection from input to output, having
demonstrated excellent performance in various tasks (Sutskever
et al., 2014; Chan et al., 2016; Redmon et al., 2016). This
trend suggests that certain neural computing units, such as
convolutional layers in convolutional neural networks (CNNs),
can extract implicit features from the signals to improve the
performance. The development of DL has also gained interest in
the BCI community. Related research includes investigating DL-
based models in EEG feature extraction (Li et al., 2015), epilepsy
prediction and monitoring (Antoniades et al., 2016; Thodoroff
et al., 2016), classification (Bashivan et al., 2015; Vernon et al.,
2018), and auditory music retrieval (Stober et al., 2014). DL-based
MI is reviewed in detail in the following subsection. However,
the application of DL in EEG-based BCI has two challenges: (1)
a low SNR and the time-dependent covariates of the EEG signal
complicates the feature extraction; (2) insufficient datasets and
individual differences in EEG signals among subjects lead to poor
performance of transfer learning.

In this paper, we propose a new end-to-end architecture for MI
EEG classification. In our layered network architecture, a parallel
multiscale filter bank is designed to fully extract the temporal

features. Additionally, square and log non-linear operations
enhance the non-linear expression ability of the feature reduction
layer. To enhance the transfer learning ability, the network
initialization and fine-tuning strategy are proposed to train an
individual model for inter-subject classification on small datasets.
The classification accuracy of the proposed method in the intra-
subject experiment is superior to the current well-known end-to-
end networks. Inter-subject experiments prove that our proposed
network not only obtains competitive results in transfer learning
but also has acceptable performance on small datasets.

The rest of this paper is organized as follows. Related
work is briefly introduced in section “Related Work.” Section
“Materials and Methods” describes the proposed MSFBCNN
network in detail. The experiments and results are presented in
section “Experiments and Results.” In section “Discussion,” we
conclude the paper.

RELATED WORK

According to the input styles of the networks, DL-based MI is
categorized into two types: the feature input network and the raw
signal input network.

In the former input style, the MI is accomplished in two stages.
First, EEG signals are transformed into vectors by traditional
feature-extraction approaches (such as spectrograms, wavelets,
and spatial filtering). Next, these feature vectors are fed into the
networks. DL is adopted to train a model and classify the features.
Kumar et al. (2017) used multilayer perceptrons (MLPs) to
replace the traditional support vector machine classifier. Sakhavi
et al. (2015) combined CNN and MLP as a new classifier to
deal with multiclass MI-EEG tasks. To improve performance
of networks, transfer learning and knowledge distillation were
explored in which CNN was used as a specific 2D-input classifier
(Sakhavi and Guan, 2017). Huijuan et al. adopted augmented-
CSP and CNN to discriminate MI-EEG signals, surpassing
FBCSP with a novel feature map selection scheme (Yang et al.,
2015). Tabar and Halici (2017) fed time-frequency features
generated by short-time Fourier transform into a CNN with
stacked autoencoders and obtained a competitive accuracy.
Bashivan et al. (2015) transformed the temporal EEG into
topology-preserving multispectral images and trained a deep
recurrent-convolutional network. Zhu et al. (2019) proposed a
separated channel convolutional network to encode the multi-
channel data. Then, the encoded features are concatenated
and fed into a recognition network to perform the final MI
task recognition.

The other input style fed time series EEG signals, i.e., the C
(channel) × T (time point) matrices, into deep neural networks
directly. Therefore, it is an end-to-end approach. In this network,
the steps of feature extraction and classification are combined
in a single end-to-end model, with (or without) only minimum
preprocessing. The DL model has to learn both an optimal
intermediate representation and a classifier for EEG signals in
a supervised manner. Several end-to-end models have been
proposed and obtained competitive performance in different
tasks. As a light network, EEGNet used a few parameters to
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achieve considerable performance on various EEG classification
tasks. Inspired by FBCSP, Schirrmeister et al. (2017) proposed
a shallow CNN and a deeper CNN respectively. Both of them
yielded higher accuracies compared with FBCSP. Hauke et al.
used a simplified CNN model to validate that a DL model
was effective in transfer learning tasks for recordings from 109
subjects (Goldberger et al., 2000) without any preprocessing
(Dose et al., 2018).

Both input styles have their advantages and disadvantages.
The two-stage approach is interpretable and robust, which is
guaranteed by handcrafted feature-extraction algorithms. Thus,
it is suitable for small training sets and outperforms the
traditional methods.

However, the feature input network lost some potential
information after the handcrafted feature extraction, which
affected the performance. On the contrary, end-to-end models
may learn useful features automatically from raw EEG data and
achieve satisfactory results. However, for small training datasets,
it is hard for the end-to-end methods to train a satisfactory
model. As follows from the literature, designing a feasible
end-to-end deep neural architecture for MI-EEG classification
remains a challenge.

In this paper, to overcome the problem of insufficient number
of training samples and improve the robustness of the network,
we will focus on the end-to-end style and propose a layered
end-to-end network structure of CNNs for MI-EEG signal
classification. It is well known that the insufficient number of
training samples is prone to cause the overfitting problem of
large networks. A common solution is to reduce the scale of
network by dropout, network pruning, etc. These tricks work well
for the signals with significant features like images and videos.
For these signals, the network maybe confused to learn the most
general distinguishable features from a small training set, thus
one can sacrifice the network capacity to increase the generality
and robustness. However, extracting the cerebral activity features
from low SNR EEG signal is very challenging. A crude reduction
of network connections may decrease the feature extraction
capability of network. Therefore, we propose a layered network
structure to accomplish the feature extraction task and feature
reduction task separately. For feature extraction layer, we propose
a MSFBCNN structure to extract sufficient potential features. For
feature reduction layer, we adopt a set of non-linear operators
followed by dropout connection strategy. In this way, the network
is expected to be simplified without loss of feature extraction
capacity which fits the characteristic of EEG signals.

MATERIALS AND METHODS

In this section, we first introduce the current datasets of MI. Next,
a detailed architecture of the proposed network is described.
Finally, a training strategy is presented.

Datasets Description
Currently, there are three publicly available MI-EEG datasets.
The main differences of the datasets are the number of channels,
trials, subjects, tasks, and sampling rates.

The first two datasets are the BCI Competition IV datasets 2a
and 2b (Keng et al., 2012). Both of them have been preprocessed
with a band-pass filter between 0.5 and 100 Hz. 2a is a 25-channel
[22 EEG and 3 electro-oculogram (EOG)], 4-class MI (left/right
hand, feet, and tongue) EEG dataset recorded from 9 different
subjects with 250 Hz sampling rate. In the dataset, 9 train sets
and 9 test sets are explicitly separated. In the subset, there are 72
trials in each class. The feedback is not provided. 2b is a 6-channel
(3 EEG and 3 EOG), 2-class MI (left/right hand) dataset also
recorded from 9 different subjects. For each subject, the MI task
is separated into five sessions. Unlike the 2a dataset, the first
two sessions in the 2B dataset run without feedback, except for
the rest sessions.

The last dataset is a high gamma dataset (HGD) (Schirrmeister
et al., 2017). In this dataset, 44-channel EEG signals are
recorded from 14 subjects with 500 Hz sampling rate. Except
subjects 1 and 5, the train sets from the remaining 12 subjects
contain over 800 trials, thereby providing comparable data for
further experiments.

Methods
End-to-end CNN has been widely used in MI classification and
acquired satisfactory results. To fully use feature information in
end-to-end networks to improve their performance, we proposed
a layered network that is a feature-extraction network embedded
into an end-to-end network.

For example, for a 3-s EEG signal with 22 electrodes and a
250 Hz sampling rate, the size of an input sample is 22 × 750.
In end-to-end networks, CNN models process these rectangular
EEG matrices and output their class labels. We propose a
multilayer end-to-end network that consists of three parts: a front
feature extraction layer, feature reduction layer, and classification
layer. The detailed network architecture is described as follows.

Feature Extraction Layer
The features of EEG data are in two domains: temporal and
spatial. Thus, we use separable 2D convolutions with kernel sizes
[k, 1] and [1, c] (where k and c are integers) to extract temporal
and spatial features, respectively. To fully extract temporal
features and spatial features, we design a parallel multiscale filter
bank convolutional neural network (MSFBCNN). The length of
the filter is set manually, depending on the features and the
sampling rate of the signal. The extracted temporal features are
combined as an input of the spatial convolution after batch
normalization. Next, we use a spatial convolution to extract
spatial features and reduce dimensions of the feature map.
After the spatial convolution, the dimension of EEG channel is
squeezed to 1. Both temporal and spatial convolutions expand a
third dimension of the feature maps.

Feature Reduction Layer
To enhance the non-linear expression ability of the network,
we use square and log non-linear functions to extract features
that are related to the band power. The temporal dimension and
the third dimension are further reduced by a max-pooling layer.
Because these operations are in the middle of the model, we call
it a feature reduction layer.
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FIGURE 1 | Framework of the proposed MSFBCNN network.

Classification Layer
The classifier predicts the result after the previous step. As other
CNN-based detection networks, the classification is performed by
a fully connected layer (Simonyan and Zisserman, 2014).

The framework of the proposed MSFBCNN is shown in
Figure 1. Unlike other EEG networks [such as EEGNet,
ShallowFBCSPNet, and DeepNet (Schirrmeister et al., 2017)]
or a simpler CNN model, we select the multiscale temporal
convolution to extract the features and design the non-linear
function, improving the network expression ability. Furthermore,
we can set different learning rates in the layers of three
subnetworks to avoid overfitting caused by insufficient data.

The detailed network architecture is described in Figure 2
and Table 1. In Table 1, T is the number of time points,
C is the number of channels, FT is the temporal filter, FS is
the spatial filter, D is the ratio of FT to FS, and NC is the
number of classes. According to the receptive field theory, units
in the last module interact with much broader range than that
in the temporal convolutional module. Therefore, we simply
design multiscale kernels in the temporal convolutional layer
inspired by Inception (Szegedy et al., 2016) and Wide-ResNet
(Zagoruyko and Komodakis, 2016). This reinforces the capacity
of the temporal convolutions of extracting frequency-domain
features. We concatenate the output feature maps to feed into
the spatial convolutional module. As shown in Table 1, the
kernel lengths of temporal filter FT are set to 64, 40, 26, and
16. The length of the spatial filter is equal to the channel of the
EEG data. In the feature reduction layer, the activation of the
square and the logarithm operation is non-linear. A dropout layer
follows the pooling layer to avoid overfitting, where dropout rate
p = 0.5. A convolutional classifier outputs the predicted label.
For the temporal convolution, the kernel length is likely to be
selected arbitrarily.

Network Training
In the proposed MSFBCNN, we use a network training algorithm
similar to those of CNNs. As for MI classification, the categorical
cross-entropy loss function is defined as:

C(p, q) = −
∑

i

pi log qi, i = 1, 2, · · · , n (1)

where p is the target distribution, q is the observed distribution,
and n is the number of classes. We use the Adam method
(Kingma and Ba, 2014) for optimization.

MI datasets have two drawbacks: (1) the number of samples
is insufficient; (2) the features of the EEG data are different for
each subject. The current MI networks are designed, trained,
and tested for specific datasets. To improve the robustness of
our proposed network, we design two strategies to enhance the
transfer learning ability.

FIGURE 2 | Proposed MSFBCNN architecture.
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TABLE 1 | Detailed architecture of the proposed network.

Layer # Filters Kernel Stride # Params Output Activation Padding

Input (C, T )

Reshape (1, T, C)

TimeConv1 FT (64, 1) (1, 1) 64 ∗ FT (FT , T, C) Linear Same

TimeConv2 FT (40, 1) (1, 1) 40 ∗ FT (FT , T, C) Linear Same

TimeConv3 FT (26, 1) (1, 1) 26 ∗ FT (FT , T, C) Linear Same

TimeConv4 FT (16, 1) (1, 1) 16 ∗ FT (FT , T, C) Linear Same

Concat (4 ∗ FT , T, C)

BatchNorm 2 ∗ FT (4 ∗ FT , T, C)

SpatialConv FS (1, C) (1, 1) C ∗ 4 ∗ FT ∗ FS (FS, T, 1) Linear Valid

BatchNorm 2 ∗ FS (FS, T, 1)

Non-Linear (FS, T, 1) Square

AveragePool (75, 1) (15, 1) (FS, T//15, 1) Valid

Non-Linear Log

Dropout (FS, T//15, 1)

Classifier NC (T//15, 1) (1, 1) FS ∗ (T//15) ∗ NC NC Linear Valid

Network Initialization
The convolution layer weights are initialized using the normal
distribution with zero mean and unit variance. The batch
normalization layer weights use 1 for initialization. The learning
rate is 1e−3, and the decay weight is 1e−7. The batch size
is 64. These initialization parameters are acquired from the
experiment in advance.

Fine-Tuning
First, we use the initial parameters to train the proposed network
and acquire a coarse model from the open dataset. Next, for a
specific subject dataset, the individual training data are mixed
with a randomly selected open dataset and a validation set
for further training. To avoid overfitting, we use a layered
learning rate in the calibration experiment. The learning rates
of the feature extraction layer, feature reduction layer, and
classification layer are 1/27, 1/9, and 1/3 of the default learning
rate, respectively.

Obviously, the coarse model has learned a general classifier.
However, the fine-tuning strategy can further help the network to
match the specific pattern of the individual subject. This strategy
expands our training data and improves the transfer ability.
Subsequently, the classifier is fine-tuned to match the specific
pattern that relies on data from a specific subject.

EXPERIMENTS AND RESULTS

To verify the feasibility and performance of our proposed
method, we conduct a series of experiments for MI classification.
These experiments are run upon the Braindecode framework,
which is supported by PyTorch.

The three datasets described in section “Datasets Description”
are used for classification. Because the data collecting paradigms
of the three datasets are similar, we extract the data of an
epoch between 0 and 4.5 s after the corresponding trial starts
from all datasets. To keep the same sampling rate for the first
two datasets, the EEG recordings in HGD are resampled to

250 Hz. We do basic preprocessing, such as frequency filtering
and normalization, to augment the SNR of the EEG data. All
datasets are denoised by a low-pass filter of 38 Hz and a high-pass
filter of 4 Hz. The amplitude of all EEG recordings is normalized
by an exponential weighted moving average.

Intra-Subject Classification
The intra-subject classification experiment is a general
benchmark to verify the performance of the proposed network
for an individual subject. Each EEG dataset is divided into a
train set, validation set, and test set. We use three state-of-the-art
networks as baselines: DeepNet, EEGNet, and ShallowFBCSPNet.
The same pipeline is used for all methods. The average accuracy
of each network is collected after each model is trained and
tested 10 times. The results are shown in Table 2. Table 2 shows
that our proposed MSFBCNN network acquires the best results
on all datasets compared with the baselines. This is because
our proposed network can fully extract the temporal features
thanks to multiscale filter banks and the outstanding non-linear
expression ability.

Inter-Subject Transfer Learning
To verify the transfer ability of the proposed method, we
have conducted the inter-subject transfer experiment. In this
experiment, EEG recordings from other subjects are used to train
a model in advance. Next, the fine-tuning strategy is adopted to

TABLE 2 | Accuracy in intra-subject experiments.

Dataset

Network 2a 2b HGD

DeepNet 66.8 83.6 84.8

EEGNet 66.7 83.1 84.0

ShallowFBCSPNet 72.3 81.5 91.6

MSFBCNN 75.8 84.3 94.4
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further train the individual model. To verify the generality of the
proposed fine-tuning strategy, we use this strategy for DeepNet,
EEGNet, and ShallowFBCSPNet on three datasets. The results are
shown in Table 3. Our proposed method has a higher accuracy
than the baselines in inter-subject transfer learning. In addition,
compared with the intra-subject experiment, the performance of
all networks is improved after the fine-tuning, which proves that
the proposed strategy is effective.

Transfer Learning on Small Datasets
Classification remains a challenge for a small number of training
samples, because it is difficult for a model to learn the full
distribution from insufficient data. This experiment verifies the
performance of the proposed method for transfer learning on
small datasets. It is a desideratum to use as few training samples
as possible to achieve a satisfactory accuracy of the classification
model. In this experiment, we select 10, 20, 50, and 100 samples,
which are used in the inter-subject transfer learning experiment
for fine-tuning. The classification accuracy results are shown
in Table 4. The accuracy increases with the increase of the
sample size. Moreover, we also find that our method obtains
acceptable results with 100 samples compared with the inter-
subject experiment in 2a and 2b datasets, which proves that the
proposed fine-tuning strategy can enhance the transfer learning
ability on small datasets.

Effects of Parallel Multiscale Filter Bank
in Different Models
Existing MI networks are designed, trained and tested for specific
datasets. As shown in Table 2, compared with DeepNet and
EEGNet, ShallowFBCSPNet has better performance on 2a and
HGD dataset but not on 2b dataset. In the proposed method, we
introduce a parallel MSFBCNN for EEG-based BCI. The results
on all of the three datasets prove that the performance of our
MSFBCNN is better than other MI networks, which verifies that
our method is robust on datasets.

TABLE 3 | Accuracy of inter-subject transfer learning.

Dataset

Network 2a 2b HGD

DeepNet 71.9 84.1 90.9

EEGNet 69.9 83.6 88.6

ShallowFBCSPNet 73.8 83.7 92.3

MSFBCNN 75.9 84.7 94.9

TABLE 4 | Results of fine-tuning on a small number of training samples.

Dataset

Training samples 2a 2b HGD

10 60.0 74.8 84.7

20 65.6 78.9 84.9

50 67.6 81.8 86.8

100 75.0 83.1 89.3

In the proposed method, we design a parallel multiscale
filter bank convolution in our network. The essential is to
fully extract potential features. To verify the validity of the
parallel multiscale filter bank convolution structure, we embed
the structure in EEGNet and DeepNet, named as T-EEGNet and
T-DeepNet, respectively. We also carry out the experiments on
the three datasets. The results are shown in Table 5. According
to Table 5, impressive improvements are acquired compared
with the original EEGNet and DeepNet after the adoption of the
parallel multiscale filter bank convolution.

Although ShallowFBCSPNet has a parallel filter bank
convolution, the kernel size is constant. It ignores the effect
of multiscale on feature extraction. As shown in Table 2, our
proposed method performs better than ShallowFBCSPNet.

DISCUSSION

Our work is devoted to designing and training an end-to-end
network to fully extract temporal and spatial features from EEG
signals. Compared with other three networks, we add a parallel
multiscale filter bank convolution to our network and acquire
impressive improvements. In addition, we embed the parallel
multiscale filter bank convolution structure in EEGNet and
DeepNet to verify the validity of the proposed structure.

In order to explore the parameter impact on the results, we
did some experiments. There are two hyper-parameters in the
proposed technique, FT and Fs which denote the kernel number
of temporal convolution and spatial convolution, respectively.
To optimize the network, we have to search all the possible
combinations of FT and Fs. To accelerate the greedy search
process, we introduce an intermediate parameter D which is the
merchant of FT and Fs. Like EEGNet, we enumerate a small range
of D firstly, and adjust Fs with fixed D. For a comprehensive
comparison work, we traverse the super-parameters of EEGNet.
Effects of different FT and D with comparison to the original
are shown in Table 6. It can be observed that, the proposed
MSFBCNN technique outperforms EEGNet’s best performances
in most of the cases. With the setup FT = 40, D = 1 MSFBCNN
achieves the best performances (75.8%).

To verify the network extracted features are valid, we do some
feature visualizations. We plot the features map after extracting
temporal feature on HGD, which is a 4-class MI (left/right hand,
feet, and rest) dataset. The results are shown in Figure 3.

The visualization results show that the feature distributions
are different from each other among different tasks. The extracted

TABLE 5 | Comparison of EEGNet, DeepNet, T-EEGNet, and T-DeepNet.

Dataset

Network 2a 2b HGD

EEGNet 66.7 83.1 84.0

T-EEGNet 70.8 85.3 91.7

DeepNet 68.8 83.6 88.1

T-DeepNet 70.9 84.9 92.8

Frontiers in Neuroscience | www.frontiersin.org 6 November 2019 | Volume 13 | Article 1275

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01275 November 23, 2019 Time: 16:0 # 7

Wu et al. Deep Learning for Motor Imagery

TABLE 6 | Effects of different FT and D with comparison to the original.

2a 2b

MSFBCNN FT 10 64.5 81.0

20 67.9 80.8

50 67.2 80.0

80 66.6 79.9

D 0.5 64.4 80.5

2 65.3 80.0

FT = 40, D = 1 75.8 84.3

EEGNet FT 4 61.5 79.2

16 63.6 77.1

32 58.4 75.0

40 56.2 72.0

D 1 63.5 78.1

4 55.4 76.8

FT = 8, D = 2 66.7 83.1

FIGURE 3 | Features map after extracting temporal feature on HGD. The
x-axis denotes time, and the y-axis denotes the channel.

features of left-hand and right-hand tasks are mainly distributed
in the 200 ms after the imaging, but they are different in channels.
The feature of left-hand imagination is distributed from channel 0
to channel 25, while the feature of left-hand is mainly distributed
in the channel from 25 to 44. The feature of feet task arises in the
rear part of the 1 s dataset. The feature of rest task is distributed
in all of the 1 s dataset.

Benefitting from the fine-tuning strategy with multilayer end-
to-end structure, we can easily set layered learning rate for each
of the three parts to avoid overfitting caused by insufficient data.
In section “Inter-Subject Transfer Learning,” we conduct the
inter-subject transfer learning experiment. Compared with the
intra-subject experiment results in Table 2, the performances of
all networks in Table 3 are improved after the fine-tuning, which
proves that the proposed strategy is effective.

In transfer learning on small dataset experiment, our method
obtains acceptable results with 100 samples compared with the
inter-subject experiment in 2a and 2b datasets, which proves
that the proposed fine-tuning strategy can enhance the transfer
learning ability on small datasets.

Training network consumes a rather long time, but the
network initialization and transfer learning on small dataset
strategy can help us to build an individual model quickly on small
training samples. After the training, the proposed method only
takes 0.0128 s for prediction. Thus, we can build an online MI

system to control the devices such as electric wheelchairs and
prosthetic artificial limbs. Furthermore, we can use the proposed
method on MI driver assistant system and human-machine
collaborative system to improve the abilities of human.

The current work is mainly evaluated on datasets but not
online. In our future work, we will further improve the efficiency
transfer learning on small dataset experiment and try to build
online human-machine collaborative system.

CONCLUSION

In this study, we propose a parallel MSFBCNN for EEG-based
BCI, which can fully extract potential features from EEG and
obtain an outstanding model in the presence of limited data. We
introduce our layered end-to-end network structure in detail. The
proposed structure has three parts: the front feature extraction
layer, feature reduction layer, and classification layer. To enhance
the transfer learning ability, we propose a network initialization
and fine-tuning strategy for training the network. Finally, we
compare our MSFBCNN with the state-of-the-art approaches for
intra-subject classification. The classification accuracy indicates
that our method outperforms the baselines. Additionally, inter-
subject and small dataset experiments verify that our fine-tuning
strategy can meet the transfer learning demands and obtain
acceptable results.
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