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Mental effort is a neurocognitive process that reflects the controlled expenditure
of psychological information-processing resources during perception, cognition, and
action. There is a practical need to operationalize and measure mental effort in order
to minimize detrimental effects of mental fatigue on real-world human performance.
Previous research has identified several neurocognitive indices of mental effort, but
these indices are indirect measures that are also sensitive to experimental demands
or general factors such as sympathetic arousal. The present study investigated a
potential direct neurocognitive index of mental effort based in theories where bounded
rational decision makers (realized as embodied brains) are modeled as generalized
thermodynamic systems. This index is called free energy, an information-theoretic
system property of the brain that reflects the difference between the brain’s current
and predicted states. Theory predicts that task-related differences in a decision
makers’ free energy are inversely related to information-processing costs related to
task decisions. The present study tested this prediction by quantifying global brain free
energy from electroencephalographic (EEG) measures of human brain function. EEG
signals were recorded while participants engaged in two visual categorization tasks in
which categorization decisions resulted from the allocation of different levels of mental
information processing resources. A novel method was developed to quantify brain
free energy from machine learning classification of EEG trials. Participant information-
processing resource costs were estimated via computational analysis of behavior,
whereas the subjective expression of mental effort was estimated via participant
ratings of mental workload. Following theoretical predictions, task-related differences
in brain free energy negatively correlated with increased allocation of information-
processing resource costs. These brain free energy differences were smaller for
the visual categorization task that required a greater versus lesser allocation of
information-processing resources. Ratings of mental workload were positively correlated
with information-processing resource costs, and negatively correlated with global
brain free energy differences, only for the categorization task requiring the larger
amount of information-processing resource costs. These findings support theoretical
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thermodynamic approaches to decision making and provide the first empirical
evidence of a relationship between mental effort, brain free energy, and neurocognitive
information-processing.

Keywords: brain free energy, mental effort, information-processing costs, visual categorization,
electroencephalography

INTRODUCTION

Consider the extensive practice of a manual skill, undertaking
a difficult exam, driving along a busy highway, or searching
through a cluttered visual display. These activities engage
perceptual, cognitive, and/or motor processes under varying
levels of cognitive control to produce flexible, adaptive behavior
(Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977).
Engaging, maintaining, and controlling these processes requires
different levels of mental effort, which may be operationally
defined as a mediator between “the characteristics of a target task
and the subject’s available information-processing capacity and
. . .the fidelity of the information-processing operations actually
performed, as reflected in task performance” (Shenhav et al.,
2017, pp. 100–101). According to this view, task characteristics
necessitate the executive allocation of limited neurocognitive
information-processing resources for the successful completion
of a task. Mental effort reflects those neurocognitive processes
that control how much of an individual’s information-processing
resources are actually allocated during task performance. As
more mental effort is expended by an individual during a
task, more information-processing resources are allocated up to
the person’s maximum information-processing capacity. Mental
effort is usually experienced as unpleasant, such that individuals
are often reluctant to expend effort unnecessarily (Krebs et al.,
2010; Padmala and Pessoa, 2011; Umemoto and Holroyd, 2014;
Botvinick and Braver, 2015; Shenhav et al., 2017), although under
certain conditions mental effort may be experienced as rewarding
(Cacioppo and Petty, 1982; Eisenberger, 1992).

There is a practical need to operationalize and measure
mental effort. Excessive mental effort typically induces mental
fatigue that negatively affects real-world human performance
(Grandjean, 1979; Parasuraman et al., 2008; Kato et al.,
2009; Galy et al., 2012; Zhao et al., 2012; Witkowski et al.,
2015). Thus accurate measurement of mental effort will
inform efforts to minimize mental fatigue in human operators.
Several neurocognitive indices have been put forward to index
mental effort (e.g., response times, avoidant preferences, pupil
diameter, facial electromyography, and frontocortical activity,
etc.), however, these measures are often sensitive to experimental
demands or general factors such as sympathetic arousal (Shenhav
et al., 2017). The present study investigated a system property
of the brain called free energy that in theory is directly
sensitive to the information-processing resource costs allocated
through mental effort. The concept of free energy originated
in thermodynamic physics where it is a measure of the work
(or useful energy) a physical system can exert after accounting
for internal energy losses due to heat (Huang, 1987). Brain free
energy is an information-theoretic generalization of this concept

that reflects the brain’s surprise – the difference between the
brain’s current and predicted states (Pio-Lopez et al., 2016);
see Figure 1. In this context, free energy acts as a motivating
influence for the brain in that the latter seeks to minimize its free
energy (and thus its surprise) in order to maintain physiological
homeostasis (see section “The Free Energy Principle (FEP) for the
Brain”). The minimization of the brain’s free energy corresponds
to a process of approximate Bayesian inference that has important
consequences for perception, cognition, and action (Feldman and
Friston, 2010; Friston, 2010; Friston et al., 2010, 2015, 2016; Pio-
Lopez et al., 2016; Parr et al., 2018). The process of brain free
energy minimization has been termed the FEP (Friston, 2010).

The theoretical sensitivity of brain free energy to mental
resource costs is based in thermodynamical approaches to
modeling bounded rationality (Ortega and Braun, 2013).
Bounded rationality is the idea that real-world decision makers
have limited information-processing resources and thus are
unable to perform the total amount of deliberation necessary
to make an optimum or perfectly rational decision (Simon,
1956, 1972, 1984; Aumann, 1997). Instead, real-world decisions
are based on the limited set of deliberations attainable given
the available level of information-processing resources. In this
approach, decision-makers (realized as embodied brains) are
modeled as thermodynamic systems described by probability
distributions that change as mental information-processing takes
place. However, this information-processing incurs a cost in
terms of the computational resources necessary to reach a
decision. The actual decision that is made reflects a trade-off
between any gains in utility or value resulting from the decision
and the costs of information-processing underlying the decision.
(In analogy to the thermodynamic physics definition of free
energy, the utility of a decision plays the role of internal energy
and information-processing costs play the role of heat.) It can
be shown that this trade-off can be mathematically described in
terms of a (negative) free-energy difference of a decision maker
across an information-processing cycle (Ortega and Braun, 2013),
with the allocated level of information-processing resources
described in terms of an “inverse temperature” parameter ζ

for the relevant probability distributions. Importantly, there
is a reciprocal relationship between the ζ parameter and free
energy differences (Ortega and Braun, 2013; Friston et al., 2016);
see Figure 2. Therefore, in so far as mental effort reflects
the executively controlled allocation of information-processing
resources, then it should also have a similar relationship to
differences in brain free energy.

The goal of the present study was to empirically test this
predicted relationship in a task context requiring visual category
decisions; the objective was not to devise a single study that
could decide between other theories and the thermodynamic
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FIGURE 1 | Approximate Bayesian-inference and free energy minimization in
visual categorization. External world states ν encompass hidden causes of
observations o. Observations may also be influenced by actions a, which
change external world states and resultant observations. Brain free energy
and surprise is minimized when (1) the brain, parameterized by internal neural
states µ, approximately predicts the causes of observations according to a
model m that partially-encodes an optimal model of the world M, or (2) when
the brain’s actions change external world states and resultant observations to
be in accordance with predictions based on a sub-optimal world model m
encoded by the brain. For a detailed explanation, see Supplementary
Material: The Free Energy Principle (FEP) for the Brain. Neural tissue slice
figure element from Comparative Study of the Sensory Areas of the Human
Cortex (p. 363) by S. Ramón y Cajal, 1899, Worcester, MA, United States:
Clark University (Ramón y Cajal, 1899). Image is in public domain. Brain image
(no title, author unknown), uploaded July 8, 2014, retrieved January 15, 2019
from https://pixabay.com/vectors/brain-intelligence-science-mind-312007/.
Image is in the public domain via a CC0 license.

approach to bounded rational decision making, but instead to
provide evidence to either support or falsify the predictions of this
theory as well as the FEP. Visual categorization is a fundamental
cognitive process in which visual objects are mentally placed
into classes or groups on the basis of similar perceptual
characteristics of different object properties (Goldstone and
Kersten, 2003; Rips et al., 2012). Categorization was chosen as
the task context for two reasons. First, categorization allows for
the experimental manipulation of task characteristics that incur
different levels of information-processing costs. Object categories
can be easily defined to overlap with each other in terms of
diagnostic object features in order to produce different levels
of neurocognitive representational interference; the information-
processing limits that emerge from this interference are called
representational capacity constraints (Shenhav et al., 2017).
Cognitive control is then necessary to reduce this interference
in order to yield satisfactory task performance, with higher
degrees of overlap/interference requiring a greater degree of
controlled information-processing to resolve (Shenhav et al.,
2017); see section “Experimental Methods, Categorization Task”.
Second, the ability to categorize objects is crucial for organisms

FIGURE 2 | Free energy difference as a function of resource/confidence
parameter ζ for the visual categorization task proposed here. The free energy
difference displayed here was computed following a modification of the
calculation of Ortega and Braun (2013), under the assumption that the
relevant probabilities are described by Boltzmann distributions.

to survive in their environment (Ashby and Maddox, 1997),
where they must make life-sustaining decisions on the basis of
their perceptions. Understanding the impact of mental effort
on categorization-related information-processing could inform
efforts to improve human decision making and cognitive control
(Shenhav et al., 2017).

In the present study, a novel procedure was developed to
estimate brain free energy differences from machine learning
classification of participant electroencephalographic (EEG)
recordings of global brain states during the perception of simple
visual categories defined by an implicit integration of stimulus
orientation and spatial frequency (2-AFC categorization of Gabor
stimuli; see sections “Analytical Methods, Global Brain Free
Energy Difference Quantification” and “Experimental Methods,
Categorization Task”). The global brain free energy differences
estimated in this manner were then related to estimates of
participant information-processing resource allocation; the latter
were taken as an objective proxy for the mental effort expended
during the visual categorization task. Information-processing
resource costs were indexed via the inverse temperature
parameter ζ. The parameter was estimated from each participant’s
visual categorization behavior by application of a softmax
perceptual decision-making model (Reverdy and Leonard,
2016) with a mathematical form that minimizes the free
energy difference of a bounded-rational decision maker (Ortega
and Braun, 2013); see section “Analytical Methods, Resource
Allocation Parameter Estimation”. Participants performed two
different categorization tasks that theoretically implemented
different levels of representational capacity constraints and thus
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required the expenditure of different information-processing
resource costs for successful task performance (see section
“Experimental Methods, Categorization Task”). The following
predictions were then tested based on the theoretical reciprocal
relationship between inverse temperature parameter ζ and free
energy: positive brain free energy differences would negatively
correlate with parameter ζ (Figure 2); and positive brain free
energy differences would be smaller, and parameter ζ would
be larger, for the visual categorization task that required the
expenditure of a larger versus smaller amount of information-
processing resource costs. These predictions were tested by
correlating global brain free energy differences with the estimated
ζ parameters across individual participants and by comparing free
energy across the two visual categorization tasks.

Positive global brain free energy differences and the
ζ parameter were also related to participant ratings of
subjective mental workload in order to index the subjective
expression of mental effort (Shenhav et al., 2017); see section
“Experimental Methods, Subjective Assessment of Mental
Workload”. This relationship was predicated on the finding that
people subjectively experience mental effort as psychological
“work” in proportion to the actual effort with which they
engage in a task (Kantowitz, 1987). To the extent that mental
effort reflects the subjective expression of information-processing
resource allocation, ratings of mental workload should positively
correlate with the ζ parameter values and negatively correlate
with positive differences in global brain free energy.

MATERIALS AND METHODS

In this section, the basic conceptual framework and mathematical
formalism of the FEP is described first, including its formal
relationship to information-processing costs and perceptual
categorization. This is followed by a description of the
experimental and analytical methods used to apply the FEP to the
study of mental effort during visual categorization.

The Free Energy Principle (FEP) for the
Brain
Free Energy Minimization and Approximate Bayesian
Inference
The FEP is a general theoretical principle that has been proposed
to provide a unified account of brain functioning (Friston,
2010). This principle originates in the observation that adaptive
agents such as embodied brains seek to minimize surprise –
the difference between a brain’s current and predicted states –
in order to maintain a systemic homeostasis in the face of
destabilizing influences in the environment (Friston, 2010; Pio-
Lopez et al., 2016). One way the brain achieves this is by
organizing itself in a manner that reflects the causal and structural
regularities of its environment so as to predict and oppose
environmental changes that disrupt homeostasis (Friston, 2010,
2012). That is, the brain’s organization represents a generative
model m of its environment that it uses to generate data or
observations o from hidden environmental variables ν that
generate or cause the observations but are not directly evident

from the pattern of observations. These hidden states are inferred
by the brain and are represented via internal neural states in
a manner that minimizes an upper bound on surprise called
free energy – a higher-order probabilistic function of the brain’s
observed states and its internal representation of the causes of
observations, given the brain’s generative model; see Figure 1.
Free energy may be expressed as a higher-order function of
observations and causes as (Friston, 2010; Friston et al., 2014):

F(o, µ) =
∑

ν

Q(ν|µ, m) ln Q(ν|µ, m)−∑
ν

Q(ν|µ, m) ln P(o, ν|M) (1)

where P(o,ν| M) is the generative model distribution describing the
joint probability of observations and their causes given the brain’s
theoretically best possible (i.e., “correct” or “true”) encoding of
this information, an optimum generative model denoted by M.
The distribution Q(ν|µ,m) is called the recognition distribution
and reflects a probabilistic neural representation of the causes of
observations conditional on a distribution parameter represented
within the brain by internal neural states µ.

The free energy bound on surprise arises by treating the brain
as a Bayesian agent that transforms prior beliefs into posterior
beliefs according to a posterior distribution P(ν|o,m) described by
Bayes’ rule, an approach called the Bayesian brain hypothesis (Lee
and Mumford, 2003; Knill and Pouget, 2004; Doya et al., 2007).
In many situations, a direct computation of the true posterior
P(ν|o,M) is computationally intractable because the causes of
observations are hidden variables and the number of possible
causes of observations can be very large (Dayan et al., 1995;
Pio-Lopez et al., 2016). The FEP approach circumvents this by
assuming that the brain embodied as an agent minimizes its free
energy by performing approximate Bayesian inference, which
may be carried out in two ways. First, the brain may optimize its
representations about the causes of its observations by optimizing
the recognition distribution Q(ν|µ,m) to be as close as possible
to P(ν|o,M); see Figure 1. Given that this internal representation
is in part constrained by the brain’s organization, such an
optimization may also involve the brain changing its organization
in order to encode a better approximation of the optimum
generative model m. Second, an embodied brain agent may
minimize its free energy by acting on the world in order to change
observations in accordance with its (sub-optimal) predictions,
where such actions “[enforce] a sampling of [observed] data that
is consistent with the current representation . . . [in order to]
minimize prediction error” (Friston, 2010, p. 128); see Figure 1.
In this case, actions influence observations, o = o(a), and free
energy may be expressed as (following Friston et al., 2015; Pio-
Lopez et al., 2016; Gershman, 2019),

F(o(a), µ) =
∑

ν

Q(ν|µ, m) ln Q(ν|µ, m)−∑
ν

Q(ν|µ, m) ln P(o(a), ν|M) (2)

Minimization of free energy with respect to actions is called
active inference (Friston et al., 2015; Pio-Lopez et al., 2016;
Gershman, 2019).
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Free Energy and Perceptual Categorization
In the present study, the free energy F(o,ν) of global states
of the human brain were quantified during the perception of
simple visual categories. In the original formulation of the
FEP, sensations are the observations about which the brain
seeks to minimize its free energy estimate of surprise, and the
relevant hidden variables reflect different physical features of an
object (e.g., orientation of line segments, spatial frequency, etc.).
However, causes can also be categorical in nature (Friston, 2005).
In the present study, the observations under consideration were
category perceptions, in which perceptual objects are perceived to
be members of discrete categories and/or referents of concepts –
abstract mental representations of the general properties and
structure of object classes that may also serve to structure and
influence perceptions (Goldstone and Kersten, 2003; Rips et al.,
2012). In some Bayesian approaches to categorization (e.g., Shi
et al., 2010), hidden variables reflect the concepts that refer to
different categories (where concepts are operationalized as the
assignment of semantic labels to the categories); in this case
the posterior distribution P(ν|o,m) indexes the probability that a
category label describes an object, given the object’s perceptual
characteristics. Thus the theoretical FEP framework can also
be used to describe how the brain approximates this posterior
distribution of category labels via free energy minimization of
surprise. In this case, the surprise to be minimized reflects the
difference between the predicted and correct or “true” category
label of an object. These are quantities for which probability
distributions can be estimated from the a priori knowledge of
the stimulus category on each trial and probabilistic estimates
of the brain’s representations of its category perceptions to yield
an empirical measure of free energy (see section “Analytical
Methods, Global Brain Free Energy Difference Quantification”).

Free Energy Differences and
Information-Processing Costs
In the thermodynamic approach to bounded rationality,
decisions reflect a trade-off between gains in utility and the costs
of information-processing. In the specific case where the relevant
statistical distributions are Boltzmann distributions, it can be
shown (Ortega and Braun, 2013) that this trade-off takes the
mathematical form of a negative free-energy difference,

−1F(q(ν)) = Expected Utility− Information Processing Cost

=

∑
ν

q(ν)U(ν)−
1
ζ

∑
ν

q(ν) ln
q(ν)

p0(ν)
(3)

Here ν represents an individual decision outcome out of a set of
possible decision outcomes, U(ν) quantifies the utility for each
possible outcome, p0(ν) is a prior distribution that reflects the
initial information state of the decision maker, q(ν) is the final
information state, and ζ is a parameter that reflects the allocated
level of information-processing resources.

The mathematical form of Eq. 3 is analogous to the
thermodynamic physics definition of free energy (see
“Introduction” section). The first term in Eq. 3 reflects
the expected utility gain (or loss) from the decision and is
mathematically represented as an expected energy. The second

term reflects a decision maker’s computational costs of changing
from an initial to final information state and is mathematically
represented as the relative entropy of the two states (in analogy
to thermodynamic entropy which reflects energy loss via heat).
Intuitively, Eq. 3 reflects the net amount of mental “work”
performed by the decision maker after subtracting the costs to
implement the decision from the total amount of mental “work”
exerted. According to the FEP, the brain seeks to minimize
its free energy (and thus surprise) about the outcomes of its
decisions. As Eq. 3 represents a negative free energy difference,
free energy minimization (a decrease in positive free energy
from a maximum to a minimum value) is equivalent to the
maximization of this negative difference (i.e., an increase in
negative free energy from a minimum to a maximum value).
This extremization occurs when the distribution of the final
information state q(ν) takes the approximate form of a final prior
distribution p(ν) that represents an equilibrium state (i.e., the
actual decision).

The particular mathematical form of the (negative) free energy
difference expressed by Eq. 3 reflects the case for Boltzmann-
type of statistical distributions and utility functions that reflect
the internal energy of the decision maker (Ortega and Braun,
2013). However, decisions resulting from approximate Bayesian
inference typically involve the use of more general statistical
distributions and utility functions that reflect the brain’s optimum
generative model of its environment. From the perspective of
the thermodynamic approach to bounded rationality, ν can
also be interpreted as representing a decision outcome about
the hidden variables. For example, assume general distributions
for a decision maker’s initial and final information states
P0(ν| m) and Q(ν|µ,m) entailed by their generative model m.
Assume the decision’s utility function to take the form U(o,ν|
M) = ln(P(o|ν,M)) = ln(P(o,ν| M)/P(ν| M)), as entailed by the
optimum generative model M. Then in the case when the true
prior distribution is known by the decision maker and is constant
(the case considered in the categorization task utilized here;
see Supplementary Material: Free Energy Differences Under
Constant Prior), the positive free energy difference is given as

1F(o, µ) = Information Processing Cost − Expected Utility

=

∑
ν

Q(ν|µ, m) ln Q(ν|µ, m)−
∑

ν

Q(ν|µ, m) ln P(o, ν|M)

(4)
It should be clear that Eq. 4 is equivalent to Eq. 1; this equivalence
illustrates that, in the case of known constant priors, absolute free
energy levels may also be considered to be free energy differences
relative to a zero baseline; see Supplementary Material: Free
Energy Differences Under Constant Prior.) The free energy
difference expressed by Eq. 4 is always greater than or equal
to the brain’s surprise and thus is always non-negative in value
(see Supplementary Material: Free Energy Differences Under
Constant Prior). Moreover, in this general case, the resource
parameter ζ is implicit within the probability distributions
defining Eq. 4, where it behaves as an “inverse temperature” that
parameterizes the precision of an individual’s posterior beliefs
(Friston et al., 2014, 2016). The effect of this implicit parameter
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is to restrict Q(ν|µ,m) to a subset of possible distributions, which
limits rational information-processing (Ortega and Braun, 2013).

Theoretically, there is an inverse relationship between the
resource parameter ζ and differences in free energy (Ortega and
Braun, 2013; Friston et al., 2016); see Figure 2. As allocated
information-processing resources ζ increase, the magnitude of
the free energy difference decreases (i.e., positive free energy
decreases to a minimum and negative free energy increases to
a maximum). In contrast, as allocated information-processing
resources ζ decrease, the magnitude of the free energy difference
increases (positive free energy increases toward a maximum
and negative free energy decreases to a minimum). This inverse
relationship between ζ and 1F(o,µ) is explicitly expressed in Eq. 3
for the case of Boltzmann-type of distributions. In the general
statistical case expressed by Eq. 4 where ζ is implicit within
the probability distributions, the value of this parameter must
be inferred from the data via computational modeling. Here, ζ

was computationally estimated from participant categorization
behavior using a softmax perceptual decision-making model
(Reverdy and Leonard, 2016) with a mathematical form that
minimizes the free energy difference of a bounded-rational
decision maker (Ortega and Braun, 2013); see section “Analytical
Methods, Resource Allocation Parameter Estimation”.

Experimental Methods
Participants
Fifty eight Texas State University students participated for
course credit or monetary payment. However, the data of
10 participants was not included in the final analysis due
to technical recording errors (n = 2), excessive sleepiness
(n = 1), excessive data loss due to ocular artifacts (n = 6),
and excessive non-responses during task performance (n = 1).
Hence the final sample consisted of forty eight participants
(29 female, 19 male, mean age = 19.5 years, age range = 18–
26). This study was carried out in accordance with the
recommendations of the Institutional Review Board at Texas
State University with written informed consent from all
participants. All participants gave written informed consent
in accordance with the Declaration of Helsinki. The protocol
was approved by the Institutional Review Board at Texas
State University.

Categorization Task
Participants performed two visual categorization tasks that
differed in terms of difficulty and the complexity of the stimulus
category space (Figure 3); these tasks were modifications of
previous task paradigms used to study visual category-learning

FIGURE 3 | Example category distributions for the (A) II categorization task and the (B) RB categorization task. Examples shown illustrate one particular assignment
of categories to regions of the stimulus space given to half of the participants; the remaining participants received the opposite assignment. (C) Basic categorization
task protocol. A fixation cross was presented for a variable interstimulus interval (ITI) at the center of a computer screen, followed by the stimulus for 1000 ms. The
stimulus was then removed and the participant was visually queried about the stimulus category. The subject had a maximum of 2000 ms to respond “Category 1”
or “Category 2” by pressing one of two buttons on a computer mouse. This was followed by visual feedback (“Correct”, “Incorrect”, or “No Response”) for 500 ms
before a new trial begun. Additional task details may be found in the main text and the Supplementary Material.
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(Morrison et al., 2015). Participants categorized circular sine-
wave gratings (Gabor patches) into two categories defined by the
spatial frequency and orientation of the gratings.

The dependency of category membership on these visual
features differed between the two tasks. In the information
integration (II) task (Figure 3A), the stimuli were divided into
two categories defined by a diagonal decision boundary that
required participants to integrate frequency and orientation
information in a manner that was not amenable to a simple rule
that could be verbalized. The sign (±) of the decision boundary
slope was balanced across participants. For the rule-based (RB)
task (Figure 3B), the stimuli were divided into two categories
based on vertical and horizontal decision boundaries that
required participants to psychologically integrate frequency and
orientation information according to a simple multidimensional
rule that could be easily verbalized (e.g., “category A stimuli
are oriented more vertically and have lower frequencies or are
oriented more horizontally and have higher frequencies; category
B stimuli are characterized by the opposite pattern”).

Crucially, the visual categories in each task overlapped
with each other in terms of spatial frequency and orientation.
Such stimulus feature overlap is well-known to produce
representational capacity constraints via interference among
task-related neurocognitive representations that requires
additional information-processing resources to resolve (Shenhav
et al., 2017). However, it was hypothesized here that the level of
resources necessary for visual categorization would be greater
for the RB task than for the II task (see “Introduction” section).
There were two bases for this hypothesis. First, the structure of
visual feature overlap was more complex for the RB Task than the
II task. Second, the category structures of these tasks are known
to engage distinct neurocognitive systems that have different
representational characteristics and information-processing
requirements (Nomura et al., 2007). Categorization based
on verbalizable rules (the RB Task) is known to be mediated
by an explicit representational system that requires effortful
attention for its operation, whereas categorization based on
non-verbalizable criteria (the II Task) is mediated by an implicit
system that operates automatically (Maddox and Ashby, 2004).

A schematic of a typical task trial is shown in Figure 3C;
trial description is given in the Figure 3C caption. Prior to task
performance, participants were familiarized with task procedures
and received explicit instruction about the category structure
of each task. Participants were shown the prototypes of each
category and, for the II task, they were also shown additional
stimulus examples. Participants were also told that they would
be presented with equal numbers of stimuli from each category.
Task order was balanced across participants. For additional
task information, see Supplementary Material: Experimental
Methods – Technical Details.

Subjective Assessment of Mental Workload
The subjective experience of mental effort was quantified via
the Workload Profile (WP) (Tsang and Velazquez, 1996), a
psychometric instrument that indexes the subjective expression
of mental effort along eight dimensions (perceptual/central
processing, response processing, spatial processing, verbal

processing, visual input modality, auditory input modality,
manual output modality, speech output modality). The WP
has been shown to be a highly valid, sensitive, and diagnostic
index of mental workload that is well suited to assess the
different cognitive demands, attentional resources, and difficulty
levels of cognitive and motor tasks (Valdehita et al., 2004).
Each participant’s WP dimension scores were added to yield
a global workload score; for the specific WP version used
here, see Supplementary Material: Experimental Methods –
Technical Details.

EEG Recording and Pre-processing
Seventy two channels of continuous EEG signals were recorded
using a Biosemi Active II amplifier system (24-bit DC mode,
input sampling rate of 2048 Hz downsampled online to
256 Hz) and active Ag/AgCl electrodes either mounted in an
electrode cap or via freestanding electrodes. Recording sites
included international 10/5 system locations (Jurcak et al.,
2007) and the inferior orbits of the eyes (Figure 4). EEG
signals were recorded with respect to a common mode sense
(CMS) electrode located between sites PO3 and POZ. Half-
cell potentials of the electrode/gel/skin interface were kept
between ±40 mV, following standard recommendations for the
Active II system. EEG data were imported offline into the
MATLAB 2017b computing software environment (The Math
Works, Inc., Natick, MA, United States) using the EEGLAB
toolbox (Delorme and Makeig, 2004) for MATLAB, with all
subsequent analysis performed via in-house scripts utilizing
EEGLAB functions. Standard EEG preprocessing procedures
(Picton et al., 2000) were used including artifact-scoring,
bad channel interpolation, average reference transformation,

FIGURE 4 | Extended 10–20 scalp locations of EEG recording electrodes.
Sites outside the radius of the head represent locations that are below the
equator (FPZ-T7-T8-OZ plane) of the (assumed spherical) head model. Figure
adapted from Trujillo et al. (2017) with permission of the authors.

Frontiers in Neuroscience | www.frontiersin.org 7 December 2019 | Volume 13 | Article 1292

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01292 December 3, 2019 Time: 17:28 # 8

Trujillo Mental Effort and Free Energy

trial epoching from −200 ms–1000 ms relative to stimulus
onset, bandpass filtering (0.1–30 Hz), and baseline-correction
to the 200 ms pre-stimulus interval. For additional technical
detail about EEG pre-processing, see Supplementary Material:
Experimental Methods – Technical Details.

General Procedure
After consent, participants underwent setup for EEG recording,
during which participants completed several questionnaires
indexing demographic and health information, sleep
quality/quantity, emotion/mood states, and current attentional
states. The results of these questionnaires are irrelevant to the
hypotheses tested in this paper and are not reported here. After
completion of the EEG setup, participants underwent an 8 min
period of resting state EEG recording. As resting state brain
dynamics are not the focus of this paper, this data is not reported
here; a spectral and information-theoretic analysis of a portion of
the resting state EEG data has been reported previously (Trujillo
et al., 2017). Following recording of the resting state EEG, EEG
data was then recorded while participants performed the two
visual categorization tasks that were the focus of the present
study. Participants immediately completed the WP questionnaire
to subjectively estimate their workload after each task.

Analytical Methods
Statistical Analysis of Categorization Task
Performance and Mental Work
Statistical assessment of categorization task performance and
mental workload (indexed via global WP score) was performed
using non-parametric permutation-based ANOVAs (LeFleur and
Greevy, 2009; 5000 permutations) implemented via EEGLAB.
Categorization accuracy versus chance was analyzed separately
for each task via one-way repeated measures analysis of variance
(ANOVA). A one-way repeated measures ANOVA was also used
to assess potential accuracy differences between categorization
tasks. Response times for participants to indicate categorization
decisions were analyzed via two-way repeated measures ANOVA
with factors of Categorization Task (RB, II) and Categorization
Accuracy (Correct, Incorrect). Between-task differences in global
WP scores were assessed via one-way repeated measures
ANOVA. All post hoc multiple comparisons were corrected to
control the False Discovery Rate to be less than or equal to 0.05
(Benjamini and Yekutieli, 2001); corrected p-values are indicated
as such in the text.

Global Brain Free Energy Difference Quantification
The quantification of a brain free energy difference requires
estimation of two probability distributions (see Eq. 1): the
optimum generative model distribution P(o,ν|M) describing the
true joint probability of optimal category perceptions o and their
categories ν given an optimum generative model M, and the
recognition distribution Q(ν|µ,m) describing the probability of
true category labels ν given activation of a neural representation
µ that parameterizes the distribution as entailed by the brain’s
generative model m. These distributions were estimated for each
participant (Figure 5) from their EEG-indexed brain responses
by application of machine learning classification algorithms. The

rationale here is that the classifiers provide an objective way to
determine what brain state patterns encode information about
a given class (e.g., category perceptions), under the assumption
that trials classified into a given class contain a greater degree of
information about that class than the opposite class (Haxby et al.,
2014; Stewart et al., 2014). The brain free energy quantification
procedure involved three steps:

Step 1: Estimating the Generative Model Probability
Distribution
The generative model distribution P(o,ν| m) describes the
brain’s model of its environment that it uses to generate
observations o from hidden environmental variables ν that
cause the observations. Typically the estimation of a generative
model involves explicit assumptions about the distribution of
the perceptual features necessary to create the observations (e.g.,
spatial frequencies, orientations) and how those features are
perceptually partitioned into categories (Ashby and Maddox,
1993; Nomura and Reber, 2012). Here a simpler approach
was taken that utilized a generative model derived under the
assumption of a noise-free optimal categorizer and perceiver with
perfect knowledge of how category perceptions map to category
labels and the ability to perfectly discriminate among all the
different possible perceptual features of the stimuli. Under this
assumption, there is a one-to-one mapping between the optimal
category perception of each stimulus and their category labels
(e.g., see Figure 3) such that,

P(o|ν, M) = P(ν|o, M) = δoν (5)

and

P(o, ν|M) = P(o|ν, M)P(ν) = P(ν|o, M)P(o) = δoν × 0.5 (6)

where P(o) = 0.5 = P(ν) as the latter was set in the categorization
task (see section “Experimental Methods, Categorization Task”).
The implications of this choice of generative model will be
discussed in the “Discussion” section.

Step 2: Estimating the Recognition Probability
Distribution
The recognition probability distribution Q(ν|µ,m) reflects
a conditional mapping between causes ν and neural
representations µ that parameterize the distribution. The
question raised here is what does µ represent and how can
it be estimated? The answer to this question arises from
the logical necessity that when free energy is minimized,
Q(ν|µ,m) ≈ P(ν|o,M). Hence if the brain of a perceiver
minimizes its free energy during category perception, then the
information encoded by neural state µ should approximately
reflect the information encoded by the brain about its category
perceptions because the true posterior encodes the probability
of a true stimulus category conditional on the optimal category
perceptions o. Thus to a first approximation, Q(ν|µ,m) was
estimated by identifying the brain’s representation of its category
perceptions and then using these representations to predict the
true category labels of the stimuli. This allowed the computation
of the approximate empirical posterior probability Q(ν|µ,m)
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FIGURE 5 | Free energy probability distribution computation. (A) Schematic representation of K-means clustering classifier in EEG data feature space (two
dimensions shown for ease of visualization). Filled-in shapes indicate cluster prototypes; lines indicate distances from prototype. (B) Schematic representation of
Support Vector Machine (SVM) classifier in EEG data feature space. (C) Schematic of general classification procedure for K-means clustering classification (top row)
and SVM classification (bottom row). (D) Schematic of stratified 10-fold cross-validation SVM classifier training and test procedure. This procedure was performed
for all possible 10-fold partitions such that all trials were eventually classified at test. Note that although the feature extraction was not incorporated into the SVM
cross-validation procedure (i.e. tested trials were transformed via a CSP matrix computed from all trials, rather than only training trials), any effect on classifier
generalization error was likely minimal; see Supplementary Material: Analytical Methods – Technical Details for further discussion.

that a classified EEG trial reflected true category brain state ν

given category perception-specific brain state µ. A defense of this
procedure will be given in the “Discussion” section.

In order to identify the brain’s representation of its
observations, EEG trials underwent a feature extraction
procedure, where the features were diagnostic physical
information present in the EEG signals over the post-stimulus
interval (0–1000 ms) of a trial. Here the common spatial patterns
(CSP) method (Koles, 1991; Müller-Gerking et al., 1999; Ramoser
et al., 2000) was used to extract sets of topographic spatial EEG
patterns that maximally discriminated between the two possible
category perceptions as indicated behaviorally by a participant.
EEG trials were separated into one of two groups associated
with a specific reported category perception; these groups were

then entered into the EEG feature extraction procedure. It was
assumed that the resulting spatial patterns reflected the neural
representations specific to each category perception. (Feature
extraction also provides an additional advantage of removing
uninformative features and decreasing the chance of classifier
overfitting by reducing the ratio of features to trials; Pereira et al.,
2009). Following Ramoser et al. (2000), the CSP spatial patterns
were used to create multidimensional feature vectors fCSP for
each EEG trial as follows:

fi = log
(

var(Zi)∑Nrank
i=1 var(Zi)

)
fCSP = [f1, f2, ..., fNrank ]

 (7)
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where Zi is the i-th activation time course of a given CSP
pattern over an EEG trial and Nrank is the rank of the data
matrix covariance matrix estimated by the CSP method. The CSP
algorithm was applied after first decomposing the EEG data into
independent subsets of variation via independent components
analysis (ICA) (Stewart et al., 2014). ICA-transformation
reduces the effects of EEG data interdependencies and noise
on data covariance matrix estimation by the CSP method
(Yger et al., 2015).

The CSP feature vectors were then used for K-means
clustering and support vector machine (SVM) classification of
EEG trials in order to compute the estimate of Q(ν|µ,m).
K-means clustering is an unsupervised machine learning
algorithm that partitions data observations into k clusters
(Figure 5A), where each observation belongs to the cluster
with the nearest mean or cluster prototype (Forgy, 1965);
see Figure 5C, top row, for a schematic of the K-means
clustering procedure. This classifier was used to classify EEG
trials exhibiting category perception-discriminative CSP brain
patterns into one of two possible perceptual states. This created
an index of the predicted category perception on each EEG
trial that was then used to sort trials according to category
perception after SVM classification (see below). SVMs are
supervised classification algorithms that search for an optimal
hyperplane separating data into two classes (Cortes and Vapnik,
1995; Christianini and Shawe-Taylor, 2000); boundaries between
the classes are created by maximizing a margin around the
optimal hyperplane (Figure 5B). This allowed the computation
of the conditional posterior probability Q(ν|µ,m) that a classified
EEG trial reflected category ν given category perception-specific
brain state µ. These conditional probabilities were averaged
across trials according to the category perception trial index
created via K-means clustering to produce a final estimate of
Q(ν|µ,m); see Figure 5C, bottom row, for a schematic of the SVM
classification procedure.

Ten-fold stratified cross-validation was used to train and
test the SVM classifiers in order to reduce overfitting and
ensure classifier generalizability (Figure 5D). As both the SVM
cross-validation data partitioning and the initial K-means cluster
centroids were determined randomly for each classifier, both
classifications were performed 200 times for each participant.
This yielded 200 separate estimates of K-means-based trial
indices for the perceptual states, which were then used to
sort and average the conditional probabilities computed on
a corresponding SVM estimate. The final Q(ν|µ,m) estimate
for each participant was then taken as the average over
the 200 separate SVM-based estimates obtained from each
participant’s data. The SVM application for each individual
estimate also yielded an index of predicted category labels
on each trial, which were used to determine spatiotemporal
EEG patterns associated with the different free energy states
(see section “Analytical Methods, Estimation of Free Energy
Difference-Related Brain Responses”). This combined stratified
cross-validation/bootstrapping procedure also mitigated
any distortions arising from the fact that data attrition
due to artifacts and behavioral false starts/non-responses
yielded unequal trial numbers for each category condition

(Pereira et al., 2009). For additional technical detail about the
K-means or SVM classification procedures, see Supplementary
Material: Analytical Methods – Technical Details.

This K-means/SVM-based procedure classified EEG trials into
two classes reflecting each possible category perception. The
two possible ν states and two possible µ states yielded four
values for Q(ν|µ,m): (1) the conditional probability Q(ν = 1|
µ = 1,m) of presentation of Category 1 given the presence
of the Category 1 perception-specific brain state, (2) the
conditional probability Q(ν = 1| µ = 2,m) of presentation of
Category 1 given the presence of the Category 2 perception-
specific brain state, (3) the conditional probability Q(ν = 2|
µ = 1,m) of presentation of Category 2 given the presence
of the Category 1 perception-specific brain state, and (4) the
conditional probability Q(ν = 2| µ = 2,m) of presentation of
Category 2 given the presence of the Category 2 perception-
specific brain state.

Computing Free Energy Differences
This final step involved entering the generative model and
recognition probability distributions into the free energy Eq. 4.
This yielded four brain free energy differences 1F(o,µ) for each
participant and categorization task. The four differences were
also summated to yield an estimate of the total brain free energy
difference for each task,

1Ftotal =
∑

o

∑
µ

1F(o, µ) (8)

The estimates obtained via this procedure are measures of
global brain free energy differences because scalp-recorded
EEG signals index global brain activity that reflects changes
in perception and cognition throughout an information-
processing cycle. In the present study, this information-
processing takes place across trials and the span of the
entire categorization task. Thus 1Ftotal reflects the total free
energy change across a task, whereas 1F(o,µ) reflects the
free energy changes on trials where the brain’s encoding of
category perceptions µ matches (o = µ = Category 1 or
Category 2) or mismatches (o = Category 1, µ = Category
2; o = Category 2, µ = Category 1) the optimal category
perceptions o for those trials. The free energy difference measures
computed here were expressed in terms of natural units of
information (nats).

Statistical Analysis of Brain Free Energy State
Differences
To assess differences in 1FTotal between tasks, a non-parametric
permutation-based one-way repeated measures ANOVA
was performed with a factor of Categorization Task (II,
RB). All non-parametric permutation-based ANOVAs were
implemented via EEGLAB. In addition, Pearson correlations
r were used to assess the relationship between 1FTotal and
global WP scores; Pearson correlations were assessed via
randomization testing (Efron and Tibshirani, 1993; 5000
randomizations) using custom in-house MATLAB scripts.
All post hoc and/or multiple comparisons were corrected to
control the False Discovery Rate to be less than or equal to 0.05
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(Benjamini and Yekutieli, 2001); corrected p-values are indicated
as such in the text.

Estimation of Free Energy Difference-Related Brain
Responses
Each set of classified trials allowed the determination of
associated spatiotemporal EEG patterns that characterized the
large-scale neural representation µ associated with different
brain free energy differences. It is of interest to characterize
the spatiotemporal morphology of these EEG patterns in
order to understand what visual processing stages might
be related to any free energy differences observed during
the present categorization task. Hence, evoked global field
power (GFP) was computed by first creating event-related
potential (ERP) averages of stimulus-locked EEG epochs
across a participant’s 200 separate classifications at each
electrode and for each free energy difference 1F(o,ν| m).
This was achieved by separating EEG trials according to
whether the K-means clustering-indexed category perception-
discriminative brain states matched or mismatched the optimal
category perceptions (and thus the true category labels, given
optimum generative model M) on a given trial. Evoked
GFP was computed as the standard deviation of the ERP
values across electrodes for each time point (Murray et al.,
2008). GFP waveforms were created separately for trials
exhibiting small and large free energy differences. Grand-
average waveforms were computed by averaging waveforms
across participants. Statistical comparisons of GFP waveforms
were computed using pointwise non-parametric randomized
permutation t-tests (p < 0.05, two-tailed, 5000 permutations)
with Type-I error corrections for multiple comparisons made
via a maximal statistic procedure (Nichols and Holmes, 2002).
However, these statistical comparisons were used only to
indicate the temporal range of GFP waveform differences
and not to estimate their effect sizes, as the latter are
circularly biased (Kriegeskorte et al., 2010) due to the fact
that EEG trials were pre-selected on the basis of their free
energy condition.

Resource Allocation Parameter Estimation
The resource allocation parameter ζ was estimated from
each participant’s visual categorization task behavior by
application of a softmax perceptual decision-making model
(Reverdy and Leonard, 2016). Category perceptions were
behaviorally indexed by the perceptual decision d made
by each participant about the true stimulus category ν

on a given trial. For two possible category perceptions
i = 1,2 with equal prior probabilities P(d1) = P(d2) = 0.5,

P(d1) =
P(d1)eζU(d1|m)

P(d1)eζU(d1|m) + (1− P(d1))eζU(d2|m)
=

1
1+ e−ζ(U(d1|m)−U(d2|m))

(9)

where U(d1|m) and U(d2|m) are the utility functions for
perceptual decisions d1 and d2, respectively, and P(d2) = 1 –
P(d1). Following the definitions of the utility functions used in

the derivation of Eq. 4 (see section “Free Energy Differences and
Information-Processing Costs”), the utility functions were set as:

U(di|m) =

{
ln(P(di|m)), for trials with decision di

0, otherwise
(10)

where

P(di|m) =

2∑
j=1

P(di|νj, m)P(νj|m) (11)

That is, the utility for a perceptual decision is modeled
as non-zero only for task trials on which that decision
is made; this reflects the assumption that an observer’s
perceptual decision was based on the utility of the perceived
visual category. Once the utility function for a given
participant’s categorization behavior data was defined, the
ζ parameter for the model was estimated using logistic
regression (Hosmer and Lemeshow, 2000) implemented
in MATLAB. The utility of perceptual decisions did
not differ across tasks or between categories within a
task (see Supplementary Material: Analytical Methods –
Technical Details).

Between-task differences in model parameter ζ were
statistically assessed via non-parametric, permutation-based one-
way repeated-measures ANOVA with a factor of Categorization
Task (II, RB) implemented via EEGLAB. In addition, the Pearson
correlation r between 1FTotal and parameter ζ was calculated,
with statistical significance assessed against the null hypothesis
(r = 0) via randomization testing (Efron and Tibshirani, 1993;
5000 randomizations) using custom in-house MATLAB scripts.

RESULTS

All data, stimulus materials, and MATLAB data analysis scripts
are available online via the Texas Data Repository at https://
dataverse.tdl.org/dataverse/info_fe_eeg.

Categorization Task Behavior and
Resource Parameter Estimation
Behavior descriptive statistics are shown in Table 1.
Categorization performance was above chance for both
tasks: II Task, F(1,47) = 384.30, p < 0.001, ηp

2 = 0.89; RB Task,
F(1,47) = 75.20, p < 0.001, ηp

2 = 0.62. Nevertheless, participants
categorized the stimuli more accurately during the II Task than
the RB Task, F(1,47) = 25.31, p < 0.001, ηp

2 = 0.35; see Table 1.

TABLE 1 | Behavior data and fitted computational model parameters averaged
across-subjects.

Measure II Task RB Task

Accuracy (%) 70 [68, 72] 63 [60, 66]

Reaction Time: Correct Trials (ms) 470 [428, 513] 507 [468, 547]

Reaction Time: Incorrect Trials (ms) 518 [468, 568] 548 [504, 592]

95% CIs in parentheses.
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Overall response times for participants to indicate their
categorization decisions were not significantly different between
tasks: Categorization Task main effect, F(1,47) = 2.88, p < 0.095,
ηp

2 = 0.06. However, across both tasks participants were faster to
indicate their categorization decisions for correct versus incorrect
stimulus categorizations: Categorization Accuracy main effect,
F(1,47) = 57.25, p < 0.001, ηp

2 = 0.55; see Table 1. The
Categorization Task x Accuracy interaction was not significant,
F(1,47) = 0.52, p < 0.497, ηp

2 = 0.01.
Information processing resource parameter ζ values were

negative, but these values were larger (e.g., more positive) for the
RB Task (ζ = −0.73, 95% CIs [−0.93, −0.54]) versus the II Task
(ζ = −1.20, 95% CIs [−1.35, −1.04]): Categorization Task main
effect, F(1,47) = 18.53, p < 0.001, ηp

2 = 0.28.

SVM Classifier Performance
Table 2 displays K-means accuracy, SVM accuracy, and
Bayes’-optimized SVM hyperparameters grand-averaged across
participants. K-means clustering classification accuracy was
high. SVM classification accuracy for computation of Q(ν|µ,m)
was comparable to accuracy rates for participant behavior,
differing from the latter on the order of ∼ 2–3% (Table 2).
The performance of this classifier can be explained by an
analysis of the across-trial activation power for the perception-
discriminative CSP features (Figures 6, 7). The latter showed that
CSP activation power for correctly classified trials (left columns
of Figures 6, 7) was greater for the CSP features corresponding to
the correct versus incorrect category perception. However, CSP
power for incorrectly classified trials was greater for the CSP
features corresponding to the incorrect versus correct category
perception (right columns of Figures 6, 7). This showed that
EEG trials classified according to these CSP features tracked the
category perceptions rather than the true category labels.

Global Brain Free Energy Differences
Estimated global brain free energy differences are listed in
Table 3. The magnitude of total global brain free energy
difference 1FTotal (collapsing across all possible o and µ states
according to Eq. 8) was negatively related to the model confidence
parameter ζ for both categorization tasks: II Task, r = −0.88,
t(46) =−12.57, pcorrected < 0.001, two-tailed; RB Task, r =−0.90,
t(46) =−14.00, pcorrected < 0.001, two-tailed. In addition, 1FTotal

TABLE 2 | Grand-average K-means clustering accuracy, SVM accuracy, and SVM
Bayes’-optimized hyperparameters.

Measure II Task RB Task

K-means

Accuracy (%) 98.3 [98.2, 98.4] 98.5 [98.4, 98.6]

SVM

Accuracy (%) 66.9 [66.2, 67.6] 61.0 [60.4, 61.9]

Sigma 1871.6 [771.8, 4077.7] 3742.7 [1178.1, 7306.6]

Box 9423.1 [4065.0, 15442.8] 8219.3 [3626.8, 13997.2]

95% CIs in parentheses. Hyperparameters are dimensionless.

FIGURE 6 | Time courses of mean II categorization task normalized
perception-discriminative Common Spatial Pattern (CSP) activation power for
correctly and incorrectly SVM-classified Category 1 trials (top left and right
panels, respectively) and for correctly and incorrectly SVM-classified
Category 2 trials (bottom left and right panels, respectively). Black lines
indicate CSP component brain responses most discriminative for Category 1
perception and least discriminative for Category 2 perceptions; red lines
indicate CSP component brain responses most discriminative for Category 2
perceptions and least discriminative for Category 1 perceptions. Dashed lines
indicate time periods of statistically significant differences between CSP
component power indicated by permutation-based statistical testing
corrected for multiple comparisons across time (see section “Analytical
Methods, Estimation of Free Energy Difference-Related Brain Responses”).

was higher for the II Task versus the RB Task, F(1,47) = 18.75,
p < 0.001, ηp

2 = 0.28; see Table 3.
The FEP also makes a supplementary prediction that was

tested here. According to the FEP, brain free energy minimization
also minimizes the brain’s surprise and enables the brain to
approach a Bayes’-optimal prediction of the causes of perceptions
from the perceptions themselves, as encoded by Q(ν|µ,m).
Therefore, smaller brain free energy changes should occur when
the brain’s representations of perceptual states approximate the
category perceptions that optimally predict perceptual causes
as encoded by the optimum generative model. This then
suggests that global brain free energy differences 1F(o,µ) should
be smallest on trials where the brain’s encoding of category
perceptions µ matches the optimal category perception o for
those trials, whereas 1F(o,µ) should be largest when the
brain’s perceptual encoding and the optimal category perception
mismatch. In order to test this prediction, individual free
energy states were first collapsed to yield average free energy
values for mismatching and matching o and µ states. Then a
non-parametric permutation-based two-way repeated measures
ANOVA was performed on the collapsed data, with factors of
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FIGURE 7 | Time courses of mean RB categorization task normalized
perception-discriminative Common Spatial Pattern (CSP) activation power for
correctly and incorrectly SVM-classified Category 1 trials (top left and right
panels, respectively) and for correctly and incorrectly SVM-classified
Category 2 trials (bottom left and right panels, respectively). Black lines
indicate CSP component brain responses most discriminative for Category 1
perception and least discriminative for Category 2 perceptions; red lines
indicate CSP component brain responses most discriminative for Category 2
perceptions and least discriminative for Category 1 perceptions. Dashed lines
indicate time periods of statistically significant differences between CSP
component power indicated by permutation-based statistical testing
corrected for multiple comparisons across time (see section “Analytical
Methods, Estimation of Free Energy Difference-Related Brain Responses”).

Categorization Task and Free Energy Difference State (Matched,
Mismatched). The ANOVA confirmed this prediction; Free
Energy Difference State main effect, F(1,47) = 154.74, p < 0.001,
ηp

2 = 0.77; see Table 3. Moreover, the Categorization Task main
effect was also significant, F(1,47) = 18.75, p < 0.001, ηp

2 = 0.28,
in accordance with the between-task analysis of 1FTotal
reported above. Furthermore, a significant Categorization Task
× Free Energy Difference State interaction indicated that the
magnitude levels of these free energy states were different across
categorization tasks, F(1,47) = 23.28, p < 0.001, ηp

2 = 0.33.
Follow-up analyses revealed that free energy differences for
mismatching o and µ states were higher for the II versus RB
task, F(1,47) = 23.17, pcorrected < 0.001, ηp

2 = 0.33, whereas free

energy differences for matching o and µ states were lower for the
II versus RB tasks, F(1,47) = 23.37, pcorrected < 0.001, ηp

2 = 0.33;
see Table 3.

Free Energy Difference-Related Brain
Responses
Figures 8A,B displays the grand-average evoked GFP of the
ERP correlates of brain states corresponding to small and large
brain free energy differences for the II and RB categorization
tasks. For both categorization tasks, GFP waveform differences
were present primarily during intermediate stages of visual
processing (II Task: 441–581 ms post-stimulus onset; RB
Task: 468–531 ms post-stimulus onset). Topographical mapping
(Figure 8C) illustrated that these GFP differences were associated
with a difference in evoked responses over posterior and central
scalp sites.

FIGURE 8 | Time courses of ERP global field power (GFP) for (A) the II Task
and (B) RB Task for small free energy differences (black lines) and large free
energy differences (red lines). GFP values are in µV. Horizontal black lines
indicate time ranges demonstrating significant between-condition differences
between GFP waveforms as indicated by permutation-based statistical testing
corrected for multiple comparisons across time (see section “Analytical
Methods” and “Estimation of Free Energy-Related Brain Responses”).
(C) Topographical head maps show mean ERP values across the scalp for the
indicated free energy differences and between-condition contrasts averaged
over the indicated time ranges. The noses of the headmaps point upward;
light/dark colors indicate ± values.

TABLE 3 | Estimated global brain free energy differences.

1F(o = 1,µ = 1) 1F(o = 1,µ = 2) 1F(o = 2,µ = 1) 1F(o = 2,µ = 2) 1FTotal

II Task 2.31 [2.20, 2.41] 4.01 [3.87, 4.14] 4.02 [3.88, 4.17] 2.29 [2.17, 2.42] 12.63 [12.59, 12.68]

RB Task 2.63 [2.52, 2.76] 3.63 [3.49, 3.76] 3.61 [3.45, 3.76] 2.66 [2.52, 2.80] 12.53 [12.40, 12.57]

95% CIs in parentheses. Free energy differences are in units of nats.
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Mental Workload and Brain Free Energy
Subjective ratings of mental workload (as indexed via the WP
questionnaire) were slightly larger for the RB task (0.50, 95%
CIs [0.45, 0.55]) than the II task (0.48, 95% CIs [0.43, 0.54]),
but this difference only reached trend-level statistical significance,
Categorization Task main effect, F(1,47) = 2.94, p < 0.094,
ηp

2 = 0.06. However, global WP scores were significantly
negatively correlated with 1FTotal in the RB task but not the
II task: RB Task, r = −0.39, t(46) = −2.59, pcorrected < 0.009,
two-tailed; II Task, r = −0.22, t(46) = −1.52, pcorrected < 0.200,
two-tailed. Also, global WP scores were significantly positively
correlated with model confidence parameter ζ for the RB
task but not the II task: RB Task, r = 0.35, t(46) = 2.52,
pcorrected < 0.014, two-tailed; II Task, r = 0.19, t(46) = 1.32,
pcorrected < 0.188, two-tailed.

DISCUSSION

The present study tested the theoretical relationship between
information-processing resource costs allocated through mental
effort and an information-theoretic property of the brain called
free energy. This was accomplished by quantifying the free energy
differences of global brain states from participant behavior and
EEG responses elicited during a simple visual categorization
task. Information-processing resource costs were estimated via
computational modeling of categorization behavior, whereas
the subjective expression of mental effort was indexed via
participant ratings of mental workload. The present findings
support four theoretical predictions for the relationship of brain
free energy to neurocognitive information-processing resource
costs and mental effort (see section “Introduction”). To the
present author’s knowledge, this study is the first empirical
assessment of the relationship between mental effort, brain free
energy, and neurocognitive information-processing.

Relationship of Brain Free Energy to
Neurocognitive Information-Processing
Costs
The first prediction tested by the present study was that brain free
energy differences would negatively correlate with information-
processing resource parameter ζ. This prediction was based
on thermodynamical approaches to bounded rational decision
making (Ortega and Braun, 2013). Here, the ζ parameter reflects
the information-processing resource costs of a decision maker by
acting as an “inverse temperature” parameter for the probability
distributions that describe the decision maker’s information-
processing changes (although the same prediction can also been
reached via considerations of active inference; Friston et al.,
2016). This prediction was confirmed for both the information-
integration (II) and rule-based (RB) categorization tasks. Across-
participants, as total global free energy difference 1FTotal
decreased in magnitude, the ζ parameter increased in magnitude.

The second prediction tested by the present study was
that brain free energy differences would be smaller, and
parameter ζ would be larger, for the visual categorization

task that theoretically required a larger versus smaller amount
of information-processing resource costs. The present RB
task theoretically required a larger amount of information-
processing resource costs than the II task. This is because
the category space inferred by the participants in the RB task
imposed a larger degree of interference-related representational
capacity constraints among similar task-related neurocognitive
representations (Shenhav et al., 2017) that required the allocation
of additional information-processing resources to resolve. The
RB task utilized visual categories with highly complex visual
feature overlap and required categorization based on verbalizable
rules known to be mediated by an explicit representational
system that requires effortful attention for its operation (Maddox
and Ashby, 2004). For the II task, the visual feature overlap
was less complex and categorization was based on non-
verbalizable criteria mediated by an implicit system that operates
automatically. This prediction was confirmed in that the total
brain free energy difference 1FTotal was smaller, and parameter
ζ larger (more positive), for the RB versus II task. (The
resource parameter differences were not due to differences
in the utility of perceptual decisions across tasks or between
categories within a task; see Supplementary Material: Analytical
Methods – Technical Details.) Future research could investigate
how information-processing resource allocation is reflected in
parameter ζ across category spaces that realize a wider and
more fine-grained range of representational capacity constraints
than used here. These spaces could be formed by crossing the
two types of category representation with simple and complex
patterns of visual feature overlap over single and multiple
feature dimensions.

Relationship of Brain Free Energy to
Subjective Ratings of Mental Effort
Global brain free energy and the ζ parameter were also related
to participant ratings of the subjective expression of mental
effort (Shenhav et al., 2017) as indexed by participant ratings
of mental workload. It was predicted that to the extent that
mental effort reflects the allocation of information-processing
resources, ratings of mental workload should positively correlate
with the ζ parameter values and negatively correlate with global
brain free energy. These two predictions were predicated on
the finding that people subjectively experience mental effort as
psychological “work” in proportion to the actual effort with which
they engage in a task (Kantowitz, 1987). These predictions were
confirmed for the RB task but not the II task. One possible
reason for this may be that in the RB task participants were more
subjectively sensitive to the allocation of information-processing
resources. The larger ζ parameter for the RB task suggests a high
degree of resource allocation that may have been more greatly
reflected in an individual’s subjective experience of their mental
effort. A second possibility is that the present implementation
of the WP questionnaire used to index mental workload was
insufficiently sensitive to capture a subtler relationship between
experienced effort and information-processing allocation during
the II task (see section “Experimental Methods, Subjective
Assessment of Mental Workload,” and Supplementary Material:
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Subjective Assessment of Mental Workload via the Workload
Profile for a description of the WP questionnaire). Participants
were instructed to give their ratings within a particular range,
but the questionnaire used here did not provide a visual scale on
which the basis of such ratings could be made. It is possible that
use of a visual scale might yield more accurate and fine-grained
subjective estimations of workload that in turn would more
robustly correlate with the ζ parameter. Also participants were
instructed to evaluate their workload for each task independently,
but it is possible that in doing so participants did not adequately
base their subjective estimations for each task relative to a
common experienced baseline of mental effort. One way to
address this might be to change the instructions such that
participants rated their experience of mental work in one task
relative to the work they experienced in the other task, rather than
rating each task independently.

FEP-Based Expected Patterns of Brain
Free Energy Differences
A supplementary prediction made by the FEP is that smaller
brain free energy differences should be accompanied by a higher
probability that the brain’s representations of perceptual states
approximate the category perceptions that optimally predict
perceptual causes as encoded by the optimum generative model.
This prediction was fully supported by the present data for
both categorization tasks (see section “Results, Global Brain
Free Energy Differences”). Global brain free energy differences
were smallest over trials where the brain’s encoding of category
perceptions µ matched the optimal category perception o for
those trials and were largest for trials where the brain’s perceptual
encoding and the optimal category perception mismatched.
These free energy differences were characterized by different
levels of EEG global field power that was maximal over posterior
and central scalp regions during intermediate to late stages of
visual processing (Figure 8). Moreover, these small/large free
energy differences roughly corresponded to trials that were
correctly and incorrectly discriminated by the brain, respectively.
These findings support the theoretical claim that minimization of
brain free energy indirectly minimizes the brain’s surprise about
its categorizations and enables the brain to approach Bayes’-
optimal representation and prediction of the conceptual labels of
the categories.

One question raised by these findings is how to reconcile
the interpretation of brain free energy minimization of surprise
with the bounded rationality-based interpretation that brain free
energy minimization reflects changes in the costs of mental
information processing. Answering this question is outside the
scope of the present paper, but one hypothesis is that the
successful minimization of surprise requires additional mental
information processing resources than when surprise is not
minimized or minimized to a lesser degree. This would then
suggest that a greater degree of mental effort and associated
information processing corresponds to an increased likelihood
of accurate stimulus processing. This possibility is consistent
with the present observations; 1F(o,µ) was smaller for matching
(o,µ) states during the task with the higher (II task) versus lower

(RB task) overall accuracy. However, 1F(o,µ) was higher for
mismatching (o,µ) states during the II versus RB task, suggesting
that the larger 1FTotal found for the II task versus RB task arises
from a larger contribution to the total free energy difference from
incorrect trials for the II task.

This latter finding raises a difficulty for theories of brain free
energy. The minimization of brain free energy also minimizes
the brain’s surprise by increasing the precision of its neural
representations (Friston, 2010; Friston et al., 2015, 2016). Yet
of the two categorization tasks utilized in the present study,
the task with the greater free energy difference had the greater
performance accuracy on average. One possible explanation
for this may be that optimum behavioral performance does
not result from completely precise brain representations, but
instead requires some degree of neural variability in order to
engage flexible neurocognitive information processing (Garrett
et al., 2011). This is consistent with evidence that the brain
exhibits the property of criticality – an optimal balance between
ordered and disordered states (Beggs, 2008; Shew and Plenz,
2013; Hesse and Gross, 2014; Atasoy et al., 2017). Investigation
of the connection between brain free energy and criticality is a
topic for future research.

Validity of Resource Allocation
Parameter Estimation Method
In the present study, global brain free energy differences were
computed from a definition of free energy difference (Eq. 4)
that allows for general statistical distributions estimated from
the data, but with the ζ parameter an unknown variable
implicit within these distributions. It was hypothesized that
these empirically estimated distributions would behave as if
governed by an “inverse temperature” parameter and this would
then be reflected in the observed relationship of free energy to
the ζ parameter as estimated via an additional method. Here
the ζ parameter was estimated from each participant’s visual
categorization behavior by application of a softmax perceptual
decision-making model (Reverdy and Leonard, 2016) with a
mathematical form that minimizes the free energy difference
of a bounded-rational decision maker (Ortega and Braun,
2013). Estimating the ζ parameter directly from behavioral data
rather than brain data avoids any possible statistical circularity
that may arise when relating the parameter estimates to free
energy. However, this model depended on the computation of
utility functions for a participant’s perceptual decisions, so the
validity of interpreting ζ in terms of information processing
resources depends on these utility functions not differing between
categorization tasks or across perceptual category decisions.
(Note also that free energy can reflect changes in utility too).
Fortunately, this was the case (see Supplementary Material:
Analytical Methods – Technical Details), reflecting the fact
that utility was held relatively constant in the present study;
participant performance was only rewarded in terms of a fixed
amount of course credit or monetary payment. Utility differences
across participants were likely due to idiosyncratic motivations
on the part of the participants to perform well and reduce
negative performance feedback.
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Another issue with the present resource allocation parameter
estimation procedure is the interpretation of the negative sign
of the ζ values; according to the thermodynamic approach to
decision making, negative ζ values are interpreted as indicating
pessimistic decision makers who are “anti-rational” (Ortega and
Braun, 2013). It is unclear if this interpretation is applicable to
the present sample of participants. Future studies could address
this issue by recording participant attitudes toward the task
via questionnaire.

Finally, this parameter estimation procedure was based on
perceptual decisions indicated by overt behavioral responses.
Perceptual observations are imperfectly indexed via behavior.
There may be cases where a participant experiences a certain
category perception but makes an opposite decision or behavioral
response due to internal noise. This limitation might be improved
by better training of the participants on the structure of the
category space and/or on the overall task procedure.

Validity of Brain Free Energy
Quantification Procedure
An important remaining question to address here is if the brain
free energy difference quantification procedure introduced in this
study validly indexes brain free energy at all. There are several
issues to consider. The first is the method used to estimate
the optimum generative model distribution P(o,ν|M). Here a
generative model was used that assumed an optimal categorizer
with perfect knowledge of the category structure of the perceptual
space, i.e., perfect knowledge of how the perceptual similarity
among stimuli maps to the category labels. Such knowledge
is possible in principle with the category spaces used in this
study (Figure 3), as specific ranges of stimulus spatial frequency
and orientation combinations had one-to-one mappings to the
category labels; it was never the case that these specific feature
combinations mapped with some probability to both categories.
The generative model also assumed an optimal perceiver who
could perceptually discriminate between all the different possible
spatial frequencies and orientations of the stimuli. Thus in a
sense, the free energy measure used here indexes a participant’s
departure from perfect categorization and category perception
performance, but this indexing is made on the basis of brain states
rather than behavior. Nevertheless, it would be instructive to
perform brain free energy quantification using realistic generative
models that accounted for how the stimulus features were jointly
distributed across the category space, as well as accounting
for decrements in learning the category space, decrements in
perceiving the perceptual distinctions among stimulus features,
or both. For example, category learning can be modeled as
a process in which the brain learns to partition a stimulus
space into regions of perceptually similar stimuli and assign
category labels to those regions on the basis of the distance of
a stimulus to a decision boundary in the category space (Ashby
and Maddox, 1993; Nomura and Reber, 2012). Alternatively,
categorization could be modeled using abstract Markov decision
processes implemented within an active inference framework
(Schwartenbeck and Friston, 2016). A third option would be
to empirically estimate the brain’s generative model by using

machine learning classification of brain responses to compute the
empirical likelihood distribution P(o|ν,m) and the posterior P(ν|
m) such that P(o,ν| m) = P(o|ν,m)P(ν| m) under the assumption
that this estimate reflects the true frequencies of co-occurrence of
o and ν created by the brain’s generative model (subject to some
measurement noise). How different methods of generative model
estimation affect free energy quantification is an important topic
for future research.

A second issue regarding the validity of the present free energy
measure was the use of category perception-discriminative
brain states to estimate the neural representations µ that
parameterize the recognition distribution Q(ν|µ,m). This choice
was based on the reasoning that when free energy is minimized,
Q(ν|µ,m) ≈ P(ν|o,M). Thus if the brains of the participants
minimized free energy during the categorization tasks, then the
information encoded by neural state µ should approximately
reflect the information encoded by their brains about the
observations o. In other words, the recognition distribution
was estimated here by the empirical posterior mapping between
the brain’s perceptual encodings and the category labels ν.
One concern with this approach is that the distributions
estimated in this manner clearly deviate from the optimum
posterior distribution. This is not problematic, however, because
this information is precisely what the free energy measure is
supposed to quantify, i.e., the accuracy of the brain’s encoding
of the true posterior distribution. Another concern with this
approach is how accurately the brain states used to estimate
the recognition distribution encoded the category perceptions
o. These brain states were identified using an EEG feature
extraction method (Koles, 1991; Müller-Gerking et al., 1999;
Ramoser et al., 2000) (see section “Analytical Methods, Global
Brain Free Energy Difference Quantification”) that maximally
discriminated between the two possible category perceptions
as indicated behaviorally by a participant. Thus, technically,
the brain states identified using this procedure encoded as
much information as possible about a participant’s perceptual
decisions. Nevertheless, using participant behavior to define the
brain states was necessary, as no other method other than
behavioral report is available to index an individual’s subjective
conscious perceptions (Farthing, 1992). Hence, to the extent
that these decisions were directly based on the participant’s
category perceptions, then the assumption that these brain
states encode information specific to each category perception
is reasonable. While it is likely that these brain states also
encode decision-making and motor response processes that are
unrelated to perception per se, the presence of such information
in the µ state estimate would only be problematic if these
latter processes differentiated between categories. This is unlikely,
however, as no significant accuracy or response time differences
were observed between categories for either categorization task
(see Supplementary Material: Auxiliary Behavior Analysis –
Between-Category Comparisons). Although it is possible that
the extra information encoded in µ might have acted as noise
that reduced the accuracy of the Q(ν| µ,m) estimate, free energy
differences were still observed between matching/mismatching o
and µ states and free energy still correlated with the ζ parameter
of both task and mental workload estimates of the RB task. Thus
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the present findings are conservative estimates of these quantities
and correlations.

A third issue regarding the validity of the present free energy
measure is the degree to which the measure is dependent on
the quality or performance of the classifiers used to estimate
Q(ν|µ,m) from the EEG data. This issue is analyzed in depth
in the Supplementary Material (see section “Influence of
Classifier Performance on Free Energy Estimation”). Here it
was shown that a good classifier will yield an accurate free
energy measure that reflects the brain’s stimulus encoding and
discrimination capabilities, whereas a poor classifier will fail
to reflect these capabilities and thus decrease the sensitivity of
the free energy measure. Nevertheless, if free energy differences
are still observed in the latter case, then such findings may
be considered to be conservative measurements of brain free
energy. The analysis presented in the Supplementary Material
shows that the classifiers used in the present study were as high-
performing as possible. Classification was based on maximally
informative CSP-extracted EEG features that were discriminative
for the brain’s encoding of its category perceptions. Accuracy
rates of the K-mean classifiers were high, whereas the accuracy
rates of the SVM classifiers used to estimate Q(ν|µ,m) were
comparable to the observed categorization task accuracy rates.
Moreover, a direct comparison of brain free energy computed
using the classifier estimate of Q(ν|µ,m) to free energy computed
using a recognition distribution estimate calculated directly from
behavioral categorization performance showed that the present
classifiers were sufficiently sensitive to probe the statistics of the
relevant brain states (see Supplementary Material: Influence of
Classifier Performance on Free Energy Estimation). Nevertheless,
an important topic for future research is to determine if other
classifier algorithms and/or classification procedures will yield
more accurate estimates of Q(ν|µ,m) and brain free energy.

An additional point to note is that the use of a classifier-
based brain free energy estimator avoided any potential statistical
circularity that may arise when relating the ζ parameter estimates
to brain free energy when both are estimated directly from
behavioral data. Participant responses were used to separate
EEG trials into one of two groups associated with a specific
category perception; these trial groups were then entered into the
EEG feature extraction procedure used to identify the category
perception-discriminative brain states. However, participant
behavior was not used for the actual trial classification that
produced the estimates of Q(ν|µ,m). Thus the present free
energy measure is derived directly from brain activity. This
argues for its interpretation as reflecting an actual, physical
property of the brain, rather than a useful computational
descriptor of the brain’s dynamics. The viewpoint espoused here
is that brain free energy does not directly correspond to the
brain’s energetic capacity to perform work, but does reflect
information states of the brain that are in fact physical (Street,
2016). Specifically, free energy is an information-theoretic system
property that reflects neurocognitive information processing
among the widespread brain networks representing the brain’s
perceptual and conceptual states.

A fourth issue regarding the validity of the present free energy
measure is the appropriateness of using EEG as a method to index

the brain responses associated with brain’s generative model and
free energy. There is a great deal of theoretical work describing
the brain’s generative model and its approximately Bayesian
processing in terms of the spatiotemporal activity of neuronal
networks across the different levels of the brain’s recurrent neural
hierarchy (Zeki and Shipp, 1988; Felleman and Van Essen, 1991).
This theoretical framework is called predictive coding and it has
substantial empirical support (Murray et al., 2002; Summerfield
et al., 2008; Garrido et al., 2009; Egner et al., 2010; Kok and De
Lange, 2015; Aitchison and Lengyel, 2017). In this framework,
higher levels of the neural hierarchy predict feedforward input
from lower levels, which reflect the conditional expectations
of signals from even lower levels. Sensory signals are encoded
at the lowest levels of the hierarchy and represent conditional
expectations of external world input. These expectations are
compared with top-down predictions signaled from the higher
representational levels via feedback connections. Any resulting
prediction error is passed forward to the high-level networks,
which optimize their predictions so as to reduce prediction error
at the lower levels. The process cycles until prediction error is
minimized and conditional expectations are maximized at all
representational levels. Under certain assumptions about how
the neural representations of the generative model are encoded
(i.e., Gaussian statistical distributions, free energy linearization
via Laplacian approximation), free energy corresponds to
the difference between an internal model’s predictions and
the to-be-predicted neural representations (Friston, 2010;
Gershman, 2019). Free energy minimization is then equivalent
to explaining away prediction errors, which can be realized
neurophysiologically in terms of top-down inhibition of bottom-
up excitatory inputs at lower hierarchical levels (Mumford,
1992; Friston, 2008). Hence, free energy minimization optimizes
empirical priors (the probability of causes at a specific level, given
causes in the preceding level) at all levels of the neural hierarchy,
providing a mechanism for the formation of prior beliefs (Lee and
Mumford, 2003; Kersten et al., 2004; Friston, 2010).

Importantly for the present study, scalp-recorded EEG
methods detect neuronal signals emanating from superficial and
deep cortex (Cuffin and Cohen, 1979; Mosher et al., 1993; Nunez
and Srinivasan, 2006; Tenke and Kayser, 2015), regions that
contain neurons corresponding to bottom-up error processing
units and top-down predictive units, respectively (Friston et al.,
2017). Scalp EEG can also detect neuronal signals originating
from low and high level visual cortex, which putatively reflect
neural representations of category perceptions and their labels
(Hochstein and Ahissar, 2002; Nomura et al., 2007; Wang et al.,
2010). This supports the use of EEG to index the brain states
encoding Q(ν|µ,m). However, scalp-level EEG signals reflect a
simultaneous mixture of all of this cortical activity due to volume-
conduction of bioelectric cortical signals as they travel through
the head from the cortex to the scalp (Nunez and Srinivasan,
2006). Thus the validity of the present method depends on its
ability to separate these mixed cortical signals at the level of
the scalp rather than indexing this information at the level of
localized neural sources.

This signal-separation was achieved using machine learning
classifiers, which identified the presence of state-specific
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information in the EEG signals. The K-means clustering and
SVM classifiers used to compute Q(ν|µ,m) were trained on
EEG features that maximally discriminated between the two
possible category perceptions. Thus these classifiers should
have been maximally sensitive to the portions of the EEG
signals that reflected the brain’s representation of µ. This
conclusion is supported by the very high classification accuracy
observed for the K-means clustering classifier, the similarity in
classification accuracy between the SVM classifier and participant
categorization task accuracy, and by the analysis of the activation
power for the normalized CSP features (Figures 6, 7). The latter
showed that EEG trials classified according to these features
tracked the category perceptions rather than the true category
labels. This suggests that the feature extraction procedure
successfully partitioned information in the EEG signals related to
the brain’s representation of the category perceptions.

Thus the present findings support the use of machine learning
classification as an objective way to determine the trial-by-
trial presence of category perception-specific brain states for
the computation of 1F(o,µ), even when applied to brain state
measures that have poor spatial sampling such as scalp–recorded
EEG. Nevertheless, future research could improve upon this
method by using brain recording methods with better spatial
resolution than scalp EEG, such as functional magnetic resonance
imaging (fMRI) or intracranial EEG recordings. It should
be noted, however, that the SVM classifiers required clearly
defined task conditions in order to characterize Q(ν|µ,m). Future
research needs to develop new ways to extend this free energy
quantification procedure to brain resting state measurements or
tasks (e.g., mental arithmetic, motor grasping, vigilant attention
tasks) that engage ongoing brain activity without behavioral
responses tied to specific external events.

CONCLUSION

In conclusion, this study tested predictions originating in the
thermodynamical approach to bounded rational decision making
concerning the relationship between mental effort, information-
resource processing costs, and brain free energy. Brain free energy
differences negatively correlated with the increased allocation
of information-processing resources and were smaller for a
visual categorization task that required expenditure of a larger
versus smaller amount of information-processing resource costs.
Ratings of mental workload were positively correlated with the
level of information-processing resource costs, and negatively
correlated with global brain free energy difference, only for the
categorization task requiring the larger resource costs. These
findings provide the first empirical evidence of a relationship
between mental effort, brain free energy, and neurocognitive
information-processing.
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