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The invention of representational similarity analysis [RSA, following multi-voxel pattern
analysis (MVPA)] has allowed cognitive neuroscientists to identify the representational
structure of multiple brain regions, moving beyond functional localization. By comparing
these structures, cognitive neuroscientists can characterize how brain areas form
functional networks. Univariate analysis (UNIVAR) and functional connectivity analysis
(FCA) are two other popular methods to identify functional networks. Despite their
popularity, few studies have examined the relationship between networks from RSA
with those from UNIVAR and FCA. Thus, the aim of the current study is to examine
the similarities between neural networks derived from RSA with those from UNIVAR
and FCA to explore how these methods relate to each other. We analyzed the data
of a previously published study with the three methods and compared the results by
performing (partial) correlation and multiple regression analysis. Our findings reveal that
neural networks resulting from RSA, UNIVAR, and FCA methods are highly similar to
each other even after ruling out the effect of anatomical proximity between the network
nodes. Nevertheless, the neural network from each method shows unique organization
that cannot be explained by any of the other methods. Thus, we conclude that the RSA,
UNIVAR and FCA methods provide similar but not identical information on how brain
regions are organized in functional networks.

Keywords: fMRI, multi-voxel pattern analysis (MVPA), representational similarity analysis (RSA), univariate
analysis, functional connectivity (FC)

INTRODUCTION

Multi-voxel pattern analysis (MVPA) has recently become one of the most frequently
used techniques for analyzing fMRI data. It considers the spatial pattern of neural
activation across multiple voxels and examines whether these patterns contain task-related
information (Haxby et al., 2001; Haynes and Rees, 2006; Mur et al., 2009; Kriegeskorte,
2011; Haxby, 2012; Coutanche, 2013; Haynes, 2015). It is referred to as multivariate

Abbreviations: FCA, functional connectivity analysis; MVPA, multi-voxel pattern analysis; RSA, representational similarity
analysis; UNIVAR, univariate analysis.
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or multi-voxel because it analyzes a set of voxels together (the
pattern of activation of this set) instead of modeling activity of
a single voxel (as is done in univariate analysis) (Norman et al.,
2006; Mur et al., 2009; Kriegeskorte, 2011; Yang et al., 2012). In
addition, patterns of activation can be used to investigate the
similarities between such patterns of different conditions, for
example the similarity of the activation pattern when viewing
a face vs. when viewing a scene, or between such activation
patterns of different brain regions in a certain condition (Mur
et al., 2009; Haxby, 2012). This approach is referred to as
representational similarity analysis (RSA) (Kriegeskorte et al.,
2008). In first-order RSA, a representational dissimilarity matrix
(RDM) is set up to understand the dissimilarity between patterns
of activation of different stimuli in a certain brain region
(Kriegeskorte et al., 2008; Yang et al., 2012). In second-order
RSA, RDMs are compared between brain regions (Kriegeskorte
et al., 2008; Yang et al., 2012). This method has been referred
to as representational connectivity as it allows to identify the
representational relationship among brain regions (Kriegeskorte
et al., 2008). Connectivity related to multivariate information
has since then been given a more specific meaning to refer to
analyses of the temporal dynamics of the information contained
in multi-voxel patterns, also sometimes referred to as multivariate
or informational connectivity (Coutanche and Thompson-Schill,
2014; Anzellotti and Coutanche, 2018). For this reason, we
opted for the more general RSA term instead of using the term
representational connectivity.

Univariate analysis (UNIVAR) and functional connectivity
analysis (FCA) are two other frequently used techniques for
analyzing fMRI data. UNIVAR assesses neural activation of an
individual voxel or a mean activation across voxels of a brain
region. For this reason, it is often used to localize brain regions
engaged in processing a particular type of stimuli (e.g., face vs.
object) and thereby draw conclusions about the regions that
are involved in cognitive processes important for the stimuli or
task at hand (Haynes and Rees, 2006; Logothetis, 2008; Mur
et al., 2009; Coutanche, 2013; Haynes, 2015). It is referred to as
univariate because a general linear model (GLM) is applied voxel-
wise to relate the experimental design to the neural activity of
each voxel’s time-course in the brain (Raizada and Kriegeskorte,
2010). FCA (for a review, see Friston, 2011) characterizes the
communication between brain regions during rest or a task
(Friston, 1994), measuring the strength of the relation between
BOLD time-series signals of brain regions (Yang et al., 2012;
Geerligs et al., 2016). When FCA is applied to a resting-state
fMRI dataset, it reveals the intrinsic network of the brain based
on low-frequency BOLD fluctuations of brain regions (Biswal
et al., 1995; Cordes et al., 2001; Fox and Raichle, 2007). This
intrinsic network can also be extracted from a task-based fMRI
dataset by removing the task-induced signal from the data (Fair
et al., 2007). Therefore, this method is often referred to as intrinsic
functional connectivity.

Notably, there are various conceptual similarities and
differences between RSA, UNIVAR, and FCA. UNIVAR and FCA
methods are similar in that they average across the BOLD signal
of all the voxels in a brain region, unlike MVPA (see Figure 1).
The organization of networks from co-activation has also proven

to be similar to those from resting-state connectivity (Crossley
et al., 2013). Analogously, Anzellotti and Coutanche referred to
this type of FCA as univariate FCA (Anzellotti and Coutanche,
2018). Second-order RSA and FCA are similar in that they are
both based on a measure of the similarity between brain regions.
When using correlations, correlating the averaged BOLD time-
series signals between the regions of interest (ROIs) in FCA is
methodologically similar to correlating RDMs of those ROIs in
second-order RSA (Xue et al., 2013). UNIVAR and RSA, or at
least MVPA, have been frequently compared when describing
functional properties of one region of the brain (e.g., see Jimura
and Poldrack, 2012; Coutanche, 2013; Davis et al., 2014; Gilron
et al., 2017). A significant finding from these studies was that
changes (across different stimuli) in the activation patterns could
be detected even when conditions were not different in the
average univariate activation in a region (Mur et al., 2009). For
example, different speech sounds showed different activation
patterns in the right auditory cortex, but the average activation
of this region across those speech sounds did not differ (Raizada
et al., 2010). These studies have provided valuable insights into
the conceptual and empirical relationships between UNIVAR
and MVPA. Similarly, studies have used both RSA and FCA,
some drawing the same conclusion from the results of RSA
and FCA (e.g., Zeharia et al., 2015), or not (Boets et al., 2013;
Bulthé et al., 2018).

A study that directly and simultaneously compares networks
resulting from RSA with those from UNIVAR and FCA is
missing from today’s literature. Thus, the current study explores
how the networks from RSA complement the networks from
UNIVAR and FCA when investigating the functional architecture
of the brain. Although direct and simultaneous comparisons
between brain networks based on UNIVAR, RSA and FCA
have not been performed (to our knowledge), we expect at
least some convergence. For example, we hypothesize that brain
regions with similar representational similarity would tend to
be functionally connected, without excluding the possibility of
uniqueness in the networks resulting from the two methods.
Specifically, given the evidence of the topographic arrangement
of the basic sensory cortical areas, such as the visual and
sensorimotor cortex (see Kaas, 1997, for a detailed review)
and given that these low-level visual or sensorimotor areas
respectively are similar in what they do even at rest (Cordes
et al., 2000), we predict that the way in which brain networks
composed of visual or sensorimotor areas are constructed,
would be highly similar in all three methods. More precisely,
we predict that the visual network organization and the
sensorimotor network organization respectively, as obtained by
UNIVAR, RSA, and FCA, will be highly similar. In sum, the
goal of this study is to explore how the networks derived
from RSA compare to those from UNIVAR and FCA. To
answer this question, we applied second-order RSA to a
previously reported fMRI study (Lee Masson et al., 2018) and
compared the resulting networks with the results obtained
from UNIVAR and intrinsic FCA. In particular, we conducted
(partial) correlation and multiple regression analysis (comparing
them to signal-to-noise ratio measurements), controlling for
the confounding influence of anatomical proximity between
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FIGURE 1 | Representational similarity, univariate and functional connectivity analyses. Visualization of the several steps of the methodologies of these analyses to
clarify the (dis)similarities. Gray and white squares drawn on the brain depict two random regions of interest (ROIs), consisting of 9 voxels each. Within these
squares, colors in the 3 × 3 matrix depict the BOLD signal intensity of the voxels in a condition 1, 2, or 3, modeled through a general linear model (GLM). High
intensity is shown in red, medium intensity in yellow, low intensity in blue. (A) In univariate analyses (UNIVAR), the signal is averaged across all voxels within the ROI,
and this for every ROI and every condition. This step is visualized by large squares next to each matrix with a color depicting the calculated average. Consequently,
these results are averaged across participants. To understand if the ROIs are similarly activated in light of the conditions, the results of every ROI can be correlated to
each other. (B) In representational similarity analysis (RSA), the signal is not averaged across voxels within ROIs. Instead, the signal of an array of voxels in a ROI in
light of a certain condition is correlated to that of another condition. All possible pairwise comparisons are made. This step is depicted by a square matrix containing
the correlation results for each condition pair: the color of each element of the matrix indicates the strength of the correlation (black indicates a correlation of 1 and
white indicates 0). These results show if conditions are represented similarly within a ROI. They are then averaged across subjects. Then, these results can be
correlated between ROIs to understand if different ROIs represent the conditions in a similar way. (C) In functional connectivity analysis, the signal of the voxels in a
ROI at different time-points (i.e., change in BOLD signal intensity over time for each voxel) is averaged across all voxels within that ROI. This step is visualized by
large squares with a color depicting the calculated average. After, the resulting average BOLD signal time course can be correlated between ROIs and consequently
averaged across subjects. This analysis method depicts if two ROIs communicate.

brain regions of interest on RSA, UNIVAR, and intrinsic
FCA results. In addition, we explored our results visually by
implementing multi-dimensional scaling (MDS) and Procrustes
transformation methods.

MATERIALS AND METHODS

Datasets
We reanalyzed data from our previous fMRI study (Lee Masson
et al., 2018). All participants provided written informed consent
before the experiment in accordance with the Declaration of
Helsinki. The study was carried out in accordance with the
recommendations of and approved by the Medical Ethical
Committee of KU Leuven (S53768 and S59577). In this study,
21 healthy participants observed grayscale videos (see Figure 2)
of social touch interaction, varying in valence and arousal (Lee
Masson and Op de Beeck, 2018). The experiment included
39 social touch videos, and in addition 36 non-social control
videos. Participants carried out an orthogonal attention task:
they pressed a button with their left or right thumb whenever
the touch interaction initiator wore a gray or black shirt,

depending on the instruction of that specific run (left for gray,
right for black). The stimuli were displayed for 3 s, followed
by an inter-stimulus interval of 3 s during which a fixation
cross was presented and during which the participants could
press a button as a response related to the task. Each run
was divided into three blocks of 25 videos. At the start of
each block, a baseline (display of a fixation cross) of 6 s was
included. The total duration of each run was 7.80 min. The
participants completed six runs. In the following UNIVAR and
RSA analyses, we restrict the analyses to the data from the 39
social touch videos.

Importantly, when creating the videos, we controlled for the
visual elements, such as clothes style and color of the actors so
that these do not induce a visually biased neural response (Lee
Masson and Op de Beeck, 2018). For example, having actors wear
blue in the pleasant touch scenes and having actors wear red
in unpleasant touch scenes can induce visual bias related to the
clothing color when contrasting the brain response between the
pleasant and unpleasant touch conditions.

In addition, the scan sessions included runs in which
participants received (instead of observing) pleasant (brush
strokes) and unpleasant touch (rubber band snaps) in a block
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FIGURE 2 | The experimental procedure. Participants received instruction on when they should press a certain button (e.g., press the button with your left thumb
when touch interaction initiator wears black sweatshirt). After a baseline of 6 s, the stimuli were presented for 3 s always followed by an inter-stimulus interval of 3 s,
during which a fixation cross was presented and participants could press a button. In this example, still frames of three social touch videos are shown (left: hug,
middle: stroke, right: shake). All videos can be found here: https://osf.io/nq5mf/.

FIGURE 3 | Illustration of the different ROIs in the context of the network they were assigned to a priori. Top left: somatosensory-motor network ROIs including BA1
(red), BA4 (pink), BA2 (yellow), BA3 (purple), and PO (blue). Top right: social-cognitive network ROIs including precuneus (red), STG (pink), MTG (yellow), and TPJ
(purple). Bottom left: pain network ROIs including insula (red) and MCC (yellow). Bottom right: visual network ROIs including BA17 (red), BA37 (pink), BA18
(yellow), BA19 (purple), and V5 (blue). This figure was made using CONN toolbox 17 (Whitfield-Gabrieli and Nieto-Castanon, 2012).

design (see Lee Masson et al., 2018, for more details). These data
were used for the intrinsic FCA.

Regions of Interest (ROIs)
For our previous study (Lee Masson et al., 2018), we selected
16 a priori defined ROIs, belonging to four different networks
in the brain that proved to be important in processing observed
social touch interactions: the somatosensory-motor network [the
parietal operculum (PO), Brodmann area (BA) 3, BA1, BA2, BA4
(Rolls et al., 2003)], the social-cognitive network [the middle
temporal gyrus (MTG), the precuneus, the superior temporal
gyrus (STG), the temporoparietal junction (TPJ) (Jacoby et al.,
2016)], the pain network [the middle cingulate cortex (MCC),
the insula (Gordon et al., 2013; Lamm and Majdandžić, 2015;

Morrison et al., 2011)], and the visual network given that visual
stimuli were used (BA17, BA18, BA19, BA37, V5) (see Figure 3).
To define these ROIs anatomically, first, we made masks with
various templates from PickAtlas software (Maldjian et al., 2003,
RRID:SCR_007378), SPM Anatomy toolbox (Eickhoff et al.,
2005, RRID:SCR_013273) and connectivity-based parcellation
atlas (Mars et al., 2012). Second, we extracted all the voxels in
the mask per ROI and combined left and right hemispheres.
Afterward, we examined if there were overlapping voxels among
ROIs (e.g., V5 is located in BA19 and BA37) and removed
overlapping voxels from each other in order to ensure all
ROIs are anatomically independent. For further information
about these ROIs and how they were defined, see our previous
study (Lee Masson et al., 2018). In contrast to FCA that
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often includes a more extensive set of ROIs, the RSA method
requires ROIs to contain meaningful neural signals associated
with the experimental conditions. For this reason, only the
aforementioned 16 ROIs, whose spatial neural patterns passed
the MVPA reliability test, were selected (Lee Masson et al.,
2018). Briefly, in this reliability test, runs are split into two
halves and the correlation between neural patterns for within-
and between-conditions are compared per ROI. This process is
repeated 100 times (to randomly split the runs into two halves)
and these results are then averaged. ROIs are only included if the
correlations for within-condition comparisons are significantly
stronger than those for between-condition comparisons. Neural
pattern similarity between different conditions most likely only
reflects noise when neural pattern similarity between the same
conditions is low (Ritchie et al., 2017; for more details on this test
and the results; see Lee Masson et al., 2018).

Univariate Analysis
In our previous study, we processed functional data by using a
standard preprocessing pipeline and by applying a general linear
model (GLM) to each subject’s data (Lee Masson et al., 2018). On
top of the regressors of interest (matched to the onset time of
each regressor (duration = 0) of the event-related design of the
fMRI observing touch experiment), six head motion parameters
were included in the models as nuisance covariates (Lee Masson
et al., 2018). These GLMs were defined with data smoothed
with 8 mm FWHM. For detailed information on how data was
preprocessed and how the GLM was applied, see our previous
study (Lee Masson et al., 2018). From these GLMs, we obtained
the estimated beta-values per stimulus of the social condition
(N = 39) for all voxels in each ROI. For each stimulus, we
averaged the beta values of all runs, of all voxels within each ROI,
and of all participants, yielding a one-dimensional array with 39
elements in each ROI, reflecting how strongly each of the 39
videos activated the ROI. These arrays were Pearson correlated
for each possible pair combination of ROIs to investigate the
similarity between ROIs’ average BOLD responses evoked during
the observation of social touch and therefore to investigate
clustering/networks of our ROIs with regard to their average
activations. We refer to this clustering as the activation network.

Representational Similarity Analysis
This analysis was based upon a GLM applied to the fMRI
observing touch experiment that consisted of 75 predictors (one
for each video). The preprocessing pipeline for this analysis
differed slightly from the one used for univariate analysis: data
was smoothed at 5 mm FWHM. As such, we optimized the
preprocessing parameters to fit the requirements of each analysis
(Hendriks et al., 2017). For each ROI, we created a 39 × 39
neural matrix by correlating (Pearson) the multi-voxel patterns
between all possible combinations of pairs of stimuli of the
social condition (N = 39) and then averaged this across subjects
(first-order RSA, Kriegeskorte et al., 2008). After, we vectorized
the upper diagonal elements of this group-averaged matrix
while discarding the diagonal and lower diagonal elements, and
correlated (Pearson) these vectors for all possible combinations
of ROI pairs (second-order RSA, Kriegeskorte et al., 2008).

These comparisons between areas allow us to investigate the
representational similarity between ROIs and therefore to
investigate clustering/networks of our ROIs with regard to the
between-condition similarity in multi-voxel activation patterns
(Kriegeskorte et al., 2008). We refer to this clustering as the
representation network. More information on the details of how
MVPA was applied to fMRI data can be found in our previous
study (Lee Masson et al., 2018).

Functional Connectivity Analysis
Functional connectivity analysis, performed in the CONN
toolbox 17 (Whitfield-Gabrieli and Nieto-Castanon, 2012,
RRID:SCR_009550), was applied to a different set of fMRI data
(wherein participants received touch) obtained in the same scan
sessions. We used two independent sets of fMRI data to avoid
a spurious correlation between the two sets of brain networks
resulting from UNIVAR and FCA. BOLD signal fluctuations may
be partially induced by the presented stimuli, which may result in
shared signals between networks derived from the UNIVAR and
FCA methods. In the other direction, spontaneous fluctuations
over time may affect the estimated univariate activation.

Preprocessing was conducted as described in our previous
study (Lee Masson et al., 2018), but again optimized to fit the
requirements of FCA: no smoothing was carried out to avoid a
spillover effect (Alakörkkö et al., 2017). The outlier scans were
detected based on the global signal spike and motion in the
functional data by the Artifact Detection Toolbox (ART) software
package1. Consequently, standard denoising methods were
applied to remove confounding effects. This step consists of (1)
linearly regressing out 13 principal components of white matter
and cerebrospinal fluid signals, six head motion parameters
and their first-order derivatives, all scrubbing covariates from
the artifact detection, and main task effects (rest condition,
see below), (2) linear detrending, and (3) band-pass filtering
(0.008–0.09 Hz) that removes slowly fluctuating noise, such as
scanner drift, and the task-induced signal. To calculate intrinsic
FC (functional connectivity), we did not encode task-related
information in the experimental design. Instead, task effect (i.e.,
receiving touch) was removed from the fMRI time series by
including regressors corresponding to each task condition during
the denoising step, and the rest condition was defined (Fair et al.,
2007). Previous studies indicated that the intrinsic fluctuations in
a BOLD signal would only be weakly affected by task demands
and could be separated when entangled with the task-related
signals (Fox et al., 2006; Fair et al., 2007). Several studies have
implemented this approach on task-based fMRI data to yield the
intrinsic functional connectivity network (e.g., Fair et al., 2007;
Bassett et al., 2011; Boets et al., 2013; Ebisch et al., 2013).

For each subject, a GLM was performed to assess bivariate
Pearson correlation coefficients between ROIs’ BOLD time-
series. These coefficients were averaged across subjects. As a
result, networks of functionally connected (communicating)
regions were uncovered. We refer to this clustering as the
connectivity network.

1www.nitrc.org/projects/artifact_detect/
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Signal-to-Noise Ratio Measurement
To measure the reliability of the fMRI signal for the activation
(from UNIVAR), representation (from RSA) and connectivity
(from FCA) network, we randomly split the participants into
two groups (n = 10 or 11 per group). For each of these
analyses, we correlated the resulting activation, representation,
and connectivity network matrices (off-diagonal values) of one
group with the matrix of the other group. This process was
performed for a total of 100 iterations (each time randomly
splitting the data into two groups). The correlations were adjusted
with the Spearman-Brown split-half reliability formula and then
averaged (across the 100 iterations) for UNIVAR, RSA, and FCA
separately. The results from the between-subject correlations
work as a measure of signal-to-noise ratio (SNR), taking the
between-subject variability in the neural data into account, in
that it estimates the maximum correlation we could expect. The
correlation between the same types of data from the two sub-
groups (group 1 vs. group 2 in FCA results) should be higher
than the correlation with another type of data (e.g., FCA vs.
RSA results). This SNR correlation coefficient was also squared
to obtain the proportion of the variance in the signal that can be
explained by other variables.

Anatomical Proximity
For each ROI per hemisphere, we collected the x-y-z coordinates
of its voxels. Consequently, for each ROI pair, we calculated
Euclidean distances for all possible pairs of voxels between
these two ROIs. Among these calculated distances, we use
the minimum value per ROI pair as a measure of the
anatomical distance between the two ROIs. Then, we averaged
the distances across the two hemispheres. We also performed
supplementary analyses with distance based on the average
rather than the minimum value, which yielded very similar
results (the two indices correlate strongly, correlation r = 0.81).
As a final step, we inverted these results to have a measure
of anatomical proximity instead of distance with the maximal
distance becoming the minimal proximity zero. We refer to
these results as the anatomical proximity network. Dependency
of functional connectivity on anatomical distance has been
observed (Salvador et al., 2005). Thus, the anatomical proximity
network was included in the partial correlation and the
multiple regression model to rule out the effects of anatomical
proximity when comparing the activation, representation and
connectivity network.

Comparing the Activation,
Representation and Connectivity
Network
(Partial) Correlation Models
To understand how similar the activation, representation,
connectivity and anatomical proximity network are, we
conducted a rank-order correlational analysis between these
networks. In addition, we also computed the partial Spearman
correlation coefficient to understand the similarities between
the two networks while controlling for the remaining networks.
To draw statistical inferences, we conducted a permutation

test, wherein one of the variables of interest [one of the
networks, consisting of all possible unique ROI pairs (120
pairs)] was randomly shuffled and then (partially) correlated
with the unshuffled variables [remaining original networks,
each consisting of all possible unique ROI pairs (120 pairs
per network)]. This process was iterated a 1000 times. These
permutation tests provide empirical p-values (probability values)
reflecting the proportion of permutations wherein the (partial)
correlations with the shuffled data were larger (or equally large)
than the original (partial) correlations.

Multiple Regression Models
Following up on the (partial) correlation models, we conducted
multiple regression analysis to investigate if the activation,
representation or connectivity network respectively, could be
explained by the other remaining networks. The anatomical
proximity network was also included in all of the multiple
regression models. Z-score standardizations were performed
to normalize the data before building a regression equation.
Similarly to the correlational analysis, permutation tests were
used to obtain empirical p-values. In the end, the percentage
variance explained by the model was compared to the squared
signal-to-noise ratio of the predicted variables of the model.

Multi-Dimensional Scaling (MDS) and Procrustes
Transformations
We conducted multi-dimensional scaling (MDS) on the
activation, representation, and connectivity network matrices to
visualize the networks in a two-dimensional space that shows
the distance between each pair of ROIs based on how dissimilar
these ROIs are in terms of their activation, representation,
and connectivity respectively. We used the built-in MATLAB
function “mdscale” with default parameters, minimizing the
default goodness-of-fit criterion “stress” and 100 replicates of
the scaling. MDS results of the representation network were
used as a template to which the MDS results of the activation
and connectivity networks were aligned using Procrustes
transformations, to visualize the networks in the same space. For
this, we used the built-in MATLAB function “procrustes” with
default parameters.

RESULTS

Networks
In total, we have four matrices (see Figure 4). For three of the
methods (RSA, UNIVAR, and FCA) the values in the matrices
are based upon correlational analyses. In each of these matrices,
we had a large range of values. For the representation network,
for which vectorized first-order RSA results were correlated
between all ROI pairs, correlations range from 0.07 (V5 –
insula) to 0.82 (BA3 – BA4). In the activation network matrix,
the correlation results range from −0.01 (precuneus – PO) to
0.98 (BA3–BA4). The values of the ROI-to-ROI connectivity
range from −0.17 (precuneus – PO) to 0.83 (BA3–BA4). The
anatomical proximity network values range from 0 to 67.63. The
higher the value, the more closely the two ROIs are located.
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FIGURE 4 | Visualization of the different networks before z-score standardization of the correlation coefficients. Top left: activation network (UNIVAR), top right:
representation network (RSA), bottom left: connectivity network (FCA), bottom right: anatomical proximity network. Yellow in the matrix = when two ROIs are very
similar in their activation (UNIVAR results) or their representation (RSA results), are well connected (FCA results), or are located closely in the brain. Blue in the
matrix = when two ROIs are very different in their activation (UNIVAR results) or their representation (RSA results), are not connected (FCA results), or are located
remotely in the brain. SOMA (red), somatosensory-motor network areas; PAIN (yellow), pain network areas; SOCOG (purple), social-cognitive network areas; VISUAL
(green), visual network areas.

As the values are inverted distances, a value of 0 indicates
the minimum anatomical proximity between ROIs (e.g., BA1–
BA17), which in the original distance was 67.63 mm. A proximity
value of 67.63 indicates the maximum anatomical proximity
between ROIs: these ROIs are located right next to each other
(e.g., BA1–BA2).

Each of the matrices was very reliable. The signal-to-
noise ratio estimated from the results of between-subjects
correlations was r = 0.92 (squared to obtain explainable
variance: EV = 85%) for the representation network, r = 0.96
(EV = 92%) for the activation network, and r = 0.97 (EV = 94%)
for the connectivity network. As illustrated in Figure 4, the
representation, the activation, and connectivity networks look
highly similar to each other. For example, the high correlation

values between the ROIs in somatosensory areas such as BA3,
BA1, and BA2 are apparent in all of these networks: these
ROIs contain similar task-related information (based on RSA
results), are activated to a similar level (based on UNIVAR
results) and are functionally linked to each other (based on
FCA results). BA4, the motor area, is strongly correlated to
BA3 and BA1 in the representation, activation, and connectivity
network, but only moderately to BA2. Another example is
the moderate to high correlation between visual areas, found
in the representation, activation and connectivity network. In
sum, this finding applies to all four ROI networks. Areas
of different ROI networks typically show lower correlations,
which is again consistent across methods. For example, the
moderate correlations between social-cognitive areas and visual
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areas can be found in the representation, activation and
connectivity network.

Comparing Networks
To understand the (dis)similarity between representation,
activation, connectivity, and anatomical proximity networks
more quantitatively, we tested the linear relationship among these
networks. The results indicated that all networks are similarly
organized in the context of brain function and anatomy, with the
Spearman rank-order correlations (all significant) ranging from
0.53 to 0.79 (see Table 1). In addition, the partial correlation
coefficients were computed between two networks after removing
the effect of the other remaining networks. The results from
partial correlation (including all four networks) demonstrated
that, after controlling for the other networks, the activation
and connectivity network (Spearman correlation rS = 0.50,
p < 0.001), the representation and activation network (rS = 0.34,
p < 0.001), and the representation and anatomical proximity
network (rS = 0.67, p < 0.001) still correlate significantly (see
Table 2). Conversely, the measured partial correlation between
the representation and connectivity network was no longer
significant after ruling out the effects of the other covariates
(partial rS = 0.10), implying that their association is fully
explained by their relationship with other networks. The partial
correlation between the connectivity and anatomical proximity
network (partial rS = 0.15), and between the activation and
anatomical proximity network (partial rS = 0.06) was also no
longer significant.

As an alternative approach, we also implemented multiple
regression models. Similar to the (partial) correlation
measurements, these regression models quantify the relations
between the networks, but in addition the regression models
provide an estimate of the total variance in a network that can be
explained by all other networks.

TABLE 1 | The correlations between the activation (UNIVAR), representation
(RSA), connectivity (FCA) and anatomical proximity (Anat. Prox.) network.

UNIVAR RSA FCA Anat. Prox.

UNIVAR 1 0.66∗ 0.70∗ 0.53∗

RSA 0.66∗ 1 0.61∗ 0.79∗

FCA 0.70∗ 0.61∗ 1 0.55∗

Anat. Prox. 0.53∗ 0.79∗ 0.55∗ 1

∗Significant correlation.

TABLE 2 | The partial correlations between the activation (UNIVAR), representation
(RSA), connectivity (FCA) and anatomical proximity (Anat. Prox.) network.

UNIVAR RSA FCA Anat. Prox.

UNIVAR 1 0.34∗ 0.50∗
−0.10

RSA 0.34∗ 1 0.10 0.67∗

FCA 0.50∗ 0.10 1 0.15

Anat. Prox. −0.10 0.67∗ 0.15 1

∗Significant partial correlation.

A first model tested if the connectivity, activation and
anatomical proximity network significantly predicted the
representation network. The coefficient of determination from
the regression equation indicated that these three predictors
explained 71.2% of variability in the representation network
[R2 = 0.712, F(3, 116) = 96, p < 0.001]. The squared signal-
to-noise ratio (based on the between-subjects correlation) in
the representation network indicated 85% of the variance to be
explainable, leaving approximately 14% of the signal unexplained.
In addition, we calculated the β coefficients to examine the
degree to which each predictor independently contributes to
the prediction of the representation network. According to
the results, the anatomical proximity network significantly
contributed to the prediction of the representation network
(β = 0.40, p < 0.001), as did the connectivity network (β = 0.36
p = 0.004) and the activation network (β = 0.26, p = 0.03).

Similarly, we predicted the connectivity network based on the
representation, activation, and anatomical proximity network,
using multiple regression analysis. The results indicated that
the predictors explained 59.6% of variability in the connectivity
network [R2 = 0.596, F(3, 116) = 57, p < 0.001]. The squared
signal-to-noise ratio (based on the between-subjects correlation)
in the connectivity network indicated 94% of the variance
to be explainable, leaving approximately 34% of the signal
unexplained. When examining the independent contributions of
each predictor, we found out that the representation network
significantly contributed to the prediction of the connectivity
network (β = 0.51, p = 0.003), as did the activation network
(β = 0.37, p = 0.005), but not the anatomical proximity network
(β = -0.07, p = 0.55).

Lastly, we tested if the representation, connectivity, and
anatomical proximity network significantly predicted the
activation network. The results revealed that the predictors
explained 55.8% of variability in the activation network
[R2 = 0.558, F(3, 116) = 49, p < 0.001]. The squared signal-
to-noise ratio (based on the between-subjects correlation)
in the activation network indicated 92% of the variance
to be explainable, leaving approximately 36% of the signal
unexplained. The predictors indicated that the representation
network significantly contributed to the prediction of the
activation network (β = 0.41, p = 0.01), as did the connectivity
network (β = 0.41, p = 0.001), but not the anatomical proximity
network (β = -0.01, p = 0.91).

Thus, for each type of network, we find that a lot of
the organization can be predicted from the other networks,
but there is also some remaining variance left unexplained.
We visualized this unique signal left in each of these
networks after regressing out the signal explained by the
other networks from the representation, activation and
connectivity network respectively (see Figure 5B). In Figure 5B,
in contrast to Figures 4, 5A (which takes the values of
Figure 4 and z-score standardizes them, for reasons mentioned
above), the networks now do not look similar: they show
different patterns.

Several unique findings concerning correlations between ROI-
networks can be observed in Figure 5B. For example, social-
cognitive brain areas correlate strongly to other visual areas in the
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FIGURE 5A | Visualization of the different networks after z-score standardization of the correlation coefficients. Top left: activation network (UNIVAR), top right:
representation network (RSA), bottom left: connectivity network (FCA), bottom right: anatomical proximity network. Yellow in the matrix = when two ROIs are very
similar in their activation (UNIVAR results) or their representation (RSA results), are well connected (FCA results), or are located closely in the brain. Blue in the matrix
= when two ROIs are very different in their activation (UNIVAR results) or their representation (RSA results), are not connected (FCA results), or are located remotely in
the brain. SOMA (red), somatosensory-motor network areas; PAIN (yellow), pain network areas; SOCOG (purple), social-cognitive network areas; VISUAL (green),
visual network areas.

activation network (e.g., r (before z-score standardization) = 0.69
between TPJ and BA37) while this is moderate to low in
the representation (e.g., r = 0.24 between TPJ and BA37)
and connectivity network (e.g., r = 0.01 between TPJ and
BA37). This finding implies that these areas are activated
similarly, but do not represent similar information nor do they
communicate with each other. Another example, social-cognitive
areas correlate moderately to somatosensory-motor areas (e.g.,
r = 0.32 (representation), r = 0.59 (activation) between MTG and
BA1), except in the connectivity network (e.g., r = 0.03 between
MTG and BA1). As the last example, visual area V5 shows a
moderate correlation to other brain areas in the representation
network (e.g., r = 0.39 between V5 and BA19) while a much

stronger correlation is found in the other networks (e.g., r = 0.76
(activation) r = 0.61 (connectivity) between V5 and BA19).

For visualization purposes, we performed MDS on the three
types of dissimilarity matrices to reconstruct two-dimensional
spatial configuration that reflects the proximity in the matrices.
Moreover, Procrustes transformations were performed to align
the configurations. The resulting configurations are shown in
Figure 6. The results confirm the high similarity (d (Procrustes
distance: the difference between the shape of the two networks)
between the activation and representation network = 0.48, d
between the connectivity and representation network = 0.34, d
between the activation and connectivity network = 0.42) and
some dissimilarities between the networks as was previously
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FIGURE 5B | Visualization of the different networks after regressing out the signal explained by the other networks. Top left: activation network (UNIVAR), top right:
representation network (RSA), bottom left: connectivity network (FCA), bottom right: anatomical proximity network. Yellow in the matrix = when two ROIs are very
similar in their activation (UNIVAR results) or their representation (RSA results), are well connected (FCA results), or are located closely in the brain. Blue in the matrix
= when two ROIs are very different in their activation (UNIVAR results) or their representation (RSA results), are not connected (FCA results), or are located remotely in
the brain. SOMA (red), somatosensory-motor network areas; PAIN (yellow), pain network areas; SOCOG (purple), social-cognitive network areas; VISUAL (green),
visual network areas.

indicated by the (partial) correlation and multiple regression
models. As an example of correspondence between the three
networks, Figure 6 shows that somatosensory-motor areas
are located nearby in all three networks, implying high
similarity in activation and representation and strong inter-
regional communication among these areas. As an example of
a difference between the networks, the social-cognitive brain
areas are placed close to visual areas overall in the activation
network (blue in Figure 6) but not so much in the other
networks. It suggests that social cognitive brain areas and the
visual cortex do not represent the same information and that
those areas are not functionally connected despite the similar

magnitude of neural response. Other visualization methods
such as principal component analysis result in similar plots as
Figure 6.

Summary
The representation, the activation, and connectivity networks
were proven to be reliable based on their signal-to-noise ratio.
All three functional networks are organized highly similarly. For
example, moderate correlations between social-cognitive areas
and visual areas can be found in the representation, activation
and connectivity network. Based on multiple regression models,
we found that for each type of network, a lot of the organization
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FIGURE 6 | Procrustes transformed MDS results of the activation (UNIVAR, blue) and connectivity network (FCA, green) to the MDS results of the representation
network (RSA, red). SOMA (circles), somatosensory-motor network areas; PAIN (squares), pain network areas; SOCOG (diamonds), social-cognitive network areas;
VISUAL (triangles), visual network areas.

can be predicted from the other networks, but there is also
some remaining variance left unexplained. For example, social-
cognitive areas and somatosensory-motor areas are activated
similarly (UNIVAR) and represent similar information (RSA),
but do not communicate with each other (FCA). In other words,
the networks derived from RSA, UNIVAR, and FCA, although
highly similar, also each contain unique information. We have
visualized these results using Procrustes transformations on MDS
results in Figure 6.

DISCUSSION

RSA has recently emerged as a method for investigating how
brain regions are organized into networks. UNIVAR and FCA
are two other popular methods for analyzing fMRI data to
understand functional networks. Although two or more of these
methods have been used simultaneously to analyze the same set of
data in many studies, most of them have focused on the properties
of each ROI separately. No study, to our knowledge, directly
and simultaneously compared networks derived from RSA with
networks built with UNIVAR and FCA. In the current study,
we explored how the organization of networks built from RSA,
UNIVAR, and FCA relate to each other after ruling out the effect
of the anatomical location of network nodes (ROIs). We analyzed
fMRI data of a previous study (Lee Masson et al., 2018) with
these methods and performed (partial) correlation and multiple
regression analysis on the resulting networks.

The current study reveals that neural networks resulting from
RSA, UNIVAR, and FCA are highly similar even after ruling
out the effect of anatomical proximity. As predicted, brain areas
within the somatosensory-motor network are similarly activated,
represent similar task-related information, and are intrinsically
connected. This also applies to the other sub-networks (pain,
social-cognitive and visual). As outlined in the introduction,
RSA, UNIVAR, and FCA share theoretical and/or methodological
properties that can explain similarities as observed in this study.
The high similarity in the neural networks of RSA and FCA
provides support for the idea that brain areas showing similar

stimulus-related selectivity are also intrinsically connected. Our
finding is in line with previous resting-state fMRI studies
that have identified functionally relevant networks, such as the
primary visual network, auditory network, motor network, and
cognitive networks, during rest (e.g., Biswal et al., 1995; Fox and
Raichle, 2007; Jung et al., 2018).

On the other hand, our finding suggests that the network
derived from each method contains unique signals. To reveal
this, we compared the explainable variance of each network
revealed by SNR estimation with the actual variance explained
by the other networks. These results suggested that the network,
derived from each method, contains unique information that
none of the other networks are able to explain. Analyzing the
remaining signal variance that was left unexplained, we were also
able to reveal unique network organizations of each method. For
example, brain areas in the social-cognitive network are similar
to areas in the visual network in terms of neural activation,
whereas neural patterns of those two sub-networks do not
represent the same information and they are not intrinsically
connected. Another example is the moderate correlations
between social-cognitive brain areas and somatosensory-motor
areas in the activation and representation network, but not in the
connectivity network.

This unique information is important to keep in mind when
interpreting a functional network found with one particular
method. Although second-order RSA can be used to construct
brain connectivity, RSA and FCA adopt different approaches
shown in their methodology: correlating RDMs in RSA;
correlating the BOLD signal fluctuations in FCA. Thus, RSA is
used for investigating the similarity between brain areas in how
they represent task-related information while FCA is used for
investigating how a series of brain areas construct the intrinsically
connected cortical network. These distinctions allow RSA and
FCA to tap into the functional architecture of the brain from
different perspectives as revealed in the unique information the
networks contain.

Likewise, the same reasoning can be applied to the relationship
between UNIVAR and FCA, and RSA and UNIVAR. As outlined
in the introduction, they are related theoretically and empirically
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while they differ in their focus, allowing both similarities and
dissimilarities between the resulting networks.

Such distinctions between networks derived from different
methods have also been observed in the recent study of Jung
and her colleagues (Jung et al., 2018) comparing resting-state
fMRI and structural connectivity. Although their comparison
involves different methods than ours, they provided some
possible explanations that should be considered in the current
study. The quality and nature of the datasets used for three
methods (even from identical data sources, but measured at
different times or analyzed in a different way) may not be equal
and different measurement noise may be present (Jung et al.,
2018). In addition, they mention that networks during mental
activity are modulated away (slightly) from intrinsic connections,
which is especially relevant to the comparison of RSA with FCA.
Accordingly, our findings of similarities and differences between
RSA and FCA networks are consistent with the observation
that studies using both RSA and FCA lead to either similar or
different conclusions about brain function derived from the two
methods (e.g., Boets et al., 2013; Zeharia et al., 2015). Several
other factors could play a role in the (dis)similarities between the
networks derived from RSA, FCA, and UNIVAR, for example
vasculature. Despite the high similarity across the networks
derived from the UNIVAR, RSA, and FCA methods, given the
nature of uniqueness of each network, we encourage researchers
to understand the benefits of each methodology and what they
(do not) detect; and to use them adequately depending on the
research questions.

As a critical note, we point to several limitations of our
current study. First, the current findings are based on only
one task domain (i.e., social touch scene perception), and our
conclusions should be complemented by future studies that
include other tasks, such as moral decision-making tasks, or tasks
using other sensory modalities such as auditory and tactile scenes.
RSA and UNIVAR methods may not produce similar network
organizations in another task. This could in particular be the
case, when having a task with no activation differences across the
conditions but evoking neural pattern selectivity. We hypothesize
that it will be a general phenomenon; that also in other domains
there will be a shared network organization that dominates
with, in addition, a smaller unique component. Second, we
selected a limited number of ROIs rather than including a
large number of network nodes. One important argument for
doing this is that the selected brain regions had to include
meaningful task-related signals for performing RSA (see the
description of diagonal vs. non-diagonal measures as a reliability
test in choosing ROIs in Methods). The effect of the number
and size of ROIs on the relationships between the networks
obtained using RSA, UNIVAR, and FCA can be explored further.
Finally, extending the comparisons made in the current study
is another important step to take. Specifically, networks built
from second-order RSA and multivariate functional connectivity
could also be compared (Coutanche and Thompson-Schill,
2014; Anzellotti and Coutanche, 2018). Other analyses than
RSA exist that can pick up on more complex spatial relations
between ROIs (e.g., Haxby et al., 2011; Ozay et al., 2012; Firat
et al., 2013; Onal et al., 2017). Although RSA is one of the

most commonly used approaches in cognitive neuroscience
in comparing neural spaces across different brain regions,
uncovering the complexity of the spatial relationships captured
through more advanced approaches may help to compare the
three methodologies in depth.

CONCLUSION

The present study provides first-time evidence that cortical
networks derived from three commonly used neuroimaging
approaches (RSA, UNIVAR, and FCA) are highly similar
regardless of the structural variations of each network.
Importantly, the study also demonstrates that each of these
three networks contains unique information, unexplainable by
the other networks. As such, all three methods are important
when investigating the functional organization of networks in the
brain. Improving the understanding of the relationship between
the functional networks derived from these methods will allow
researchers to use RSA, UNIVAR, and FCA more adequately.
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