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The application of deep learning (DL) models to neuroimaging data poses several

challenges, due to the high dimensionality, low sample size, and complex temporo-spatial

dependency structure of these data. Even further, DL models often act as black

boxes, impeding insight into the association of cognitive state and brain activity. To

approach these challenges, we introduce the DeepLight framework, which utilizes long

short-termmemory (LSTM) based DLmodels to analyzewhole-brain functional Magnetic

Resonance Imaging (fMRI) data. To decode a cognitive state (e.g., seeing the image of

a house), DeepLight separates an fMRI volume into a sequence of axial brain slices,

which is then sequentially processed by an LSTM. To maintain interpretability, DeepLight

adapts the layer-wise relevance propagation (LRP) technique. Thereby, decomposing

its decoding decision into the contributions of the single input voxels to this decision.

Importantly, the decomposition is performed on the level of single fMRI volumes, enabling

DeepLight to study the associations between cognitive state and brain activity on several

levels of data granularity, from the level of the group down to the level of single time

points. To demonstrate the versatility of DeepLight, we apply it to a large fMRI dataset

of the Human Connectome Project. We show that DeepLight outperforms conventional

approaches of uni- and multivariate fMRI analysis in decoding the cognitive states and

in identifying the physiologically appropriate brain regions associated with these states.

We further demonstrate DeepLight’s ability to study the fine-grained temporo-spatial

variability of brain activity over sequences of single fMRI samples.
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INTRODUCTION

Neuroimaging research has recently started collecting large corpora of experimental functional
Magnetic Resonance Imaging (fMRI) data, often comprising many hundred individuals (e.g.,
Poldrack et al., 2013; Van Essen et al., 2013). By collecting these datasets, researchers want to
gain insights into the associations between the cognitive states of an individual (e.g., while viewing
images or performing a specific task) and the underlying brain activity, while also studying the
variability of these associations across the population.
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At first sight, the analysis of neuroimaging data thereby
seems ideally suited for the application of deep learning (DL;
LeCun et al., 2015; Goodfellow et al., 2016) methods, due
to the availability of large and structured datasets. Generally,
DL can be described as a class of representation-learning
methods, with multiple levels of abstraction. At each level, the
representation of the input data is transformed by a simple,
but non-linear function. The resulting hierarchical structure of
non-linear transforms enables DL methods to learn complex
functions. It also enables them to identify intricate signals in
noisy data, by projecting the input data into a higher-level
representation, in which those aspects of the input data that
are irrelevant to identify an analysis target are suppressed
and those that are relevant are amplified. With this higher-
level perspective, DL methods can associate a target variable
with variable patterns in the input data. Importantly, DL
methods can autonomously learn these projections from the data
and therefore do not require a thorough prior understanding
of the mapping between input data and analysis target (for
a detailed discussion, see LeCun et al., 2015). For these
reasons, DL methods seem ideally suited for the analysis of
neuroimaging data, where intricate, highly variable patterns of
brain activity are hidden in large, high-dimensional datasets
and the mapping between cognitive state and brain activity is
often unknown.

While researchers have started exploring the application of
DL models to neuroimaging data (e.g., Plis et al., 2014; Suk
et al., 2014; Nie et al., 2016; Sarraf and Tofighi, 2016; Mensch
et al., 2018; Petrov et al., 2018; Yousefnezhad and Zhang, 2018),
two major challenges have so far prevented broad DL usage:
(1) Neuroimaging data are high dimensional, while containing
comparably few samples. For example, a typical fMRI dataset
comprises up to a few hundred samples per subject and recently
up to several hundred subjects (e.g., Van Essen et al., 2013), while
each sample contains several hundred thousand dimensions (i.e.,
voxels). In such analysis settings, DL models (as well as more
traditional machine learning approaches) are likely to suffer from
overfitting (by too closely capturing those dynamics that are
specific to the training data, so that their predictive performance
does not generalize well to new data). (2) DL models have often
been considered as non-linear black box models, disguising the
relationship between input data and decoding decision. Thereby,
impeding insight into (and interpretation of) the association
between cognitive state and brain activity.

To approach these challenges, we propose the DeepLight
framework, which defines a method to utilize long short-
term memory (LSTM) based DL architectures (Hochreiter and
Schmidhuber, 1997; Donahue et al., 2015) to analyze whole-brain
neuroimaging data. In DeepLight, each whole-brain volume
is sliced into a sequence of axial images. To decode an
underlying cognitive state, the resulting sequence of images is
processed by a combination of convolutional and recurrent DL
elements. Thereby, DeepLight successfully copes with the high
dimensionality of neuroimaging data, while modeling the full
spatial dependency structure of whole-brain activity (within and
across axial brain slices). Conceptually, DeepLight builds upon
the searchlight approach. Instead of moving a small searchlight

beam around in space, DeepLight explores brain activity more in-
depth, by looking through the full sequence of axial brain slices,
before making a decoding decision. To subsequently relate brain
activity and cognitive state, DeepLight applies the layer-wise
relevance propagation (LRP; Bach et al., 2015; Lapuschkin et al.,
2016) method to its decoding decisions. Thereby, decomposing
these decisions into the contributions of the single input voxels
to each decision. Importantly, the LRP analysis is performed
on the level of a single input samples, enabling an analysis on
several levels of data granularity, from the level of the group
down to the level of single subjects, trials and time points. These
characteristics make DeepLight ideally suited to study the fine-
grained temporo-spatial distribution of brain activity underlying
sequences of single fMRI samples.

Here, we will demonstrate the versatility of DeepLight, by
applying it to an openly available fMRI dataset of the Human
Connectome Project (Van Essen et al., 2013). In particular,
to the data of an N-back task, in which 100 subjects viewed
images of either body parts, faces, places or tools in two
separate fMRI experiment runs (for an overview, see section
Experiment Paradigm and Figure S1). Subsequently, we will
evaluate the performance of DeepLight in decoding the four
underlying cognitive states (resulting from viewing an image
of either of the four stimulus classes) from the fMRI data and
identifying the brain regions associated with these states. To
this end, we will compare the performance of DeepLight to
three representative conventional approaches to the uni- and
multivariate analysis of neuroimaging data, with widespread
application in the literature. In particular, we will compare
DeepLight to the General Linear Model (GLM; Friston et al.,
1994), searchlight analysis (Kriegeskorte et al., 2006) and whole-
brain Least Absolute Shrinkage Logistic Regression (whole-brain
Lasso; Grosenick et al., 2013; Wager et al., 2013). Note that
the four analysis approaches differ in the number of voxels
they include in their analyses. While the GLM analyses the
data of single voxels independent of one another (univariate),
the searchlight analysis utilizes the data of clusters of multiple
voxels (multivariate) and the whole-brain lasso utilizes the data
of all voxels in the brain (whole-brain). In this comparison, we
find that DeepLight (1) decodes the cognitive states underlying
the fMRI data more accurately than these other approaches,
(2) improves its decoding performance better with growing
datasets, (3) accurately identifies the physiologically appropriate
associations between cognitive states and brain activity, and (4)
identifies these associations on multiple levels of data granularity
(namely, the level of the group, subject, trial and time point).
We also demonstrate DeepLight’s ability to study the temporo-
spatial distribution of brain activity over a sequence of single
fMRI samples.

METHODS

Experiment Paradigm
Hundred participants performed a version of the N-back task in
two separate fMRI runs (for an overview, see Figure S1 and Barch
et al., 2013). Each of the two runs (260 s each) consisted of eight
task blocks (25 s each) and four fixation blocks (15 s each).Within
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each run, the four different stimulus types (body, face, place and
tool) were presented in separate blocks. Half of the task blocks
used a 2-back working memory task (participants were asked to
respond “target” when the current stimulus was the same as the
stimulus 2 back) and the other half a 0-back working memory
task (a target cue was presented at the beginning of each block
and the participants were asked to respond “target” whenever the
target cue was presented in the block). Each task block consisted
of 10 trials (2.5 s each). In each trial, a stimulus was presented for
2 s followed by a 500ms interstimulus interval (ISI). We were not
interested in identifying any effect of the N-back task condition
on the evoked brain activity and therefore pooled the data of both
N-back conditions.

FMRI Data Acquisition and Preprocessing
Functional MRI data of 100 unrelated participants for this
experiment were provided in a preprocessed format by the
Human Connectome Project (HCP S1200 release), WU Minn
Consortium (Principal Investigators: David Van Essen and
Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH
Institutes and Centers that support the NIH Blueprint for
Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington University. Whole-brain
EPI acquisitions were acquired with a 32 channel head coil on
a modified 3T Siemens Skyra with TR = 720ms, TE = 33.1ms,
flip angle = 52 deg, BW = 2,290 Hz/Px, in-plane FOV = 208 ×
180mm, 72 slices, 2.0mm isotropic voxels with a multi-band
acceleration factor of 8. Two runs were acquired, one with a
right-to-left and the other with a left-to-right phase encoding
(for further methodological details on fMRI data acquisition, see
Uğurbil et al., 2013).

The Human Connectome Project preprocessing pipeline for
functional MRI data (“fMRIVolume”; Glasser et al., 2013)
includes the following steps: gradient unwarping, motion
correction, fieldmap-based EPI distortion correction, brain-
boundary based registration of EPI to structural T1-weighted
scan, non-linear registration into MNI152 space, and grand-
mean intensity normalization (for further details, see Glasser
et al., 2013; Uğurbil et al., 2013). In addition to the minimal
preprocessing of the fMRI data that was performed by
the Human Connectome Project, we applied the following
preprocessing steps to the data for all decoding analyses: volume-
based smoothing of the fMRI sequences with a 3mm Gaussian
kernel, linear detrending and standardization of the single voxel
signal time-series (resulting in a zero-centered voxel time-series
with unit variance) and temporal filtering of the single voxel
time-series with a butterworth highpass filter and a cutoff of 128 s,
as implemented in Nilearn 0.4.1 (Abraham et al., 2014). In line
with previous work (Jang et al., 2017), we further applied an
outer brain mask to each fMRI volume. We first identified those
voxels whose activity was larger than 5% of the maximum voxel
signal within the fMRI volume and then only kept those voxels
for further analysis that were positioned between the first and last
voxel to fulfill this property in the three spatial dimensions of any
functional brain volume of our dataset. This resulted in a brain
mask spanning 74× 92× 81 voxels (X × Y × Z ).

All of our preprocessing was performed by the use of Nilearn
0.4.1 (Abraham et al., 2014). Importantly, we did not exclude
any TR of an experiment block of the four stimulus classes
from the decoding analyses. However, we removed all fixation
blocks from the decoding analyses. Lastly, we split the fMRI data
of the 100 subjects contained in the dataset into two distinct
training and test datasets (each containing the data of 70 and 30
randomly assigned subjects). All analyses presented throughout
the following solely include the data of the 30 subjects contained
in the held-out test dataset (if not stated otherwise).

Data Availability
The data that support the findings of this study are openly
available at the ConnectomeDB S1200 Project page of the
HumanConnectome Project (https://db.humanconnectome.org/
data/projects/HCP1200).

Baseline Methods
General Linear Model
The General Linear Model (GLM; Friston et al., 1994) represents
a univariate brain encoding model (Naselaris et al., 2011;
Kriegeskorte and Douglas, 2018). Its goal is to identify an
association between cognitive state and brain activity, by
predicting the time series signal of a voxel from a set of
experiment predictor:

Y = Xβ + ǫ (1)

Here, Y presents a T × N dimensional matrix containing the
multivariate time series data of N voxels and T time points.
X represents the design matrix, which is composed of T × P
data points, where each column represents one of P predictors.
Typically, each predictor represents a variable that is manipulated
during the experiment (e.g., the presentation times of stimuli
of one of the four stimulus classes). β represents a P × N
dimensional matrix of regression coefficients. To mimic the
blood-oxygen-level dependent (BOLD) response measured by
the fMRI, each predictor is first convolved with a hemodynamic
response function (HRF; Lindquist et al., 2009), before fitting
the β-coefficients to the data. After fitting, the resulting brain
map of β-coefficients indicates the estimated contribution of
each predictor to the time series signal of each of the N voxels.
ǫ represents a T × N dimensional matrix of error terms.
Importantly, the GLM analyzes the time series signal of each
voxel independently and thereby includes a separate set of
regression coefficients for each voxel in the brain.

Searchlight Analysis
The searchlight analysis (Kriegeskorte et al., 2006) is a
multivariate brain decoding model (Naselaris et al., 2011;
Kriegeskorte and Douglas, 2018). Its goal is to identify an
association between cognitive state and brain activity, by probing
the ability of a statistical classifier to identify the cognitive state
from the activity pattern of a small clusters of voxels. To this end,
the entire brain is scanned with a sphere of a given radius (the
searchlight) and the performance of the classifier in decoding the
cognitive states is evaluated at each location, resulting in a brain
map of decoding accuracies. These decoding accuracies indicate
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how much information about the cognitive state is contained in
the activity pattern of the underlying cluster of voxels. Here, we
used a searchlight radius of 5.6mm and a linear-kernel Support
Vector Machine (SVM) classifier (if not reported otherwise).

Given a training dataset of T data points
[

yt , xt
]T

t=1
, where xt

represents the activity pattern of a cluster of voxels at time point
t and yt the corresponding label, the SVM (Cortes and Vapnik,
1995) is defined as follows:

ŷ (x) = sign

[

T
∑

t=1

αt yt γ (x, xt)+ b

]

(2)

Here, αt and b are positive constants, whereas γ (x, xt) represents
the kernel function. We used a linear kernel function, as
implemented in Nilearn 0.4.1 (Abraham et al., 2014). We
then defined the decoding accuracy achieved by the searchlight
analysis as the maximum decoding accuracy that was achieved
at any searchlight location in the brain. Similarly, we used the
searchlight location that achieved the highest decoding accuracy
to make decoding predictions (for example, to compute the
confusion matrix presented in Figure 2C).

Whole-Brain Least Absolute Shrinkage Logistic

Regression
The whole-brain Least Absolute Shrinkage Logistic Regression
(or whole-brain lasso; Grosenick et al., 2013; Wager et al., 2013)
represents a whole-brain decoding model (Naselaris et al., 2011;
Kriegeskorte and Douglas, 2018). It identifies an association
between cognitive state and brain activity, by probing the ability
of a logistic model to decode the cognitive state from whole-
brain activity (with one logistic coefficient βi per voxel i in the
brain). To reduce the risk of overfitting, resulting from the large
number of model coefficients, the whole-brain lasso applies Least
Absolute Shrinkage regularization to the likelihood function of
the logistic model (Tikhonov, 1943; Tibshirani, 1996). Thereby,
forcing the logistic model to perform automatic variable selection
during parameter estimation, resulting in sparse coefficient
estimates (i.e., by forcing many coefficient estimates to be exactly
0). In particular, the optimization problem of the whole-brain
lasso can be defined as follows (again, N denotes the number of
voxels in the brain, T the number of fMRI sampling time points

and
[

yt , xt
]T

t=1
the set of class labels and voxel values of each fMRI

sample):

min
β

{

−

T
∑

t=1

[

yt log σ

(

βTxt

)

+
(

1− yt
)

log
(

1− σ

(

βTxt

))]

+λ

N
∑

i=1

|βi|
}

(3)

Here, λ represents the strength of the L1 regularization term
(with larger values indicating stronger regularization), whereas
σ represents the logistic model:

σ (x) =
1

1+ e−x
(4)

For each voxel i in the brain, the resulting set of coefficient
estimates β , indicates the contribution of the activity of this
voxel to the decoding decision σ (xt) of the logistic model
for a whole-brain fMRI sample xt at time point t. Over
the recent years, the whole-brain lasso, as well as closely
related decoding approaches (e.g., McIntosh and Lobaugh,
2004; Ryali et al., 2010; Gramfort et al., 2013), have found
widespread application throughout the neuroscience literature
(e.g., Wager et al., 2013; Chang et al., 2015).

DeepLight Framework
Deep Learning Model
The DL model underlying DeepLight consists of three distinct
computational modules, namely a feature extractor, an LSTM,
and an output unit (for an overview, see Figure 1). First,
DeepLight separates each fMRI volume into a sequence of
axial brain slices. These slices are then processed by a
convolutional feature extractor (LeCun and Bengio, 1995),
resulting in a sequence of higher-level, and lower-dimensional,
slice representations. These higher-level slice representations are
fed to an LSTM (Hochreiter and Schmidhuber, 1997), integrating
the spatial dependencies of the observed brain activity within
and across axial brain slices. Lastly, the output unit makes a
decoding decision, by projecting the output of the LSTM into
a lower-dimensional space, spanning the cognitive states in the
data. Here, a probability for each cognitive state is estimated,
indicating whether the input fMRI volume belongs to each of
these states. This combination of convolutional and recurrent
DL elements is inspired by previous research, showing that it is
generally well-suited to learn the spatial dependency structure of
long sequences of input data (Donahue et al., 2015; McLaughlin
et al., 2016; Marban et al., 2019). Importantly, the DeepLight
approach is not dependent on any specific architecture of each of
these three modules. The DL model architecture described in the
following is exemplary and derived from previous work (Marban
et al., 2019). Further research is needed to explore the effect of
specific module architectures on the performance of DeepLight.

The feature extractor used here was composed of a sequence
of eight convolution layers (LeCun and Bengio, 1995). A
convolution layer consists of a set of kernels (or filters) w that
each learn local features of the input image a. These local features
are then convolved over the input, resulting in an activation map
h, indicating whether a feature is present at each given location of
the input:

hi,j = g

(

m
∑

k=0

n
∑

l=0

wk,la(i−k),(j−l)

)

(5)

Here, b represents the bias of the kernel, while g represents the
activation function. k and l represent the row and column index
of the kernel matrix, whereas i and j represent the row and
column index of the activation map.

Generally, lower-level convolution kernels (that are close to
the input data) have small receptive fields and are only sensitive
to local features of small patches of the input data (e.g., contrasts
and orientations). Higher-level convolution kernels, on the other
hand, act upon a higher-level representation of the input data,
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FIGURE 1 | Illustration of the DeepLight approach. A whole-brain fMRI volume is sliced into a sequence of axial images. These images are then passed to a DL model

consisting of a convolutional feature extractor, an LSTM and an output unit. First, the convolutional feature extractor reduces the dimensionality of the axial brain slices

through a sequence of eight convolution layers. The resulting sequence of higher-level slice representations is then fed to a bi-directional LSTM, modeling the spatial

dependencies of brain activity within and across brain slices. Lastly, the DL model outputs a decoding decision about the cognitive state underlying the fMRI volume,

through a softmax output layer with one output neuron per cognitive state in the data. Once the prediction is made, DeepLight utilizes the LRP method to decompose

the prediction into the contributions (or relevance) of the single input voxels to the prediction. Thereby, enabling an analysis of the association between fMRI data and

cognitive state.

which has already been transformed by a sequence of preceding
lower-level convolution kernels. Higher-level kernels thereby
integrate the information provided by lower-level convolution
kernels, allowing them to identify larger and more complex
patterns in the data. We specified the sequence of convolution
layers as follows (see Figure 1): conv3-16, conv3-16, conv3-16,
conv3-16, conv3-32, conv3-32, conv3-32, conv3-32 [notation:
conv(kernel size) - (number of kernels)]. All convolution kernels
were activated through a rectified linear unit function:

g (z) = max (0, z) (6)

Importantly, all kernels of the even-numbered convolution layers
were moved over the input fMRI slice with a stride size of one
voxel and all kernels of odd-numbered layers with a stride size
of two voxels. The stride size determines the dimensionality of
the outputted slice representation. An increasing stride indicates
more distance between the application of the convolution kernels
to the input data. Thereby, reducing the dimensionality of the

output representation at the cost of a decreasing sensitivity to
differences in the activity patterns of neighboring voxels. Yet,
the activity patterns of neighboring voxels are known to be
highly correlated, leading to an overall low risk of information
loss through a reasonable increase in stride size. To avoid any
further loss of dimensionality between the convolution layers, we
applied zero-padding. Thereby, adding zeros to the borders of

the inputs to each convolution layer so that the outputs of the

convolution layers have the same dimensionality as their inputs,

if a stride of one voxel is applied, and only decrease in size, when

a larger stride is used. The sequence of eight convolution layers

thereby resulted in a 960-dimensional representation of each
volume slice.

To integrate the information provided by the resulting
sequence of slice representations into a higher-level
representation of the observed whole-brain activity, DeepLight
applies a bi-directional LSTM (Hochreiter and Schmidhuber,
1997), containing two independent LSTM units. Each of the two
LSTM units iterates through the entire sequence of input slices,
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but in reverse order (one from bottom-to-top and the other
from top-to-bottom). An LSTM unit contains a hidden cell state
C, storing information over an input sequence of length S with
elements as and outputs a vector hs for each input at sequence
step s. The unit has the ability to add and remove information
from C through a series of gates. In a first step, the LSTM unit
decides what information from the cell state C is removed. This
is done by a fully-connected logistic layer, the forget gate f :

ft = σ
(

Wf as + Uf hs−1 + bf
)

(7)

Here, σ indicates the logistic function (see Equation 4), [W,U]
the gate’s weight matrices and b the gate’s bias. The forget gate
outputs a number between 0 and 1 for each entry in the cell state
C at the previous sequence step s−1. Next, the LSTMunit decides
what information is going to be stored in the cell state. This
operation contains two elements: the input gate i, which decides
which values ofCs will be updated, and a tanh layer, which creates
a new vector of candidate values C′s:

is = σ
(

Wias + Uihs−1 + bi
)

(8)

C′s = tanh
(

Wcas + Uchs−1 + bc
)

(9)

tanh (z) =
ez − e−z

ez + e−z
(10)

Subsequently, the old cell state Cs−1 is updated into the new cell
state

Cs = fs · Cs−1 + is · C
′
s (11)

Lastly, the LSTM computes its output hs. Here, the output gate
o, decides what part of Cs will be outputted. Subsequently, Cs is
multiplied by another tanh layer to make sure that hs is scaled
between−1 and 1:

os = σ
(

Woas + Uohs−1 + bo
)

(12)

hs = os · tanh (Cs) (13)

Each of the two LSTMunits in our DLmodel contained 40 output
neurons. To make a decoding decision, both LSTM units pass
their output for the last sequence element to a fully-connected
softmax output layer. The output unit contains one neuron per
cognitive state in the data and assigns a probability to each of the
K (here, K = 4) states, indicating the probability that the current
fMRI sample belongs to this state:

σ =
ezj

∑K
k=1 e

zk
,with j = 1, ...,K (14)

Layer-Wise Relevance Propagation in the DeepLight

Framework
To relate the decoded cognitive state and brain activity,
DeepLight utilizes the Layer-Wise Relevance Propagation (LRP;
Bach et al., 2015; Montavon et al., 2017; Lapuschkin et al., 2019)
method. The goal of LRP is to identify the contribution of a
single dimension d of an input a (with dimensionality D) to the

prediction f (a) that is made by a linear or non-linear classifier f .
We denote the contribution of a single dimension as its relevance
Rd. One way of decomposing the prediction f (a) is by the sum of
the relevance values of each dimension of the input:

f (a) ≈

D
∑

d=1

Rd (15)

Qualitatively, any Rd < 0 can be interpreted as evidence against
the presence of a classification target, while Rd > 0 denotes
evidence for the presence of the target. Importantly, LRP assumes
that f (a) > 0 indicates evidence for the presence of a target.

Let’s assume the relevance R
(l)
j of a neuron j at network layer l

for the prediction f (a) is known. We would like to decompose

this relevance into the messages R
(l−1,l)
i←j that are sent to those

neurons i in layer l− 1 which provide the inputs to neuron j:

R
(l)
j =

∑

iǫ(l)

R
(l−1,l)
i←j (16)

While the relevance of the output neuron at the last layer L is

defined as R
(L)
d
= f (a), the dimension-wise relevance scores on

the input neurons are given by R
(1)
d
. For all weighted connections

of the DL model in between (see Equations 5, 7, 8, 9, and 12),

DeepLight defines the messages R
(l−1,l)
i←j as follows:

R
(l−1,l)
i←j =

zij

zj + ǫ · sign
(

zj
)R

(l)
j (17)

Here, zij = a
(l−1)
i w

(l−1,l)
ij (w indicating the coefficient weight

and a the input) and zj =
∑

i zij, while ǫ represents a stabilizer
term that is necessary to avoid numerical degenerations when zj
is close to 0 (we set ǫ = 0.001).

Importantly, the LSTM also applies another type of
connection, which we refer to as multiplicative connection
(see Equations 11 and 13). Let zj be an upper-layer neuron
whose value in the forward pass is computed by multiplying
two lower-layer neuron values zg and zs such that zj = zg · zs.
These multiplicative connections occur when we multiply
the outputs of a gate neuron, whose values range between
0 and 1, with an instance of the hidden cell state, which
we will call source neuron. For these types of connections,

we set the relevances of the gate neuron R
(l−1)
g = 0 and

the relevances of the source neuron R
(l−1)
s = R

(l)
j , where

R
(l)
j denotes the relevances of the upper layer neuron zj (as

proposed in Arras et al., 2017). The reasoning behind this
rule is that the gate neuron already decides in the forward
pass how much of the information contained in the source
neuron should be retained to make the classification. Even if
this seems to ignore the values of the neurons zg and zs for
the redistribution of relevance, these are actually taken into

account when computing the value R
(l)
j from the relevances
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of the next upper-layer neurons to which zj is connected by
the weighted connections. We refer the reader to Samek et al.
(2018) and Montavon et al. (2018) for more information about
explanation methods.

In the context of this work, we decomposed the predictions
of DeepLight for the actual cognitive state underlying each fMRI
sample, as we were solely interested in understanding what
DeepLight used as evidence in favor of the presence of this state.
We also restricted the LRP analysis to those brain samples that
the DL model classified correctly, because we can only assume
that the DL model has learned a meaningful mapping between
brain data and cognitive state, if it is able to accurately decode the
cognitive state.

DeepLight Training
We iteratively trained DeepLight through backpropagation
(Rumelhart et al., 1986) over 60 epochs by the use of the
ADAM optimization algorithm as implemented in tensorflow
1.4 (Abadi et al., 2016). To prevent overfitting, we applied
dropout regularization to all network layers (Srivastava et al.,
2014), global gradient norm clipping (with a clipping threshold
of 5; Pascanu et al., 2013), as well as an early stopping
of the training (for an overview of training statistics, see
Figure S2). During the training, we set the dropout probability
to 50% for all network layers, except for the first four
convolution layers, where we reduced the dropout probability
to 30% for the first two layers and 40% for the third
and fourth layer. Each training epoch was defined as a
complete iteration over all samples in the training dataset
(see section FMRI Data Acquisition and Preprocessing). We
used a learning rate of 0.0001 and a batch size of 32. All
network weights were initialized by the use of a normal-
distributed random initialization scheme (Glorot and Bengio,
2010). The DL model was written in tensorflow 1.4 (Abadi
et al., 2016) and the interprettensor library (https://github.com/
VigneshSrinivasan10/interprettensor).

DeepLight Brain Maps
To generate a set of subject-level brain maps with DeepLight,
we first decomposed the decoding decisions of DeepLight for
each correctly classified fMRI sample of a subject with the
LRP method (see section Layer-Wise Relevance Propagation
in the DeepLight Framework). Importantly, we restricted the
LRP analysis to those fMRI samples that were collected 5–
15 s after the onset of the experiment block, as we expect
the HRF (Lindquist et al., 2009) to be strongest within
this time period. To then aggregate the resulting set of
relevance maps for each decomposed fMRI sample within
each cognitive state, we smoothed each relevance map with
a 3mm FWHM Gaussian kernel and averaged all relevance
volumes belonging to a cognitive state, resulting in one brain
map per subject and cognitive state. Group-level brain maps
were then obtained, by averaging these subject-level brain
maps for all subjects in the held-out test dataset within each
cognitive state, resulting in one group-level brain map per
cognitive state.

RESULTS

DeepLight Accurately Decodes Cognitive
States From fMRI Data
A key prerequisite for the DeepLight analysis (as well as all other
decoding analyses) is that it achieves reasonable performance
in the decoding task at hand. Only then we can assume that
it has learned a meaningful mapping from the fMRI data to
the cognitive states and interpret the resulting brain maps as
informative about these states.

Overall, DeepLight accurately decoded the cognitive states
underlying 68.3% of the fMRI samples in the held-out test
dataset (62.36, 69.87, 75.97, 65.09 for body, face, place and
tool, respectively; Figure 2A). It generally performed best at
discriminating the body and place (5.1% confusion in the held-
out data), face and tool (7.8% confusion in the held-out data),
body and tool (9.8% confusion in the held-out data) and face
and place (10.4% confusion in the held-out data) stimuli from
the fMRI data, while it did not perform as well in discriminating
place and tool and body and face stimuli (15% confusion in the
held-out data, respectively).

Note that DeepLight’s performance in decoding the four
cognitive states from the fMRI data varied over the course of
an experiment block (Figure 2B). DeepLight performed best in
the middle and later stages of the experiment block, where the
average decoding accuracy reaches 80%. This finding is generally
in line with the temporal evolution of the hemodynamic response
function (HRF; Lindquist et al., 2009) measured by the fMRI (the
HRF is known to be strongest 5–10 s after to the onset of the
underlying neuronal activity).

To further evaluate DeepLight’s performance in decoding
the cognitive states from the fMRI data, we compared
its performance in decoding these states to the searchlight
analysis and whole-brain lasso. For simplicity, we sub-divided
this comparison into a separate analysis on the group-
and subject-level.

Group-Level
For the group-level comparison, we trained the searchlight
analysis and whole-brain lasso on the data of all 70 subjects
contained in the training dataset (for details on the fitting
procedures, see section Parameter Estimation of the Baseline
Methods in Supplementary Information). Subsequently, we
evaluated their performance in decoding the cognitive states in
the full held-out test data.

DeepLight clearly outperformed the other approaches in
decoding the cognitive states. While the searchlight analysis
achieved an average decoding accuracy of 60% (Figure 2C) and
the whole-brain lasso an average decoding accuracy of 47.97%
(Figure 2D), DeepLight improved upon these performances by
8.3% [t(29) = 5.80, p < 0.0001] and 20.33% [t(29) = 13.39, p <

0.0001], respectively.
All three decoding approaches generally performed best at

discriminating face and place stimuli from the fMRI data
(Figures 2A,C,D). Similar to DeepLight, the searchlight analysis
and whole-brain lasso also performed well at discriminating body
and place stimuli (3.3 and 12.2% confusion for the searchlight
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FIGURE 2 | Group-level decoding performance of DeepLight, the searchlight analysis and whole-brain lasso. (A) Confusion matrix of DeepLight’s decoding decisions.

(B) Average decoding performance of DeepLight over the course of an experiment block. (C,D) Confusion matrix for the decoding decisions of the group-level

searchlight analysis (C) and whole-brain lasso (D). (E) Average decoding accuracy of the searchlight (green), whole-brain lasso (blue) and DeepLight (red), when these

are repeatedly trained on a subset of the subjects from the full training dataset. Black dashed horizontal lines indicate chance level.
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analysis and whole-brain lasso, respectively, Figures 2C,D),
while they also had more difficulties discriminating body and
face stimuli from the fMRI data (25 and 20.2% confusion
for the searchlight analysis and whole-brain lasso, respectively,
Figures 2C,D).

A key premise of DL methods, when compared to more
traditional decoding approaches, is that their decoding
performance improves better with growing datasets. To
test this, we repeatedly trained all three decoding approaches
on a subset of the training dataset (including the data of 5, 10,
15, 20, 25, 30, 35, 40, 50, 60, and 70 subjects), and validated
their performance at each iteration on the full held-out test data
(Figure 2E). Overall, the decoding performance of DeepLight
increased by 0.27% [t(10) = 10.9, p < 0.0001] per additional
subject in the training dataset, whereas the performance of the
whole-brain lasso increased by 0.03% [t(10) = 3.02, p = 0.015]
and the performance of the searchlight analysis only marginally
increased by 0.04% [t(10) = 2.08, p = 0.067]. Nevertheless, the
searchlight analysis outperformed DeepLight in decoding the
cognitive states from the data when only little training data were
available (here, 10 or less subjects [t(29) = −4.39, p < 0.0001].
The decoding advantage of DeepLight, on the other hand, came
to light when the data of 50 or more subjects were available in the
training dataset [t(29) = 3.82, p= 0.0006]. DeepLight consistently
outperformed the whole-brain lasso, when it was trained on the
data of at least 10 subjects [t(29) = 5.32, p= 0.0045].

Subject-Level
For the subject-level comparison, we first trained both, the
searchlight analysis and whole-brain lasso on the fMRI data
of the first experiment run of a subject from the held-
out test dataset (for an overview of the training procedures,
see section Parameter Estimation of the Baseline Methods
in Supplementary Information). We then used the data of
the second experiment run of the same subject to evaluate
their decoding performance (by predicting the cognitive states
underlying each fMRI sample of the second experiment run).
Importantly, we also decoded the same fMRI samples with
DeepLight. Note that DeepLight, in comparison to the other
approaches, did not see any data of the subject during the
training, as it was solely trained on the data of the 70 subjects
in the training dataset (see section DeepLight Training).

DeepLight clearly outperformed the other decoding
approaches, by decoding the cognitive states more accurately for
28 out of 30 subjects, when compared to the searchlight analysis
(while the searchlight analysis achieved an average decoding
accuracy of 47.2% across subjects, DeepLight improved upon
this performance by 22.4%, with an average decoding accuracy
of 69.3%, t(29) = 11.28, p < 0.0001; Figure 3A), and for 29 out of
30 subjects, when compared to the whole-brain lasso (while the
whole-brain lasso achieved an average decoding accuracy of 37%
across subjects, DeepLight improved upon this performance by
32%; t(29) = 15.74, p < 0.0001; Figure 3B).

To further ascertain that the observed differences in decoding
performance between the searchlight and DeepLight did not
result from the linearity contained in the Support Vector
Machine (SVM; Cortes and Vapnik, 1995) of the searchlight

analysis, we replicated our subject-level searchlight analysis, by
the use of a non-linear radial basis function kernel (RBF; Cortes
and Vapnik, 1995; Müller et al., 2001; Schölkopf and Smola, 2002)
SVM (Figure S3). However, the decoding accuracies achieved by
the RBF-kernel SVM were not meaningfully different from those
of the linear-kernel SVM [t(29) = −1.75, p= 0.09].

Lastly, we also compared the subject-level decoding
performance of the whole-brain lasso to that of a recently
proposed extension of this approach (TV-L1, for methodological
details see Gramfort et al., 2013). The TV-L1 approach combines
the Least Absolute Shrinkage Regularization (L1; see Equation
3) of the whole-brain lasso with an additional Total-Variation
(TV) penalty (Michel et al., 2011), to better account for the
spatial dependency structure of fMRI data. Yet, we found that
the whole-brain lasso performed better at decoding the cognitive
states from the subject-level fMRI data than TV-L1 [t(29) = 3.79,
p= 0.0007; see Figure S4].

DeepLight Identifies Physiologically
Appropriate Associations Between
Cognitive States and Brain Activity
Our previous analyses have shown that DeepLight has learned
a meaningful mapping between the fMRI data and cognitive
states, by accurately decoding these states from the data. Next,
we therefore tested DeepLight’s ability to identify the brain
areas associated with the cognitive states, by decomposing its
decoding decisions with the LRP method (see section DeepLight
Framework). Subsequently, we compared the resulting brain
maps of DeepLight to those of the GLM, searchlight analysis
and whole-brain lasso. Again, we sub-divided this comparison
into a separate analysis on the group- and subject-level. Note
that due to the diverse statistical nature of the three baseline
approaches, the values of their brain maps are on different scales
and have different statistical interpretations (for methodological
details, see section Baseline Methods). Further, all depicted brain
maps in Figures 4–6 are projected onto the inflated cortical
surface of the FsAverage5 surface template (Fischl, 2012) for
better visibility.

To evaluate the quality of the brain maps resulting from each
analysis approach, we performed a meta-analysis of the four
cognitive states with NeuroSynth (for details on NeuroSynth,
see section NeuroSynth in Supplementary Information and
Yarkoni et al., 2011). NeuroSynth provides a database of
mappings between cognitive states and brain activity, based on
the empirical neuroscience literature. Particularly, the resulting
brain maps used here indicate whether the probability that
an article reports a specific brain activation is different, when
it includes a specific term (e.g., “face”) compared to when it
does not. With this meta-analysis, we defined a set of regions-
of-interest (ROIs) for each cognitive state (as defined by the
terms “body,” “face,” “place,” and “tools”), in which we would
expect the various analysis approaches to identify a positive
association between the cognitive state and brain activity (for an
overview, see Figure 4A). These ROIs were defined as follows:
the upper parts of the middle and inferior temporal gyrus, the
postcentral gyrus, as well as the right fusiform gyrus for the
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FIGURE 3 | Subject-level decoding performance comparison of DeepLight (red) to the searchlight analysis (A; green) and whole-brain lasso (B; blue). Black scatter

points indicate the average decoding accuracy for a subject. Colored lines indicate the average decoding accuracy across all 30 test subjects.

FIGURE 4 | Group-level brain maps for each cognitive state and analysis approach: (A) Results of a NeuroSynth meta-analysis for the terms “body,” “face,” “place,”

and “tools.” The brain maps were thresholded at an expected false discovery rate of 0.01. Red boxes highlight the regions-of-interest for each cognitive state.

(B) Results of the GLM group-level analysis. The brain maps of the GLM analysis were thresholded at an expected false discovery rate of 0.1. (C–E) Results of the

group-level searchlight analysis (C), whole-brain lasso (D), and DeepLight (E). The brain maps of the searchlight analysis, whole-brain lasso, and DeepLight were

thresholded at the 90th percentile of their values. Note that the values of the brain maps are on different scales between analysis approaches, due to their different

statistical nature. All brain maps are projected onto the inflated cortical surface of the FsAverage5 surface template (Fischl, 2012).

body state, the fusiform gyrus (also known as the fusiform
face area FFA; Haxby et al., 2001; Heekeren et al., 2004) and
amygdala for the face state, the parahippocampal gyrus (or
parahippocampal place area PPA; Haxby et al., 2001; Heekeren
et al., 2004) for the place state and the upper left middle and

inferior temporal gyrus as well as the left postcentral gyrus for
the tool state.

To ensure comparability with the results of the meta-analysis,
we restricted all analyses of brain maps to the estimated
positive associations between brain activity and cognitive states

Frontiers in Neuroscience | www.frontiersin.org 10 December 2019 | Volume 13 | Article 1321

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thomas et al. Analyzing fMRI Through Recurrent DL

FIGURE 5 | Exemplary DeepLight brain maps for each of the four cognitive states on different levels of data granularity for a single subject. All brain maps belong to

the subject with the highest decoding accuracy in the held-out test dataset. (A) Average relevance maps for all correctly classified TRs of the subject (with an average

of 47 TRs per cognitive state). (B) Average relevance maps for all correctly classified TRs of the first experiment block of each cognitive state in the first experiment run

(with an average of 12 TRs per cognitive state). (C) Exemplar relevance maps for a single TR of the first experiment block of each cognitive state in the first experiment

run. All relevance maps were thresholded at the 90th percentile of their values and projected onto the inflated cortical surface of the FsAverage5 surface template

(Fischl, 2012).

(i.e., positive relevance values as well as positive GLM and
whole-brain lasso coefficients, see section Baseline Methods
and section Parameter Estimation of the Baseline Methods
in Supplementary Information). A negative Z-value in the
meta-analysis indicates a lower probability that an article
reports a specific brain activation when it includes a specific
term, compared to when it does not include the term. A
negative value in the meta-analysis is therefore conceptually
different to negative values in the brain maps of our analyses
(e.g., negative relevance values or negative whole-brain lasso
coefficients). These can generally be interpreted as evidence
against the presence of a cognitive state, given the specific set
of cognitive states in our dataset (e.g., a negative relevance
indicates evidence for the presence of any of the other cognitive
states considered).

Group-Level
To determine the voxels that each analysis approach associated
with a cognitive state, we defined a threshold for the values
of each group-level brain map, indicating those voxels that
are associated most strongly with the cognitive state. For the
GLM analysis, we thresholded all P-values at an expected false
discovery rate (Benjamini and Hochberg, 1995; Genovese et al.,
2002) of 0.1 (Figure 4B). Similarly, for all decoding analyses, we

thresholded each brain map at the 90th percentile of its values
(Figures 4C–E). For the whole-brain lasso and DeepLight, the
remaining 10 percent of values indicate those brain regions whose
activity these approaches generally weight most in their decoding
decisions. For the searchlight analysis, the remaining 10 percent
of values indicate those brain regions in which the searchlight
analysis achieved the highest decoding accuracy.

All analysis approaches correctly associated activity in the
upper parts of the middle and inferior temporal gyrus with
body stimuli. The GLM, whole-brain lasso and DeepLight also
correctly associated activity in the right fusiform gyrus with
body stimuli. Only DeepLight correctly associated activity in
the postcentral gyrus with these stimuli. The GLM, whole-brain
lasso and DeepLight further all correctly associated activity in the
right FFA with face stimuli. None of the approaches, however,
associated activity in the left FFA with face stimuli. Interestingly,
the searchlight analysis did not associate the FFAwith face stimuli
at all. All analysis approaches also correctly associated activity
in the PPA with place stimuli. Lastly, for tool stimuli, the GLM
and whole-brain lasso correctly associated activity in the left
inferior temporal sulcus with stimuli of this class. The searchlight
analysis and whole-brain lasso only did so marginally. None of
the approaches associated activity in the left postcentral gyrus
with tool stimuli.
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FIGURE 6 | DeepLight analysis of the temporo-spatial distribution of brain activity in the first experiment block of the face and place stimulus classes in the second

experiment run of the held-out test dataset. (A,B) Average predicted probability that the fMRI data collected at each sampling time point belongs to each of the four

cognitive states. (C,E) Results of a meta-analysis with the NeuroSynth database for the face and place stimulus classes (for details on the meta-analysis, see section

NeuroSynth in Supplementary Information). (D,F) Group-level brain maps for seven fMRI sampling time points from the experiment block. Each group-level brain

map at each time point is computed as an average over the relevance maps of each subject for this time point. Each group-level brain map is thresholded at the 90th

percentile of its values. All brain maps are projected onto the inflated cortical surface of the FsAverage5 surface template (Fischl, 2012). (G,H) F1-score for each

group-level brain map at each sampling time point of the experiment block. The F1-score quantifies the similarity between the group-level brain map and the results of

the meta-analysis (C,E) (for further details on the F1-score, see section Subject-Level and section NeuroSynth in Supplementary Information). Red indicates the

results of the F1-score comparison for the brain maps of DeepLight, whereas blue indicates the results of this comparison for the brain maps of the whole-brain lasso

analysis (for further details on the F1-comparison for the whole-brain lasso analysis, see section DeepLight’s Relevance Patterns Resemble Temporo-Spatial Variability

of Brain Activity Over Sequences of Single fMRI Samples).

Overall, DeepLight’s group-level brain maps accurately
associated each of the ROIs with their respective cognitive states.
Interestingly, DeepLight also associated a set of additional brain
regions with the face and tool stimulus classes that were not
identified by the other analysis approaches (see Figure 4E).
For face stimuli, these regions are the orbitofrontal cortex
and temporal pole. While the temporal pole has been shown
to be involved in the ability of an individual to infer the

desires, intentions and beliefs of others (theory-of-mind; for a
detailed review, see Olson et al., 2007), the orbitofrontal cortex
has been associated with the processing of emotions in the
faces of others (for a detailed review, see Adolphs, 2002). For
tool stimuli, DeepLight additionally utilized the activity of the
temporoparietal junction (TPJ) to decode these stimuli. The TPJ
has been shown to be associated with the ability of an individual
to discriminate self-produced actions and the actions produced
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by others and is generally regarded of as a central hub for the
integration of body-related information (for a detailed review,
see Decety and Grèzes, 2006). Although it is not clear why only
DeepLight associated these brain regions with the face and tool
stimulus classes, their assumed functional roles do not contradict
this association.

Subject-Level
The goal of the subject-level analysis was to test the ability of
each analysis approach to identify the physiologically appropriate
associations between brain activity and cognitive state on the
level of each individual.

To quantify the similarity between the subject-level brain
maps and the results of the meta-analysis, we defined a similarity
measure. Given a target brain map (e.g., the results of our
meta-analysis), this measure tests for each voxel in the brain
whether a source brain map (e.g., the results of our subject-
level analyses) correctly associates this voxel’s activity with
the cognitive state (true positive), falsely associates the voxel’s
activity with the cognitive state (false positives) or falsely does
not associate the voxel’s activity with the cognitive state (false
negatives). Particularly, we derived this measure from the well-
known F1-score in machine learning (see section F1-Score in
Supplementary Information as well as Goutte and Gaussier,
2005). The benefit of the F1-score, when compared to simply
computing the ratio of correctly classified voxels in the brain,
is that it specifically considers the brain map’s precision and
recall and is thereby robust to the overall size of the ROIs in the
target brain map. Here, precision describes the fraction of true
positives from the total number of voxels that are associated with
a cognitive state in the source brain map. Recall, on the other
hand, describes the fraction of true positives from the overall
number of voxels that are associated with a cognitive state in the
target brain map. Generally, an F1-score of 1 indicates that the
brain map has both, perfect precision and recall with respect to
the target, whereas the F1-score is worst at 0.

To obtain an F1-score for each subject-level brain
map (for details on the estimation of subject-level brain
maps with the three baseline analysis approaches, see
section Parameter Estimation of the Baseline Methods in
Supplementary Information), we again thresholded each
individual brain map. For the GLM, we defined all voxels with
P > 0.005 (uncorrected) as not associated with the cognitive
state and all others as associated with the cognitive state. For
the searchlight analysis, whole-brain lasso and DeepLight, we
defined all voxels with a value below the 90th percentile of the
values within the brain map as not associated with the cognitive
state and all others as associated with the cognitive state.

Overall, DeepLight’s subject-level brain maps had
meaningfully larger F1-scores for the body, face and place
stimulus classes, when compared to those of the GLM [t(29) =
10.46, p < 0.0001 for body stimuli, Figure S5A; t(29) = 13.04,
p < 0.0001 for face stimuli, Figure S5D; t(29) = 9.26, p < 0.0001
for place stimuli, Figure S5G], searchlight analysis [t(29) = 13.26,
p < 0.0001 for body stimuli, Figure S5B; t(29) = 8.57, p < 0.0001
for face stimuli, Figure S5E; t(29) = 4.25, p = 0.0002, for place
stimuli, Figure S5H], and whole-brain lasso [t(29) = 20.93, p <

0.0001 for body stimuli, Figure S5C; t(29) = 48.32, p < 0.0001
for face stimuli, Figure S5F; t(29) = 22.43, p < 0.0001, for place
stimuli, Figure S5I]. For tool stimuli, the GLM and searchlight
generally achieved higher subject-level F1-scores than DeepLight
[t(29) = −8.19, p < 0.0001, Figure S5J; t(29) = −4.39, p =
0.0001, Figure S5K for the GLM and searchlight, respectively],
whereas DeepLight outperformed the whole-brain lasso analysis
[t(29) = 18.31, p < 0.0001, Figure S5L].

To ascertain that the results of this comparison were not
dependent on the thresholds that we chose, we replicated the
comparison for each combination of the 85th, 90th, and 95th
percentile threshold for the brainmaps of the searchlight analysis,
whole-brain lasso and DeepLight, as well as a P-threshold of
0.05, 0.005, 0.0005, and 0.00005 for the brain maps of the GLM.
Within all combinations of percentile values and P-thresholds,
the presented results of the F1-comparison were generally stable
(see Tables S3–S6).

DeepLight Accurately Identifies
Physiologically Appropriate Associations
Between Cognitive States and Brain
Activity on Multiple Levels of Data
Granularity
DeepLight’s ability to correctly identify the physiological
appropriate associations between cognitive states and brain
activity is exemplified in Figure 5. Here, the distribution of
relevance values for the four cognitive states is visualized on
three different levels of data granularity of an exemplar subject
(namely, the subject with the highest decoding accuracy in
Figures 3A,B): First, on the level of the overall distribution of
relevance values of each cognitive state of this subject (Figure 5A;
incorporating an average of 47 TRs per cognitive state), then on
the level of the first experiment block of each cognitive state in
the first experiment run (Figure 5B; incorporating an average of
12 TRs per cognitive state) and lastly on the level of a single brain
sample of each cognitive state (Figure 5C; incorporating a single
TR per cognitive state).

On all three levels, DeepLight utilized the activity of a similar
set of brain regions to identify each of the four cognitive states.
Importantly, these regions largely overlap with those identified
by the DeepLight group-level analysis (Figure 4E) as well as the
results of the meta-analysis (Figure 4A).

DeepLight’s Relevance Patterns Resemble
Temporo-Spatial Variability of Brain Activity
Over Sequences of Single fMRI Samples
To further probe DeepLight’s ability to analyze single time
points, we next studied the distribution of relevance values
over the course of a single experiment block (Figure 6). In
particular, we plotted this distribution as a function of the fMRI
sampling-time over all subjects for the first experiment block
of the face and place stimulus classes in the second experiment
run. We restricted this analysis to the face and place stimulus
classes, as the neural networks involved in processing face and
place stimuli, respectively, have been widely characterized (see,
for example Haxby et al., 2001 as well as Heekeren et al.,
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2004). For a more detailed overview, we also created two
videos for the two experiment blocks depicted in Figure 6

(Supplementary Videos 1, 2). These videos display the temporal
evolution of relevance values for each fMRI sample in the original
fMRI sampling time of the face (Supplementary Video 1) and
place (Supplementary Video 2) experiment blocks.

In the beginning of the experiment block, DeepLight
was generally uncertain which cognitive state the observed
brain samples belonged to, as it assigned similar probabilities
to each of the cognitive states considered (Figures 6A,B).
As time progressed, however, DeepLight’s certainty increased
and it correctly identified the cognitive state underlying the
fMRI samples. At the same time, it started assigning more
relevance to the target ROIs of the face and place stimulus
classes (Figures 6C–F), as indicated by the increasing F1-
scores resulting from a comparison of the brain maps at
each sampling time point with the results of the meta-analysis
(Figures 6G,H; all brain maps were again thresholded at the
90th percentile for this comparison). Interestingly, the relevances
started peaking in the target ROIs 5s after the onset of the
experiment block. The temporal evolution of the relevances
thereby mimics the hemodynamic response measured by the
fMRI (Lindquist et al., 2009).

To further evaluate the results of this analysis, we replicated it
by the use of the whole-brain lasso group-level decoding model
(see section Baseline Methods and section Parameter Estimation
of the Baseline Methods in Supplementary Information).
In particular, we multiplied the fMRI samples of all test
subjects collected at each sampling time point with the
coefficient estimates of the whole-brain lasso group-level model.
Subsequently, we averaged the resulting weighted fMRI samples
within each sampling time point depicted in Figures 6G,H and
computed an F1-score for a comparison of the resulting average
brain maps with the results of the meta-analysis (as described
in section Subject-Level). Interestingly, we found that the F1-
scores of the whole-brain lasso analysis varied much less over
the sequence of fMRI samples and were throughout lower than
those of DeepLight. Thereby, indicating that the brain maps of
the whole-brain lasso analysis exhibit comparably little variability
over the course of an experiment block with respect to the target
ROIs defined for the face and place stimulus classes.

DISCUSSION

Neuroimaging data have a complex temporo-spatial dependency
structure that renders modeling and decoding of experimental
data a challenging endeavor. With DeepLight, we propose a
new data-driven framework for the analysis and interpretation
of whole-brain neuroimaging data that scales well to large
datasets and is mathematically non-linear, while still maintaining
interpretability of the data. To decode a cognitive state,
DeepLight separates a whole-brain fMRI volume into its
axial slices and processes the resulting sequence of brain
slices by the use of a convolutional feature extractor and
LSTM. Thereby, accounting for the spatially distributed patterns
of whole-brain brain activity within and across axial slices.

Subsequently, DeepLight relates cognitive state and brain activity,
by decomposing its decoding decisions into the contributions of
the single input voxels to these decisions with the LRP method.
Thus, DeepLight is able to study the associations between brain
activity and cognitive state on multiple levels of data granularity,
from the level of the group down to the level of single subjects,
trials and time points.

To demonstrate the versatility of DeepLight, we have applied
it to an openly available fMRI dataset of 100 subjects viewing
images of body parts, faces, places, and tools. With these data,
we have shown that the DeepLight (1) decodes the underlying
cognitive states more accurately from the fMRI data than
conventional means of uni- and multivariate brain decoding,
(2) improves its decoding performance better with growing
datasets, (3) accurately identifies the physiologically appropriate
associations between cognitive states and brain activity, (4) can
study these associations on multiple levels of data granularity,
from the level of the group down to the level of single subjects,
trials and time points, and (5) can capture the temporo-
spatial variability of brain activity over sequences of single
fMRI samples.

Transferring DeepLight to Other fMRI
Datasets
The DeepLight architecture used here is exemplary. Future
research is needed to evaluate how the specific architectural
choices for its three sub-modules (the convolutional feature
extractor, LSTM unit and softmax output layer; see section
DeepLight Framework) will effect its performance. In
the following, we will briefly outline how the proposed
architecture can be transferred to the analysis of other fMRI
datasets with different spatial resolution and decoding targets.
Importantly, online minimal changes are necessary in order
to adapt DeepLight’s architecture for the analysis of such
fMRI datasets.

DeepLight first processes an fMRI volume within each axial
slice, by computing a higher-level, and lower-dimensional,
representation of the slices with the convolutional feature
extractor. Here, the spatial sensitivity of DeepLight to the
fine-grained activity differences of neighboring voxels within
each slice is determined by the stride size applied by the
convolution layers. The stride size indicates the distance
between the application of the convolution kernels to the
axial slices of the fMRI volume. Generally, a larger stride
decreases DeepLight’s sensitivity for fine-grained differences
in the activity of neighboring voxels, as it increases the
distance between the applications of the convolution kernels
to the input slice. Reversely, a smaller stride size increases
DeepLight’s sensitivity for the fine-grained activity differences
of neighboring voxels, as it decreases the distance between the
applications of the convolution kernels. For example, when
analyzing fMRI volumes that have a lower spatial resolution
than the ones used here, containing fewer voxels per axial
slice (and thereby less information about the distribution of
brain activity within each slice), we would recommend to
decrease the stride size for more of DeepLight’s convolution
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layers, in order to best leverage the information contained in
these voxels.

After the application of the convolutional feature extractor,
DeepLight integrates the information of the resulting higher-
level slice representations, by the use of a bi-directional LSTM.
Here, each of the two LSTM units iterates through the entire
sequence of slice representations, before forwarding its output.
The proposed DeepLight architecture therefore does not require
any modification in order to accommodate fMRI datasets with a
different number of axial slices per volume, as it generalizes to
any sequence length.

Further, the number of neurons in the softmax output
layer is directly determined by the number of decoding targets
considered in the data (one output neuron per decoding target).
In the case of a continuous decoding target (for example, by
predicting a subject’s score in a cognitive test), the softmax
output layer can be replaced with a linear regression layer.
The LRP decomposition approach (see section Layer-Wise
Relevance Propagation in the DeepLight Framework) also applies
to continuous output variables (for further details on the
application of the LRP approach to continuous output variables,
see Bach et al., 2015 and Montavon et al., 2017).

Lastly, recent exploratory empirical work has shown that even
for more complex fMRI decoding analyses, encompassing up
to 400 subjects and 20 distinct cognitive states (see Thomas
et al., 2019), DeepLight does not require more than 64 neurons
per layer. We would therefore not recommend to increase the
number of neurons further, as this will also lead to an overall
increased risk of overfitting.

Comparison to Baseline Methods
General Linear Model
The GLM is conceptually different from the other neuroimaging
analysis approaches considered in this work. It aims to identify
an association between cognitive state and brain activity, by
modeling (or predicting) the time series signal of a single voxel as
a linear combination of a set of experiment predictors (see section
Baseline Methods). It is thereby limited in three meaningful ways
that do not apply to DeepLight: First, the time series signal of
a voxel is generally very noisy. The GLM treats each voxel’s
signal as independent of one another, thereby, not leveraging the
evidence that is shared across the time series signal of multiple
voxels. Second, even though the linear combination of a set of
experiment predictors might be able to explain variance in the
observed fMRI data, it does not necessarily provide evidence that
this exact set of predictors is encoded in the neuronal response.
Generally, the same linear model (in terms of its predictions)
can be constructed from many different (even random) sets
of predictors (for a detailed discussion of this “feature fallacy,”
see Kriegeskorte and Douglas, 2018). The results of the GLM
analysis thereby indicate that the measured neuronal response
is highly structured and that this structure is preserved across
individuals, whereas the labels assigned to its predictors might
be arbitrary. Third, the performance of the GLM in predicting
the response signal of a voxel is typically not evaluated on
independent data, which leaves unanswered how well its results
generalize to new data.

Searchlight Analysis
DeepLight generally outperformed the searchlight analysis in
decoding the cognitive states from the fMRI data. In small
datasets (here, the data of 10 or less subjects), however, the
performance of the searchlight analysis was superior. In contrast
to DeepLight, the searchlight analysis decodes a cognitive state
from single cluster of only few voxels. Its input data, as
well as the number of parameters in its decoding model, are
thereby considerably smaller, leading to an overall lower risk of
overfitting. Yet, this advantage comes at the cost of additional
constraints that have to be considered when considering both
approaches. If a cognitive state is associated with the activity of
a small brain region only, the searchlight analysis will generally
be more sensitive to the activity of this region than DeepLight,
as it has learned a decoding model that is specific to the activity
of the region. If, however, the cognitive state is not identifiable by
the activity of a single brain region only, but solely in conjunction
with the activity of another spatially distinct brain region, the
searchlight analysis will not be able to identify this association,
due to its narrow spatial focus. DeepLight, on the other hand,
will generally be less sensitive to the specifics of the activity of a
local brain region, but perform better in identifying a cognitive
state from spatially wide-spread brain activity. When choosing
between both approaches, one should therefore consider whether
the assumed associations between brain activity and cognitive
state specifically involve the activity of a local brain region only,
or whether the cognitive state is associated with the activity of
spatially distinct brain regions.

Whole-Brain Lasso
In contrast to DeepLight, the whole-brain lasso analysis is based
on a linear decoding model. It assigns a single coefficient weight
to each voxel in the brain and makes a decoding decision by
computing a weighted sum over the activity of an input fMRI
volume. Importantly, due to the strong regularization that is
applied to the coefficients during the training, many coefficients
equal 0. The resulting set of coefficients thereby resembles a brain
mask, defining a set of fixed brain regions whose activity the
whole-brain lasso utilizes to decode a cognitive state. DeepLight,
on the other hand, utilizes a hierarchical structure of non-linear
transforms of the fMRI data. It projects each fMRI volume into
a more abstracted, higher-level space. This abstracted (and more
flexible) view enables DeepLight to better account for the variable
patterns of brain activity underlying a cognitive state (within and
across individuals). This ability is exemplified in Figure 6, as well
as Supplementary Videos 1, 2, where we visualize the variable
patterns of brain activity that DeepLight associates with the
face and place stimulus classes throughout an experiment block.
The relevance patterns of DeepLight mimic the hemodynamic
response and peak in the ROIs 5–10 s after the onset of the
experiment block. Importantly, we find that the whole-brain lasso
does not exhibit such temporo-spatial variability.

Disentangling Temporally Distinct
Associations Between Cognitive State and
Brain Activity
DeepLight’s ability to identify a cognitive state through variable
patterns of brain activity makes it ideally suited for the analysis
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of the fine-grained spatial distribution of brain activity over
temporal sequences of fMRI samples. For example, Hunt and
Hayden (2017) recently raised the question whether the neural
networks involved in reward-based decision making can be
subdivided into a set of spatially distinct and temporally discrete
network components, or whether the underlying networks act in
parallel, with highly recurrent activity patterns. Answering this
question is difficult with conventional approaches to the analysis
of neuroimaging data, such as the baseline methods included
in this paper. These often learn a fixed mapping between brain
activity and cognitive state, by aggregating over the information
provided by a sequence of fMRI samples (e.g., by estimating
a single coefficient weight for each voxel from a sequence of
fMRI data). The resulting brain maps thereby only indicate
whether there exist spatially distinct brain regions that are
associated with a cognitive state, without providing any insight
whether the activity patterns are temporally discrete. While these
methods can be adapted to specifically account for the temporal
differences in the activity patterns of these regions (e.g., by
analyzing different time points independent of one another),
these adaptations often require specific hypotheses about the
studied temporal differences (e.g., by needing to specify the
different time points to analyze). DeepLight, on the other hand,
operates purely data-driven and is thereby able to autonomously
identify an association between spatially distinct patterns of brain
activity and a cognitive state at temporally discrete time points.

Integrative Analysis of Multimodal
Neuroimaging Data
DeepLight is not bound to fMRI data, but can be easily extended
to other neuroimaging modalities. One such complementary
modality, with a higher temporal, but lower spatial resolution, is
the Electroencephalography (EEG). While a plethora of analysis
approaches have been proposed for the integrative analysis
of EEG and fMRI data, these often incorporate restrictive
assumptions to enable the integrative statistical analysis of
these two data types, with clearly distinct spatial, temporal and
physiological properties (for a detailed review, see Jorge et al.,
2014). DeepLight, on the other hand, represents a data-driven
analysis framework. By providing both, EEG and fMRI data
as separate inputs to the DL model, DeepLight could learn
the fine-grained temporal structure of brain activity from the
EEG data, while utilizing the fMRI data to localize the spatial
brain regions underlying this activity. Recently, researchers have
already demonstrated the usefulness of interpretable DLmethods
for the analysis of EEG data (Sturm et al., 2016).

Extending DeepLight
Lastly, we would like to highlight several possible extensions of
the DeepLight approach, resulting from its flexible and modular
architecture. First, DeepLight can be extended to specifically
account for the temporo-spatial distribution of brain activity over
sequences of fMRI samples, by the addition of another recurrent
network layer. This layer would process each of the higher-
level whole-brain representations resulting from the currently
proposed architecture. This extension would enable DeepLight to
more specifically account for the temporal distribution of brain

activity. Second, DeepLight can be extended to the integrative
analysis of neuroimaging data from multiple cognitive tasks and
experiments. For example, by adding one neuron to the output
layer for each cognitive state from each task. This extension
would enable a more thorough analysis of the differences (and
similarities) between the associations of cognitive state and brain
activity across multiple tasks and experiments.
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Supplementary Video 1 | DeepLight analysis of the temporo-spatial distribution

of brain activity in the first experiment block of the face stimulus class in the

second experiment run of the held-out test dataset. (Right) DeepLight’s

group-level brain maps for each sampling time point of the first experiment block

of the face stimulus class in the second experiment run of the held-out test

dataset. All brain maps are projected onto the inflated cortical surface of the

FsAverage5 surface template. (Left) For each sampling time point, three metrics

are displayed: DeepLight’s softmax output prediction for each decoding target,

DeepLight’s average decoding accuracy, and the F1-score of a comparison of the

shown group-level brain map with the results of a NeuroSynth meta-analysis for

the term “face”’ (for further details on the F1-score, see section Subject-Level and

section NeuroSynth in Supplementary Information). Higher F1-scores generally

indicate stronger similarity.

Supplementary Video 2 | DeepLight analysis of the temporo-spatial distribution

of brain activity in the first experiment block of the place stimulus class in the

second experiment run of the held-out test dataset. (Right) DeepLight’s

group-level brain maps for each sampling time point of the first experiment block

of the place stimulus class in the second experiment run of the held-out test

dataset. All brain maps are projected onto the inflated cortical surface of the

FsAverage5 surface template. (Left) For each sampling time point, three metrics

are displayed: DeepLight’s softmax output prediction for each decoding target,

DeepLight’s average decoding accuracy, and the F1-score of a comparison of the

shown group-level brain map with the results of a NeuroSynth meta-analysis for

the term “place”’ (for further details on the F1-score, see sections Subject-Level

and NeuroSynth in Supplementary Information). Higher F1-scores generally

indicate stronger similarity.
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