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The accumulating knowledge of the host-microbiota interplay gives rise to
the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom
communication between the gut microbiota and the brain. This communication process
involves the endocrine, immune and neurotransmitters systems. Dysfunction of these
systems, along with the presence of gut dysbiosis, have been detected among clinically
depressed patients. This implicates the involvement of a maladaptive MGB axis in the
pathophysiology of depression. Depression refers to symptoms that characterize major
depressive disorder (MDD), a mood disorder with a disease burden that rivals that of
heart diseases. The use of probiotics to treat depression has gained attention in recent
years, as evidenced by increasing numbers of animal and human studies that have
supported the antidepressive efficacy of probiotics. Physiological changes observed
in these studies allow for the elucidation of probiotics antidepressive mechanisms,
which ultimately aim to restore proper functioning of the MGB axis. However, the
understanding of mechanisms does not yet complete the endeavor in applying
probiotics to treat MDD. Other challenges remain which include the heterogeneous
nature of both the gut microbiota composition and depressive symptoms in the clinical
setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical
antidepressants, in terms of residual symptoms, side effects and stigma involved. This
review outlines antidepressive mechanisms of probiotics based on the currently available
literature and discusses therapeutic potentials of probiotics for depression.
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Abbreviations: 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine (serotonin); 5-HTP, 5-
hydroxytryptamine; BBB, blood-brain barrier; BDNF, brain-derived neurotropic factor; CgA, salivary chromogranin
A; CORT, corticosterone; CREB, cAMP response element binding protein; CRP, C-reactive protein; CUMS, chronic
unpredictable mild stress; DA, dopamine; DC, dihydroxyphenylacetic acid; EIF2, eukaryotic initiation factor 2; GABA,
gamma-aminobutyric acid; GLP-1, glucagon-like peptide-1; GPx, glutathione peroxidase; GR, glucocorticoid; H2O2,
hydrogen peroxide; HPC, hippocampus; HVA, homovanillic acid; IBS, irritable bowel syndrome; IDO, indolamine 2,3-
dioxyhydrogenase; IFN, interferon; IgA, immunoglobin A; IL, interleukin; KA, kynurenic acid; KYN, kynurenine; LPS,
lipopolysaccharides; MAOA, monoamine oxygenase A; MCP-1, monocyte chemotactic protein-1; MDD, major depressive
disorder; MR, mineralocorticoid; MS, maternal separation model; NE, norepinephrine; PFC, prefrontal cortex; PGE2,
prostaglandin E2; REM, rapid eye movement; SCFA, short-chain fatty acids; SNRI, serotonin-noradrenaline reuptake
inhibitor; SOD, superoxide dismutase; SSRI, selective serotonin reuptake inhibitor; TLR, toll-like receptor; TNF-α, tumor
necrosis factor-α; Tph1, tryptophan hydroxylase 1; TRANCE, TNF-related activation-induced cytokine; TRP, tryptophan.
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INTRODUCTION

Approximately 1014 microbes, also known as gut microbiota,
reside in the human gastrointestinal tract. The majority of these
microbes belong to the Firmicutes, Bacteroidetes, Actinobacteria
and Proteobacteria phyla. The gut microbiota flourishes in a
symbiotic alliance with the host and, as such, has eminent
regulatory effects on the host physiology. The gut microbiota
actively engages with the proper development and functioning
of both the immune system and brain. This is mediated by the
microbiota–gut–brain (MGB) axis that lays the foundation for
the intricate communicative pathways between gut microbiota
and the nervous, immune and endocrine systems. However,
the diversity and richness of gut microbiota are susceptible to
change based on the host’s lifestyle. An adverse change induces
a gut dysbiosis which disrupts the symbiosis maintained by
the MGB axis. Indeed, a gut dysbiosis has been linked to
various health conditions, such as obesity, IBS, schizophrenia,
Parkinson’s disease and MDD (Sherwin et al., 2016; Thursby and
Juge, 2017; van de Guchte et al., 2018).

Major depressive disorder is currently the leading cause of
disability worldwide and is expected to outrank heart diseases as
the number one disease burden by 2030 (Reddy, 2010; Tucci and
Moukaddam, 2017). According to the Diagnostic and Statistical
Manual of Mental Disorders-5, MDD is diagnosed when a person
experiences most of the following symptoms for at least 2 weeks:
depressed mood, anhedonia, excessive guilt, suicidal ideation,
changes in appetite and sleep, psychomotor retardation, poor
concentration and fatigue. Among these criteria, either depressed
mood or anhedonia (or both) must be present for a diagnosis of
MDD (American Psychiatric Association, 2013). In this review,
the term “depression” would be used to refer to symptoms that
characterize MDD.

A causal relationship potentially exists between the gut
microbiota and MDD. Germ-free (GF) rodents developed
depressive-like behaviors following fecal microbiota
transplantation from MDD patients, but not from healthy people
(Kelly et al., 2016; Zheng et al., 2016). As compared to healthy
individuals, MDD patients have a different gut microbiota
profile. The decrease in Faecalibacterium, Bifidobacterium,
Lactobacillus (Aizawa et al., 2016), and Dialister (Kelly et al.,
2016), and increase in Clostridium, Streptococcus, Klebsiella,
Oscillibacter, Allistipes (Naseribafrouei et al., 2014; Jiang et al.,
2015; Lin et al., 2017; Rong et al., 2019), Eggerthella, Holdemania,
Gelria, Turicibacter, Paraprevotella, and Anaerofilum (Kelly et al.,
2016) genera have been found among MDD patients. This shift
in the gut microbiota composition may contribute to a shift in
the regulation of the host physiology (Luan et al., 2017). It is,
thus, worthwhile to tackle MDD from the MGB axis standpoint,
with an emphasis on the gut microbiota.

Probiotics are microbes (usually lactic acid bacteria such as
Lactobacilli and Bifidobacteria) that benefit the host physiology
upon ingestion. Probiotics are marketed in the form of capsules,
powder or fermented products. The global market size of
probiotics amount to billions and is increasing annually due to
consumers’ interest in optimizing their health with functional
foods (Di Cerbo and Palmieri, 2015). Probiotics have been

utilized to modulate the MGB axis in an attempt to treat
diseases, including MDD. Meta-analyses and systematic reviews
have already supported the efficacy of probiotics in reducing
clinical depression and depressive-like symptoms in MDD
patients and healthy individuals, respectively (Huang et al., 2016;
Pirbaglou et al., 2016; Wang et al., 2016; McKean et al., 2017;
Wallace and Milev, 2017).

To what extent are probiotics viable tools to treat
MDD/depression? This review addresses this question by
first outlining the workings of MGB axis and process by which
this axis becomes maladaptive, leading to the development
of depression. Antidepressive mechanisms of probiotics are
further elucidated by drawing parallels between the physiological
outcomes that accompanied the behavioral changes to the
MGB axis from animal and human research. Lastly, in light
of the heterogeneous nature of both the gut microbiota
composition and depression subtypes in the clinical setting,
challenges and potentials in translating probiotics for clinical
use are discussed.

THE MGB AXIS AND DEPRESSION

Signaling Pathways of the MGB Axis:
Neural and Humoral Routes
The first point of contact between the gut microbiota and host
nervous system is likely via the enteric nervous system (ENS).
The ENS has been described as “the second brain” due to
its neuronal complexity on par with the brain and its ability
to function as an independent, discrete unit to regulate gut-
related activities and the immune system (Furness, 2012; Breit
et al., 2018). Without gut microbiota, the excitability of enteric
neurons would likely be attenuated, based on data observed in
GF mice (McVey Neufeld et al., 2013). Through the ENS, gut
microbiota and the brain communicate bidirectionally through
neural and humoral (systemic circulation) pathways (Luan et al.,
2017). Parasympathetic vagus afferents carry neural information
from internal organs, including the gut, to the brain (Breit
et al., 2018). The vagus nerve also consists of motor neurons
that innervate nearly all enteric neurons (Powley, 2000). This
enables the brain to influence the activity of ENS to some
extent, particularly the state of intestinal permeability and gut
inflammation. Sympathetic spinal nerves also connect enteric
neurons to the brain, albeit to a lesser extent than vagal
nerves (Lomax et al., 2010; Breit et al., 2018). Additionally, the
humoral route allows microbial metabolites to enter the systemic
circulation and exert its effects elsewhere, including the brain.
Likewise, the brain also sends chemical messengers, such as
cytokines and glucocorticoids, via the humoral route to regulate
the gut physiology (Luan et al., 2017).

Signaling Mechanisms of the MGB Axis:
Immune, Endocrine, and
Neurotransmitter Systems
The gastrointestinal tract contains approximately 70% of the
immune system (Vighi et al., 2008). Immune cells express TLRs
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that respond to foreign antigens, such as LPS, as they penetrate
the intestinal mucosal barrier. This promptly triggers production
of inflammatory cytokines, mainly ILs, tumor necrosis factor
(TNF)-α and IFN-γ (Sherwin et al., 2016). These cytokines
enter the brain through various pathways. The humoral pathway
enables cytokines to enter circumventricular organs or permeable
regions of the BBB or bind to carrier proteins that cross the BBB.
The neural pathway allows gut cytokines to stimulate specific
brain areas such as the brainstem, hypothalamus and limbic
structures via vagus and spinal afferents. The cellular pathway
allows cytokines to be transported into the brain by the action of
monocytes or macrophages. These cytokines could also bind to
receptors on astrocytes and microglia, and subsequently trigger
cytokine production within the brain (Schiepers et al., 2005;
Miller and Raison, 2016).

When proinflammatory signals reach the brain, the
hypothalamic-pituitary-adrenal (HPA) axis, a sympathetic-
neuroendocrine system, is activated to restore homeostasis. In
response to stress, the hypothalamic paraventricular nucleus
(PVN) synthesizes and releases corticotropin-releasing factor
(CRF) to stimulate the anterior pituitary gland to release
adrenocorticotropic hormone (ACTH) into the systemic
circulation. ACTH stimulates the adrenal cortex to release
glucocorticoids (cortisol in humans and corticosterone in
rodents) which inhibit the release of CRF, establishing a negative
feedback loop. Glucocorticoids are core effectors of the HPA
axis that travel by the humoral route to exert its adaptive effects
elsewhere; for instance, to reduce gut inflammation (Tsigos and
Chrousos, 2002; Schiepers et al., 2005).

Furthermore, neurotransmitters in the brain serve
indispensable roles in maintaining proper brain functions.
Neurotransmitters such as GABA, glutamate (Glu), serotonin
(5-HT), DA, NE, histamine and acetylcholine (ACh) are
known to be synthesized by the gut microbiota (Oleskin et al.,
2016). Notably, Lactobacillus, a prominent probiotic genus,
produces multiple neurotransmitters in a species-dependent
manner in vitro (Table 1). It should be noted that gut-derived
neurotransmitters are functionally different from brain-derived
neurotransmitters (Mittal et al., 2017). The bioavailability of
precursors for these neurotransmitters is also regulated by the
gut microbiota. For example, carbohydrate-fermenting microbes
secrete butyrate (a SCFA) that stimulates 5-HT synthesis from
intestinal enterochromaffin cells (ECs) (Reigstad et al., 2015;
Yano et al., 2015; Lund et al., 2018). In contrast, Clostridia
metabolites, such as 4-cresol and 4-hydroxyphenylacetate
(4-HPA), inhibit dopamine-β-hydroxylase (an enzyme that
converts DA to NE in the brain) (Shaw, 2017). These microbial
neuroactive molecules likely modulate local ENS signaling,
which ultimately influence the MGB axis (Karl et al., 2018).

Dysregulated MGB Axis in Depression:
Chronic Stress Response Loop
Acute psychological stress increases the release of ACh from
cholinergic nerves (Saunders et al., 1997; Kiliaan et al., 1998)
and glucocorticoids from the HPA axis (Alonso et al., 2012;
Zheng et al., 2013; Vanuytsel et al., 2014), both of which

loosen tight junctions of the intestinal barrier (Figure 1).
Other stressors such as poor diet, sleep deprivation, antibiotics,
environmental pollutants and excessive exercise also increase the
intestinal permeability (Karl et al., 2018). Additionally, exposure
to stress stimulates sympathetic spinal nerves to release NE
into the gut which expedites quorum sensing systems and
iron uptake of bacteria, leading to increased virulence and
growth of pathogenic bacteria (e.g., Escherichia coli, Salmonella,
Campylobacter, etc.) (Lomax et al., 2010; Freestone, 2013). These
factors facilitate penetration of bacteria and their toxins, such
as LPS, through the weakened intestinal barrier. Administration
of LPS increased proinflammatory cytokines and caused anxiety
and depression in healthy males in a dose-dependent manner
(Grigoleit et al., 2011). This phenomenon is only transient due
to the adaptive response of the immune system and HPA axis.
However, chronic stress prevents this homeostatic restoration
and causes prolonged inflammation and HPA axis overactivity,
both of which aggravate the disrupted intestinal barrier. During
this process, chronic inflammation renders the immune system
insensitive to inhibitory signals from glucocorticoids (de Punder
and Pruimboom, 2015). Excess proinflammatory cytokines, in
turn, disrupt the negative feedback inhibition of circulating
glucocorticoids of the HPA axis (Schiepers et al., 2005; Miller
et al., 2009). Indeed, MDD patients often show increased
intestinal barrier permeability (Stevens et al., 2018; Calarge et al.,
2019; Ohlsson et al., 2019) and elevated serum antibodies against
LPS (Maes et al., 2008).

Excessive glucocorticoids hyperactivate monoamine oxidases
(MAOs; enzymes that degrade 5-HT, NE, and DA) (Grunewald
et al., 2012). An overactive HPA axis can also induce gut
dysbiosis (Murakami et al., 2017) and impairment of brain
neurotransmitter systems (Pacak et al., 1993; Smith et al., 1995;
Lopez et al., 1998; Hewitt et al., 2009). Higher baseline levels of
cortisol, an indicator of an overactive HPA axis, were detected
in more than 70% of MDD patients (Vreeburg et al., 2009;
Lok et al., 2012). Proinflammatory cytokines and glucocorticoids
upregulate indoleamine 2,3-dioxygenase (IDO) and tryptophan-
2,3-dioxygenase (TDO) enzymes, respectively (Schimke et al.,
1965; Young, 1981). Both enzymes metabolize TRP into KYN
and quinolinic acid, which reduce the bioavailability of TRP to
cross the BBB, thereby lowering 5-HT synthesis (Reus et al.,
2015). This is evidenced by low plasma TRP levels that were also
correlated to a heightened proinflammatory state found in MDD
patients (Maes et al., 1993, 1994). Furthermore, proinflammatory
cytokines can decrease levels of DA, 5-HT and NE in the brain
by upregulating their reuptake via presynaptic transporters and
downregulating enzymatic cofactors required for their synthesis
(Miller and Raison, 2016). Indeed, administration of cytokines
consistently induced neurotransmitter imbalances in the brain
and behavioral changes that are reminiscent of depression in
animals and humans (Miller et al., 2009). Similarly, higher
levels of proinflammatory cytokines were observed in depressed
individuals as reported using meta-analyses of the data available
in the literature (Howren et al., 2009; Dowlati et al., 2010).

A stress-induced inflamed gut adversely alters the relative
abundances of preexisting bacteria in the gut (Figure 1). Acute
psychological stress stimulated the release of inflammatory
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TABLE 1 | The neurotransmitters produced by probiotics and their regulatory functions.

Neurotransmitter Regulatory functions Probiotics References

Gamma-aminobutyric acid (GABA) • Hippocampal neurogenesis
• HPA axis regulation
• Mood

L. brevis
L. rhamnosus
L. reuteri
L. paracasei
L. plantarum
L. bulgaricus
L. helveticus
L. casei

Komatsuzaki et al. (2005), Luscher et al. (2011),
Stromeck et al. (2011), Barrett et al. (2012), Liao
et al. (2013), Lin (2013), Oleskin et al. (2014), Yunes
et al. (2016)

Serotonin (5-HT) • Impulsivity
• Aggression
• Appetite
• Circadian rhythm
• Learning
• HPA axis regulation
• Mood

L. plantarum
L. helveticus

Özogul (2011), Özoğul et al. (2012), Oleskin et al.
(2014), Carhart-Harris and Nutt (2017)

Dopamine (DA) • Motivation
• Concentration
• Psychomotor speed
• Ability to experience pleasure
• Mood

L. plantarum
L. helveticus
L. casei
L. bulgaricus

Dunlop and Nemeroff (2007), Özogul (2011),
Oleskin et al. (2014)

Norepinephrine (NE) • Aggression
• Cognitive function
• Sleep
• Sympathetic activity
• HPA axis regulation
• Mood

L. helveticus
L. casei
L. bulgaricus

Leonard (2001), Montgomery and Briley (2011),
Oleskin et al. (2014)

Glutamate (Glu) • Gastrointestinal reflexes
• Intestinal motility
• HPA axis regulation
• Mood

L. rhamnosus
L. reuteri
L. plantarum
L. paracasei
L. helveticus
L. casei
L. bulgaricus

Weingand-Ziadé et al. (2003), Zalán et al. (2009),
Stromeck et al. (2011), Zareian et al. (2012),
Julio-Pieper et al. (2013), Oleskin et al. (2014)

Histamine • Motivation
• Learning
• Memory
• Appetite
• Sleep
• Sympathetic activity
• Mood

L. plantarum
L. reuteri

Kano et al. (2004), Özoğul et al. (2012), Thomas
et al. (2012), Torrealba et al. (2012), Hemarajata
et al. (2013)

Acetylcholine (ACh) • Cognition
• Synaptic plasticity
• Analgesia
• Sleep
• HPA axis regulation
• Mood

L. plantarum Rowatt (1948), Girvin and Stevenson (1954), Pytka
et al. (2016)

mediators that were correlated with the lowered abundance
of Coprococcus, Pseudobutyrivibrio, Dorea, and Lactobacillus in
mice. This, in turn, allowed the proliferation of Clostridium
species in the gut (Bailey et al., 2011). The gut microbiota
of chronic-stressed mice also deviated from the baseline,
whereby an increase in proinflammatory bacteria, such as
Helicobacter and Streptococcus, and a decrease in butyrate-
producing bacteria, such as Roseburia and Lachnospiraceae
species, were observed (Gao et al., 2018). Altered gut microbiota
composition consequently exacerbates gut inflammation and
further increases intestinal permeability and production of
proinflammatory cytokines (van de Guchte et al., 2018). The
precise mechanism underlying vulnerability of certain bacteria

to inflammation remains poorly understood. It is hypothesized
that inflammation disrupts β-oxidation of intestinal epithelial
cells (IECs, both enterocytes and colonocytes) to increase oxygen
content in the gut lumen. This promotes formate oxidation that
favors the growth of facultative anaerobes, such as E. coli, that are
pathogenic and inflammatory at the cost of obligate anaerobes,
such as Bacteroides and Firmicutes (Hughes et al., 2017).

A dysregulated gut microbiota translates to a shift in
the production of neuroactive metabolites and alters host
neurotransmitter circuitry. This corresponds with disrupted
levels of neurotransmitters in the brain of GF mice (Diaz Heijtz
et al., 2011; Neufeld et al., 2011; Clarke et al., 2013; Pan et al.,
2019). Altered neurotransmitter profile (e.g., GABA, Glu, 5-HT,
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FIGURE 1 | The maladaptive microbiota–gut–brain (MGB) axis in the pathophysiology of depression. Chronic exposure to stressors (e.g., psychological, poor
nutrition) triggers prolonged release of (1) norepinephrine that alters gut microbiota composition by shifting to one that is enriched with pathogenic bacteria, and (2)
acetylcholine and glucocorticoids that increase intestinal barrier permeability. The increased intestinal permeability allows bacteria and their toxins to enter systemic
circulation, triggering stress responses from the HPA axis and immune system that, when excessive; (3) leads to chronic inflammation and HPA axis overactivity; (4)
aggravate intestinal permeability; (5) alter composition of gut microbiota; and (6) disrupt neurotransmitter systems. Altered gut microbiota also results in an inflamed
gut and (7) a shift in the production of bioactive molecules that regulate host neurotransmitter systems and gut motor functions. As a proof of concept, these five
factors (in the circle) that depict the maladaptive MGB axis are often detected in MDD patients. Lastly, the constant negative emotions displayed by depressed
patients further trigger a stronger reaction or sensitivity to various stressors.

DA, and NE) has been associated with the pathophysiology of
depression. Therefore, pharmaceutical antidepressants function
to restore synaptic levels of neurotransmitters (Harald and
Gordon, 2012). In addition, impaired neurotransmitter systems
within the ENS may alter gut motor function. This has direct
implications as gut motility is a determining factor in the
size and diversity of gut microbiota (Quigley, 2011). Therefore,
chronic stress sets up a vicious cycle of increased intestinal
permeability, chronic inflammation, hyperactive HPA axis,
altered gut microbiota profile and neurotransmitter imbalances –
forming a maladaptive MGB axis (Figure 1). Furthermore, MDD
patients perceive stress as more threatening and challenging to
cope with compared to healthy individuals (Farabaugh et al.,
2004; Salomon et al., 2009). These negative emotions can increase
their sensitivity to stressors, such as an elevated cortisol response
(Mendonca-de-Souza et al., 2007). To restore this malfunctioned
axis, probiotics have been demonstrated by meta-analyses and
systematic reviews as a potential treatment for MDD/depression
(Huang et al., 2016; Pirbaglou et al., 2016; Wang et al., 2016;
McKean et al., 2017; Wallace and Milev, 2017). Potential
antidepressive mechanisms of probiotics are elucidated in the
following section.

DELINEATING THE ANTIDEPRESSIVE
MECHANISMS OF PROBIOTICS

Probiotics secrete a wide range of signaling molecules that
operate via distinct pathways to exert their effects, be
it antidepressive, immunomodulatory or modulation of

neurotransmission (Luan et al., 2017). This review classifies
probiotic-associated signaling molecules into four types:
neurotransmitters, bacterial secreted proteins, butyrate and
other bioactive molecules (Figure 2). Some probiotics can
secrete signaling molecules of different types. In this regard, the
mechanisms of individual probiotics will be presented in the
order of pertinence and similarity to each other.

Lactobacillus rhamnosus
Lactobacillus rhamnosus JB-1, the typical experimental strain
of L. rhamnosus, was formerly referred to as Lactobacillus
reuteri. Orally administered L. rhamnosus reduced depressive-
like behaviors in normal, healthy mice (Bravo et al., 2011) and
chronic-stressed mice (McVey Neufeld et al., 2018). Postpartum
women (Slykerman et al., 2017) and obese individuals (Sanchez
et al., 2017) that were supplemented with L. rhamnosus
reported lower depressive thoughts compared to the control
group. In vagotomized rats, behavioral and physiological
benefits of L. rhamnosus were abolished (Bravo et al., 2011).
This substantiates the vagus nerve as an essential conduit
in the signaling pathway of L. rhamnosus. Introduction of
L. rhamnosus into the gut lumen heightened the firing
rate of vagus nerve and enteric neurons in mice (Perez-
Burgos et al., 2013, 2014). These findings suggest that
L. rhamnosus signals to the brain via the neural route,
which may influence the central GABAergic system and
HPA axis to manifest an antidepressive effect (Figure 2A).
However, it is unclear whether neurotransmitters, cytokines
or other molecules are involved in the neural signaling
of L. rhamnosus.
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FIGURE 2 | Signaling mechanisms underlying antidepressive effects of probiotics mediated through secretion of (A) Neurotransmitters: L. rhamnosus and L. casei
secrete GABA that may signal central GABAergic system and HPA axis via the neural route. L. brevis secretes GABA that enhances sleep. L. helveticus secrete 5-HT
that may signal the central 5-HT system via the neural route. L helveticus also secretes NE that may affect the central NE system. L. reuteri secretes histamine that
decreases secretion of proinflammatory cytokines by IECs. This may reduce circulating inflammatory markers, such as LPS, IL-6 and corticosterone, and
subsequently prevent the inflammation-induced decrease in hippocampal BDNF. (B) Butyrate: L. plantarum produces butyrate that strengthens intestinal barrier and
diffuses through the circulation to regulate BDNF expression and reduce inflammation in the brain. The latter consequently regulates the HPA axis and its regulator,
the DA system. C. butyricum produces butyrate that influences central 5-HT and BDNF systems and stimulates L cell to secrete GLP-1 into the bloodstream which
increases expression of GLP-1 receptors. F. prausnitzii produces butyrate that strengthens the intestinal barrier. B. infantis and L. paracasei promote growth of
butyrate-producing bacteria. Through butyrate, B. infantis upregulates Tph1 activity of EC which increases circulating 5-HT and strengthens intestinal barrier to lower
IDO activity and increase circulating TRP, both of which affect the central 5-HT system and BDNF expression. Through butyrate, L. paracasei may influence the
central 5-HT system and BDNF expression. (C) Bacterial secreted proteins: L. gasseri secretes gassericins that increase parasympathetic activity to facilitate sleep
and improves gut microbiota composition. B. longum secretes serpins that alter neural activities in the brain via the neural route. L. paracasei secretes lactocepins
that decrease proinflammatory chemokines in IECs. This lowers IDO activity which, in turn, affects the central 5-HT system and BDNF expression. (D) Other
bioactive molecules: B. infantis secretes bioactive factors (likely polysaccharides) that decrease circulating IL-6 which affects the central NE system. L. reuteri
secretes H2O2 that decreases IDO activity and circulating KYN, and dgk that inhibits the initiation of proinflammatory pathways. B. breve converts albiflorin into BZA
which affects the Glu system via the humoral route. L. kefiranofaciens secretes exopolysaccharides that have immunomodulatory and antibacterial properties, which
may potentially prevent HPA axis overactivity. 5-HT, 5-hydroxytryptamine or serotonin; BDNF, brain-derived neurotrophic factor; DA, dopamine; BZA, benzoic acids;
dgk, diacylglycerol kinase; ECs, enterochromaffin cells; EPS, exopolysaccharide; GABA, gamma-Aminobutyric acid; GLP-1, glucagon-like peptide-1; Glu, glutamate
or glutaminergic; H2O2, hydrogen peroxide; HPA, hypothalamic-pituitary-adrenal; IECs, intestinal epithelial cells; IDO, indoleamine 2,3-dioxygenase; IL-6,
interleukin-6; KYN, kynurenine; NE, norepinephrine; LPS, lipopolysaccharides; Tph1, tryptophan hydroxylase 1; TRP, tryptophan.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2020 | Volume 13 | Article 1361

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01361 December 27, 2019 Time: 17:6 # 7

Yong et al. Probiotics for Treatment of Depression

Microbial GABA, Central GABAergic System, and
HPA Axis
Glutamine is a precursor to Glu while Glu is a precursor to
GABA. Reduced levels of GABA and Glx (Glu + glutamine)
have been consistently reported in cortical regions of MDD
patients (Sanacora et al., 1999; Hasler et al., 2007; Bhagwagar
et al., 2008; Moriguchi et al., 2018; Godlewska et al., 2019).
A dysfunctional glutaminergic system, that is partly responsible
by a decreased GABAergic tone, is also implicated in MDD
(Murrough et al., 2017). N-acetyl aspartate (NAA) is regarded
as a marker for neuronal vitality. In MDD patients, decreased
NAA levels in the PFC and hippocampus have been detected
(Gonul et al., 2006; Olvera et al., 2010; Lefebvre et al.,
2017). These neurochemical (i.e., Glx, NAA, and GABA)
levels in the PFC and hippocampus of mice increased when
administered with L. rhamnosus (Janik et al., 2016), implicating
its antidepressive potential.

Intake of L. rhamnosus altered the central mRNA expression
of GABAA and GABAB receptors while reducing depressive-
and anxiety-like behaviors in mice. These effects were also
dependent on an intact vagus nerve (Bravo et al., 2011).
With prebiotics, L. rhamnosus intake decreased hippocampal
GABAAα2 mRNA expression in stressed mice (McVey Neufeld
et al., 2017). L. rhamnosus produced GABA and Glu efficiently
from microbial glutamate decarboxylase and glutaminase,
respectively, in vitro (Stromeck et al., 2011; Liao et al.,
2013; Lin, 2013). These biosynthetic machineries utilized
by microbes to synthesize Glu and GABA are mutual in
neurons (Mathews and Diamond, 2003), which support the
interkingdom communication of microbial GABA (Lyte, 2011).
It was demonstrated in vitro that gut microbial GABA can
cross the intestinal barrier via H+/GABA symporter (Thwaites
et al., 2000; Nielsen et al., 2012). The microbial GABA may
subsequently interact with GABA receptors and transporters that
are widely expressed on enteric neurons and vagus afferents
(Hyland and Cryan, 2010).

Administration of L. rhamnosus reduced stress-induced
plasma corticosterone levels in mice that averted depression
(Bravo et al., 2011; McVey Neufeld et al., 2018). This could be
due to the innervation of PVN neurons by GABAergic synapses
that can be desensitized by acute stress (Hewitt et al., 2009).
Inhibited GABA signals allow continuous release of CRF by
PVN neurons, which ultimately leads to cortisol overproduction
and HPA axis overactivity (Cullinan et al., 2008). Impairment of
GABA receptors also inhibits hippocampal neurogenesis, which
has been shown to activate the HPA axis and induce depression
in mice (Earnheart et al., 2007; Schloesser et al., 2009). Such
effects may be possibly prevented by the production of GABA
by L. rhamnosus.

Lactobacillus casei Strain Shirota
Individuals with low mood reported feeling happier
after consuming milk containing L. casei, but not the
placebo (Benton et al., 2007). Intake of mixed-species
probiotics that included L. casei also reduced clinical
depression and depressive-like symptoms in MDD

patients (Akkasheh et al., 2016) and healthy individuals
(Steenbergen et al., 2015; Mohammadi et al., 2016),
respectively. Similar to L. rhamnosus, evidence suggests
that L. casei may also regulate the HPA axis via the neural
route (Figure 2A).

Microbial GABA and HPA Axis
Intake of L. casei stimulated vagus afferents and decreased
both the activity and quantity of CRF-expressing cells in
PVN of rats (Takada et al., 2016). Intragastric injection of
L. casei downregulated the activity of sympathetic efferents
to adrenal glands and liver, and this effect ceased upon
vagotomy (Tanida et al., 2014). In clinical trials, L. casei
supplementation lowered salivary cortisol levels, feelings of
stress and frequency of abdominal- and flu-related symptoms
in stressed individuals (Kato-Kataoka et al., 2016; Takada et al.,
2016). These studies imply that L. casei prevents HPA axis
overactivity via the vagus nerve, which may consequently lower
stress-related feelings and illnesses. L. casei produced GABA
in vitro (Oleskin et al., 2014), indicating a possibility that it may
share an antidepressive mechanism of L. rhamnosus. Stressed
individuals that consumed L. casei showed improvements in
mental health and gut microbiota composition, characterized
by increased Lactobacillus and Bifidobacterium populations
(Rao et al., 2009; Kato-Kataoka et al., 2016). As most
of the antidepressive probiotics belong to Lactobacillus and
Bifidobacterium genera, the potential antidepressive capacity of
L. casei is highly supported.

Lactobacillus brevis
Similar to L. rhamnosus and L. casei, L. brevis produces GABA
via glutamate decarboxylase in substantial amounts (Yokoyama
et al., 2002; Siragusa et al., 2007; Barrett et al., 2012; Ko et al.,
2013; Yunes et al., 2016). This indicates that L. brevis may share
a mutual mechanism of action with L. rhamnosus and L. casei
(Figure 2A). Although L. brevis has been shown to influence
neither the central GABAergic system nor the HPA axis, L. brevis
appears to promote sleep.

Microbial GABA and Sleep
Milk fermented with L. brevis had increased GABA content.
This L. brevis-fermented milk demonstrated an antidepressive
potency on par with fluoxetine, a SSRI, in depressed rats
(Ko et al., 2013). Intriguingly, intake of L. brevis-produced
GABA improved sleep duration in mice (Han et al.,
2017). Another study also showed that dietary L. brevis
enhanced sleep quality and voluntary physical activity in
mice (Miyazaki et al., 2014). GABA is the main inhibitory
neurotransmitter that is widely associated with sleep, and
GABA receptors are frequent targets for pharmaceutical drugs,
such as benzodiazepine, to treat insomnia (Gottesmann,
2002). GABA-enriched foods and GABA extract have also
been shown to improve sleep quality in insomniacs (Byun
et al., 2018) and healthy individuals (Yamatsu et al., 2015).
Therefore, L. brevis has therapeutic value for insomnia,
which reflects one of the diagnostic criteria for MDD
(American Psychiatric Association, 2013).
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Lactobacillus reuteri
Treatment of L. reuteri ameliorated depressive-like behaviors in
chronic-stressed (Marin et al., 2017) and immobilization-stressed
mice (Jang et al., 2019). The former study further elucidated the
mechanism of L. reuteri which involves regulation of IDO, a rate-
limiting enzyme of immune cells that catabolizes TRP to KYN
(Reus et al., 2015). It is also well documented that L. reuteri
exhibits anti-inflammatory activities (Thomas et al., 2012; Gao
et al., 2015; Ganesh et al., 2018). It is, thus, conceivable that
L. reuteri may also prevent activation of IDO by proinflammatory
cytokines (Reus et al., 2015).

Microbial Hydrogen Peroxide and Kynurenine
Pathway
The etiology of depression is partly attributed to a dysregulated
KYN/TRP pathway (Reus et al., 2015). An elevated ratio of
plasma KYN/TRP often correlates positively with the depression
severity in human (Maes et al., 2002; Gabbay et al., 2010; Baranyi
et al., 2013; Zhou et al., 2019). It was demonstrated that L. reuteri
intake improved behaviors of depressed mice by reversing the
stress-induced (1) decrease in fecal H2O2 levels and Lactobacillus
populations, and (2) increase in intestinal IDO1 expression and
plasma KYN levels (Marin et al., 2017). KYN administration
attenuated this antidepressive effect, which indicates that
L. reuteri ameliorates depression by reducing plasma KYN levels.
This study also showed that L. reuteri generated high amounts
of H2O2 in vitro, and the author proposed that H2O2 is the
key metabolite in mediating antidepressive effect of L. reuteri
(Marin et al., 2017). This is because H2O2 catalyzes peroxidase-
mediated reactions that inhibit IDO activity (Freewan et al.,
2013). H2O2 is transported by aquaporin-3 transporters that
are expressed on IECs (Thiagarajah et al., 2017) and immune
cells (Moon et al., 2004). These findings suggest that microbial
H2O2 can potentially cross the intestinal barrier to suppress IDO
activity in immune cells, which would lower circulating KYN
levels (Figure 2D).

Microbial Histamine, Diacylglycerol Kinase, and
Brain-Derived Neurotrophic Factor (BDNF)
Expression
Lactobacillus reuteri possesses histidine decarboxylase that
converts dietary L-histidine to histamine, which inhibits
the production of TNF-α in vitro (Thomas et al., 2012;
Hemarajata et al., 2013). The microbial histamine suppressed
proinflammatory cytokine activities in IECs via the histamine-2
receptor signaling pathway in mice. This effect disappeared when
the histidine decarboxylase gene of L. reuteri was inactivated by
mutagenesis (Gao et al., 2015). Intriguingly, microbial histamine
also activated histamine-1 receptors to initiate downstream
proinflammatory pathways in mice (Ganesh et al., 2018).
However, the substrate for this pathway, diacylglycerol, is
metabolized to phosphatidic acid by diacylglycerol kinase
produced by L. reuteri. Thus, L. reuteri secretes both histamine
and diacylglycerol kinase that act on histamine receptors to
produce an anti-inflammatory effect (Ganesh et al., 2018).
Orally administered L. reuteri simultaneously alleviated colitis
and behaviors indicative of anxiety and depression in stressed

mice. These effects were also accompanied by a decrease in
colon inflammation and blood levels of LPS, interleukin-6 (IL-
6) and corticosterone. In the same study, this reduction in
peripheral inflammation prevented the infiltration of activated
microglia into the hippocampus and increased hippocampal
BDNF expression (Jang et al., 2019; Figure 2A). BDNF
has been extensively studied for its vital role in neuronal
function and its causal link to depression. Antidepressants
such as SSRI and ketamine also increase hippocampal BDNF
expression as part of their mechanism of action (Bjorkholm and
Monteggia, 2016). Furthermore, this anti-inflammatory effect
of L. reuteri may prevent IDO activation by proinflammatory
cytokines (Reus et al., 2015).

Lactobacillus plantarum
Lactobacillus plantarum supplementation decreased depressive-
like symptoms in chronic-stressed mice (Liu Y.W. et al.,
2016; Dhaliwal et al., 2018) and stressed adults with mild
depression (Lew et al., 2018), though the latter study did not
reach statistical significance. Following L. plantarum intake,
reduction in plasma corticosterone levels and inflammation
were seen in mice with reduced depressive-like behaviors (Liu
Y.W. et al., 2016). Another study reported that mice fed
with L. plantarum displayed an increase in cecum SCFAs
levels (acetic and butyric), and a decrease in intestinal
permeability and level of MAOs in the brain (Dhaliwal et al.,
2018). These physiological changes can be unified into a
mutual mechanism that L. plantarum likely mitigates systemic
inflammation (Figure 2B).

Butyrate, Intestinal Barrier, and BDNF Expression
Chronic-stressed mice fed with L. plantarum exhibited
reduced depressive-like behaviors, coupled with an increase in
butyrate and butyrate-producing bacteria, such as Lactobacillus,
Bacteroidetes, and Roseburia (Dhaliwal et al., 2018). L. plantarum
synthesizes butyrate via fatty acid synthase II–thioesterase, a
glutamine-mediated butyrogenic pathway (Botta et al., 2017).
Butyrate can enter IECs through cholesterol-rich microdomains
and/or monocarboxylate transporter 1 protein (Suzuki et al.,
2008; Goncalves et al., 2011; Nedjadi et al., 2014), and promote
synthesis and assembly of tight junction proteins of IECs (Bordin
et al., 2004; Ohata et al., 2005; Peng et al., 2009; Wang et al., 2012;
Yan and Ajuwon, 2017). Butyrate also has anti-inflammatory
properties; for instance, butyrate inhibited proinflammatory
activities of IECs in vitro (Elce et al., 2017) and interacted
with IECs to regulate host T cell responses (Lew et al., 2018;
Xu et al., 2018). Butyrate may also diffuse into the systemic
circulation to exert anti-inflammatory effects on various organs
and tissues, including the brain (McNabney and Henagan, 2017;
Matt et al., 2018). Indeed, butyrate has been shown to normalize
behavior of depressed rodents through epigenetic regulations
of hippocampal BDNF expression (Han et al., 2014; Wei et al.,
2014; Sun et al., 2016). These outcomes are consistent with the
finding that L. plantarum intake increased hippocampal BDNF
expression and cecum butyrate levels in chronic stress-induced
depressed mice (Dhaliwal et al., 2018).
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HPA Axis and Central DA System
Lactobacillus plantarum supplementation decreased MAOs levels
in brain tissues of mice with reduced depression (Dhaliwal et al.,
2018). This is in line with another finding that L. plantarum
intake in mice increased levels of DA and its metabolites
(HVA and 3,4-dihydroxyphenylacetic acid, DOPAC) in the
PFC, along with reduced depressive-like behaviors (Liu Y.W.
et al., 2016). However, another study showed that L. plantarum
increased DA levels in the striatum of mice while alleviating
anxiety-like behaviors (Liu W.H. et al., 2016). These studies
suggest that L. plantarum likely affects the central DA system
in a context-dependent manner. It was also proposed that
L. plantarum increases DA levels in the PFC to prevent HPA
axis overactivation (Liu Y.W. et al., 2016). DA neurons in the
PFC and ventral tegmental area (VTA) form the mesocortical
pathway which regulates reward-seeking behaviors (Pariyadath
et al., 2016) and the HPA axis (Sullivan and Dufresne, 2006).
Glucocorticoids from the HPA axis can also influence the
DA system either directly or indirectly, via epigenetic control
and MAOs inhibition, respectively (Feenstra et al., 1992;
Grunewald et al., 2012; Butts and Phillips, 2013). Taken together,
L. plantarum may regulate both the DA system and HPA axis by
attenuating glucocorticoid-induced MAOs activity.

Faecalibacterium prausnitzii (Previously
Known as Fusobacterium prausnitzii)
Recently, it was discovered that oral gavage of F. prausnitzii
exerted antidepressive and anxiolytic effects in chronic-stressed
mice (Hao et al., 2019). F. prausnitzii, as the sole species of
Faecalibacterium genera (Duncan, 2002), represents around 5%
of the total human gut microbiota (Hold et al., 2003). Low
populations of F. prausnitzii correlated with the disease severity
of those with MDD (Jiang et al., 2015) and bipolar depression
(Evans et al., 2017). In a recent large cohort study, fecal levels
of F. prausnitzii correlated negatively with depressed mood
and positively with quality of life (Valles-Colomer et al., 2019).
Therefore, F. prausnitzii seems to have pertinent contributions
to mental health.

Butyrate, Microbial Anti-inflammatory Molecules, and
Peripheral Inflammation
Faecalibacterium prausnitzii produces butyrate in large quantities
from fermenting glucose and fiber (Duncan, 2002; Hold et al.,
2003). F. prausnitzii also secretes microbial anti-inflammatory
molecules that suppress the proinflammatory nuclear factor
(NF)-κB pathway in IECs (Sokol et al., 2008; Quevrain
et al., 2016a,b). These immunomodulatory effects are consistent
with neurochemical changes observed in F. prausnitzii-treated
depressed mice, whereby cecum SCFAs and plasma IL-10
levels increased, while corticosterone and IL-6 levels decreased
(Hao et al., 2019). Moreover, intragastric administration of
F. prausnitzii decreased colonic cytokine levels and intestinal
permeability in mice with colitis (Laval et al., 2015; Martin
et al., 2015). Thus, butyrate produced by F. prausnitzii potentially
strengthens the intestinal barrier (similar to L. plantarum;
Figure 2B). However, whether local immunomodulatory effects
of F. prausnitzii extend to the brain remains unknown.

Nevertheless, the ability of F. prausnitzii to attenuate gut
inflammation is sufficient to reduce depressive- and anxiety-like
behaviors in mice (Hao et al., 2019).

Lactobacillus helveticus
Lactobacillus helveticus intake enabled the recovery of chronic-
and subchronic-stressed rodents from their state of depression
(Liang et al., 2015; Maehata et al., 2019). Probiotic sticks
containing L. helveticus, in addition to Bifidobacterium longum,
reduced clinical depression and depressive-like symptoms in
MDD patients (Kazemi et al., 2019) and healthy individuals
(Messaoudi et al., 2011), respectively. Most of the animal and
human studies also showed that L. helveticus intake enhanced
memory and, sometimes, attention and learning (Ohland et al.,
2013; Chung et al., 2014; Luo et al., 2014; Liang et al., 2015;
Ohsawa et al., 2018). Cognitive impairments, such as poor
memory and concentration, represent one major cluster of MDD
symptoms (Sharpley and Bitsika, 2014). Evidence suggests that
L. helveticus may modulate the central NE system and HPA axis
to improve cognition, and the central 5-HT system and BDNF
expression to reduce depression (Liang et al., 2015) (Figure 2A).

Microbial NE, Central NE System, and HPA Axis
Supplementation of L. helveticus improved memory and
cognitive performance in chronic-stressed rats, comparable to
the SSRI citalopram-treated rats. This memory improvement
correlated with increased plasma IL-10 and hippocampal NE
levels, and reduced plasma corticosterone and ACTH levels
(Liang et al., 2015). A previous study also showed that
ingestion of L. helveticus enhanced memory and mitigated
gut inflammation in neuroinflammation-induced rats (Luo
et al., 2014). However, another study reported that memory
improvement in L. helveticus-treated mice did not correlate with
the state of gut inflammation (Ohland et al., 2013). Despite
this discrepancy, it is well established that the hippocampal NE
system and HPA axis both interact to regulate hippocampal
glucose metabolism for memory consolidation (Osborne et al.,
2015). This mechanism may be affected by microbial NE as
L. helveticus produced NE in vitro in amounts that exceed the
human bloodstream (Oleskin et al., 2014). It was also shown
in vivo that gut bacteria are responsible for converting conjugated
NE into its biologically active form (Asano et al., 2012). This
neuroactive NE likely influences the MGB axis, but the exact
mechanism remains unknown (Lyte, 2011).

Microbial 5-HT and Central 5-HT-BDNF System
Liang et al. (2015) showed that elevated hippocampal 5-HT levels
correlated with reduced depression severity in L. helveticus-fed
rats. The same study also demonstrated that treatment with SSRI
citalopram alleviated depression and increased hippocampal
BDNF expression and 5-HT levels (Liang et al., 2015). Hence, the
antidepressive mechanism appears similar between L. helveticus
and citalopram. Cultures of L. helveticus produced 5-HT at
concentrations close to that in the human bloodstream (Oleskin
et al., 2014). As shown in vivo, the gut microbiota has an
indispensable function in deconjugating glucuronide-conjugated
5-HT to generate their free, biologically active counterparts in
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considerable amounts (Hata et al., 2017). It is hypothesized that
gut luminal 5-HT may sensitize 5-HT 3A receptors of enteric
neurons by stimulating the glial cell-derived neurotrophic factor
of IECs (Hata et al., 2017). 5-HT3 receptors are also expressed
on IECs (Hasler, 2009) and vagal afferents (Hillsley and Grundy,
1998). Therefore, it can be speculated that L. helveticus influences
the central 5-HT circuitry via the neural route. This is supported
by a recent study showing that L. helveticus intake increased
expression of 5-HT 1A receptors in the nucleus accumbens while
restoring behaviors of depressed mice (Maehata et al., 2019).

Chronic-stressed mice that ingested L. helveticus displayed
an increase in hippocampal BDNF levels (Liang et al., 2015)
and neurogenesis in the nucleus accumbens (Maehata et al.,
2019). Nucleus accumbens is a brain region implicated in
reward behavior. The central BDNF and 5-HT systems are
synergistic, whereby 5-HT upregulates hippocampal BDNF–
TrkB signaling to increase expression and synthesis of BDNF. The
elevated BDNF, in turn, facilitates neurogenesis of 5-HT neurons
(Martinowich and Lu, 2008; Bjorkholm and Monteggia, 2016).
Therefore, L. helveticus likely increases hippocampal BDNF
levels via modulation of 5-HT circuitry, in a similar manner to
SSRIs (Liang et al., 2015).

Lactobacillus paracasei
Dietary intervention of heat-killed L. paracasei prevented mood
deterioration in times of stress in healthy individuals (Murata
et al., 2018). In corticosterone-induced depressed mice, oral
gavage of either live or heat-killed L. paracasei exhibited
antidepressive efficacy equivalent to or better than fluoxetine.
The same study also showed that live and heat-killed L. paracasei
operated via different mechanisms. Live L. paracasei increased 5-
HT levels whereas heat-killed L. paracasei increased DA levels
in the brain (Wei et al., 2019). The signaling mechanism of
L. paracasei appears independent of the HPA axis (Wei et al.,
2019) or vagus afferents (Tanida and Nagai, 2011). The remaining
evidence suggests that L. paracasei potentially functions via an
immune-mediated humoral pathway.

Lactocepin, Butyrate, and Central 5-HT-BDNF
System
Lactobacillus paracasei secretes lactocepin, a PrtP-encoded serine
protease, that selectively degrades proinflammatory chemokines
in inflamed ileal tissue of mice (von Schillde et al., 2012).
Lactocepin is most likely a heat-labile cell surface protein unique
to L. paracasei (Hoermannsperger et al., 2009; von Schillde
et al., 2012). Mice fed with live L. paracasei exhibited lower
inflammatory markers in serum, such as increased IL-10 and
glutathione peroxidase and decreased TNF-α and MCP-1 (Huang
et al., 2018). Another study showed that oral gavage of live
L. paracasei with its bacterial products prevented adverse effect of
stress on intestinal permeability in rats (Eutamene et al., 2007).
This can be linked to a suppressed IDO activity, resulting in
higher TRP bioavailability for 5-HT synthesis in the brain (Reus
et al., 2015). Following this, it was shown that live L. paracasei
delivered via gavage increased 5-HT and 5-HIAA (the main
metabolite of 5-HT) levels in the hippocampus and striatum of
mice (Huang et al., 2018; Wei et al., 2019). As 5-HT facilitates

BDNF synthesis (Martinowich and Lu, 2008), the upregulated
central 5-HT expression presumably explains the accompanying
increase in hippocampal BDNF expression of mice alleviated of
depression from L. paracasei intake (Wei et al., 2019). Therefore,
L. paracasei may upregulate the central 5-HT-BDNF system
(similar to L. helveticus; Figure 2C).

Treatment of live L. paracasei also increased fecal
Bifidobacterium populations while normalizing behaviors of
depressed mice (Wei et al., 2019). The gut microbiota profile,
inflammatory markers and levels of acetate and butyrate were
improved in IBS patients supplemented with live L. paracasei
(Bertani et al., 2017; Cremon et al., 2018). Reduction in
systemic inflammation, coupled with an improvement in
hippocampal function, was also observed in obese rats fed with
live L. paracasei (Chunchai et al., 2018). Thus, live L. paracasei
may facilitate the colonization of butyrate-producing bacteria
to reduce systemic inflammation (similar to L. plantarum) and
increase 5-HT secretion from ECs (similar to Bifidobacterium
infantis; Figure 2B).

Bifidobacterium infantis
In naïve rats, intake of B. infantis was shown to alter depression-
related biomarkers (Desbonnet et al., 2008). The same group
later showed that chronic-stressed mice no longer displayed
depressive-like behaviors after B. infantis intake (Desbonnet
et al., 2010). In flood victims with IBS, B. infantis consumption
did not affect their IBS symptoms but improved their mental
health instead (Murata et al., 2018). B. infantis did not
influence corticosterone levels in mice (Desbonnet et al., 2008,
2010), implying that the effect of B. infantis is likely to be
independent of the HPA axis. Evidence suggests that B. infantis
has immunomodulatory effects that regulate the central NE
system (Desbonnet et al., 2010). A recent study also provided
support for the antidepressive mechanism of B. infantis that
involves the hippocampal 5-HT system (Tian et al., 2019).

Bioactive Factors, IL-6, and Central NE System
Bifidobacterium infantis treatment manifested two physiological
changes in vivo. First, B. infantis decreased plasma IL-6 levels
in mice (Desbonnet et al., 2008, 2010) and patients with
inflammatory conditions (Groeger et al., 2013). In depressed
mice, the IL-6 release also correlated positively with the severity
of depression (Desbonnet et al., 2010). Second, B. infantis
increased NE levels in the murine brainstem (Desbonnet et al.,
2010) containing the majority of NE neurons (Schwarz and Luo,
2015). Therefore, B. infantis likely regulates plasma IL-6 and
central NE system to exert an antidepressive effect.

Bifidobacterium infantis secretes bioactive factors (probably
polysaccharides) that enhance transepithelial resistance of IECs
(Ewaschuk et al., 2008). Other studies involving rodents also
showed that B. infantis treatment enhanced the intestinal
barrier by strengthening the formation of tight junction
proteins and anti-inflammatory activities of immune cells
(Lomasney et al., 2014; Zuo et al., 2014; Javed et al.,
2016). Indeed, bacterial DNA translocation from the gut
lumen into the circulation was reduced in B. infantis-fed
rodents (Osman et al., 2006; Gómez-Hurtado et al., 2012).
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Bacterial DNA is a potent inducer of TLRs which facilitate
the release of proinflammatory cytokines, including IL-6
(Gutierrez et al., 2016). Administration of IL-6 induced
depression in mice, and this outcome was prevented by
pharmaceutical blockage of NE neurons in the brainstem
(Kurosawa et al., 2016). Hence, B. infantis potentially modulates
the NE system via an immune-mediated humoral route to
reduce depression (Figure 2D). This mechanism appears
to be independent of the vagus nerve as oral gavage of
B. infantis also decreased proinflammatory cytokine (including
IL-6) levels in vagotomized mice with an inflamed colon
(van der Kleij et al., 2008).

Butyrate, TRP, and Central 5-HT-BDNF System
Treatment of B. infantis upregulated mRNA expression of Tph1
in RIN14B cells, a cell line that mimics ECs (Tian et al.,
2019). Tph1 converts TRP to 5-hydroxytryptophan (5-HTP) and
aromatic amino acid decarboxylase subsequently converts 5-HTP
to 5-HT. B. infantis-fed mice displayed reduced depressive-
like behaviors, along with an increase in TRP biosynthesis
and hippocampal 5-HT and 5-HTP levels. In the same study,
B. infantis increased cecum butyrate levels and the abundance
of butyrate-producing Bifidobacterium. The elevated butyrate
levels also correlated with increased hippocampal 5-HTP and
PFC BDNF levels (Tian et al., 2019). This could be due to
the ability of butyrate and other SCFAs to increase Tph1
activity of ECs, thereby promoting 5-HTP and 5-HT secretions
(Reigstad et al., 2015; Yano et al., 2015; Lund et al., 2018).
This is consequential as ECs contribute about 95% of the
bodily 5-HT (El-Merahbi et al., 2015), and that mice with a
gut microbiota had 2.8-fold higher plasma 5-HT levels than
GF mice (Wikoff et al., 2009). The evidence for the ability
of 5-HT to cross the BBB is conflicting (Brust et al., 2000;
Wakayama et al., 2002; Nakatani et al., 2008; El-Merahbi et al.,
2015). In contrast, 5-HTP readily crosses the BBB and can
be converted into 5-HT. Therapeutic 5-HTP has also been
shown to treat clinical depression with a potency equivalent
to or better than SSRIs (Birdsall, 1998; Jangid et al., 2013;
Jacobsen et al., 2016).

Furthermore, B. infantis intake increased plasma TRP levels
in healthy rats (Desbonnet et al., 2008), but another study
with chronic-stressed rats reported otherwise (Desbonnet et al.,
2010). The author then suggested that B. infantis regulates TRP
metabolism differently, depending on the rat strain (Desbonnet
et al., 2010). Therapeutic TRP can improve symptoms of
mood, sleep and cognitive disorders as TRP readily passes
through BBB to regulate numerous brain functions, such as
5-HT synthesis (Richard et al., 2009). The elevated plasma
TRP levels from B. infantis intake is most likely a result
of reduced proinflammatory cytokines (Desbonnet et al.,
2008, 2010), which reduces IDO activity and prevents over-
catabolism of TRP (Reus et al., 2015). Thus, B. infantis may
upregulate the hippocampal 5-HT system via modulation of
peripheral 5-HTP, 5-HT and/or TRP levels. As 5-HT promotes
BDNF synthesis (Martinowich and Lu, 2008), this presumably
explains the concomitant increase in BDNF levels in PFC
of rats ameliorated of depression with B. infantis treatment

(Tian et al., 2019). Taken together, L. helveticus, L. paracasei
and B. infantis upregulate the central 5-HT-BDNF system as
their mutual antidepressive mechanism, although via different
pathways (Figure 2B).

Clostridium butyricum
Treatment of C. butyricum improved depressive-like
behaviors in chronic-stressed mice. These treated mice
also showed upregulated central 5-HT, BDNF and GLP-
1 receptors in the brain (Sun et al., 2018). Remarkably,
the combination of C. butyricum with antidepressants
reduced depression in about 70% of treatment-resistant
MDD patients, of which 30% achieved remission (Miyaoka
et al., 2018). These studies support the antidepressive
efficacy of non-pathogenic C. butyricum. It should be
noted that certain strains of C. butyricum are pathogenic
which may cause botulism and necrotizing enterocolitis
(Cassir et al., 2016).

Butyrate, Central 5-HT-BDNF System, and GLP-1
Clostridium butyricum, as a resident of healthy gut microbiota,
produces butyrate from carbohydrate fermentation (Araki et al.,
2002; He et al., 2005; Liu J. et al., 2015). Treatment of
C. butyricum increased central 5-HT levels and BDNF expression
in mice with reduced depression (Sun et al., 2018). Another
study also reported that C. butyricum intake upregulated
neurogenesis-related pathways, such as BDNF, via butyrate
production in mice (Liu J. et al., 2015). Additionally, intragastric
inoculation of C. butyricum increased intestinal secretion of
GLP-1 and the central expression of GLP-1 receptors in
mice alleviated from depression (Sun et al., 2018). This effect
may also be mediated by butyrate as SCFAs can bind to
receptors expressed on intestinal L cells to stimulate GLP-1
secretion into the bloodstream (Tolhurst et al., 2012). GLP-1
is known for appetite and glucose control, but the activation
of central GLP-1 receptors has been shown to regulate the
central 5-HT system and reduce anxiety- and depressive-
like behaviors in rats (Anderberg et al., 2016). Therefore,
antidepressive mechanism of C. butyricum potentially involves
a butyrate-mediated upregulation of central BDNF-5-HT system
(similar to L. paracasei and B. infantis) and GLP-1 receptor
expression (Figure 2B).

Lactobacillus kefiranofaciens
Lactobacillus kefiranofaciens is isolated from kefir, a type of
fermented milk. Oral gavage of L. kefiranofaciens improved
behaviors of chronic-stressed, depressed mice. These treated
mice also showed several physiological alterations. Levels of
circulating TRP, splenic IL-10 and beneficial gut bacteria
(e.g., Lachnospiraceae, Bifidobacteriaceae, and Akkermansia)
increased, and KYN/TRP ratio, splenic IL-6 and IFN-γ levels
and Proteobacteria abundance decreased (Sun et al., 2019).
What factors mediate such broad effects of L. kefiranofaciens
on the TRP/KYN pathway, immune system, HPA axis and gut
microbiota remain unclear, but exopolysaccharide is potentially a
candidate (Figure 2D).
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Exopolysaccharide, Peripheral Inflammation, and Gut
Microbiota
The only known metabolite of L. kefiranofaciens is an
exopolysaccharide called kefiran (Maeda et al., 2004; Xing et al.,
2017). The intake of kefiran modulated the gut mucosal immune
system of mice (Vinderola et al., 2006), which could potentially
account for changes in splenic cytokines seen in depressed mice
(Sun et al., 2019). Kefiran was also shown to protect human
enterocyte cell lines from adhesion and damage inflicted by
toxins of pathogenic bacteria (Santos et al., 2003; Medrano
et al., 2008). A further study discovered that L. kefiranofaciens
produces a novel exopolysaccharide (not kefiran) that is
bactericidal toward enteropathogens Listeria monocytogenes and
Salmonella enteritidis (Jeong et al., 2017a). It may be possible
that the antibacterial effects of this exopolysaccharide extend
to other species in the gut microbiota. This supports the
finding that L. kefiranofaciens supplementation ameliorated
depressive-like behaviors in chronic-stressed mice by regulating
gut microbiota content, which included the decreased abundance
of Proteobacteria, a phylum that includes pathogens such as
Salmonella (Sun et al., 2019). Other mice studies also supported
the role of L. kefiranofaciens in modulating gut microbiota
composition (Jeong et al., 2017b; Xing et al., 2018). Collectively,
these changes in gut microbiota profile prevent gut dysbiosis that
could lead to chronic inflammation, HPA axis overactivity and
depression (Jeong et al., 2017b).

Bifidobacterium breve
Bifidobacterium breve treatment improved symptoms of
depression in innately anxious mice (Savignac et al., 2014),
chronic-stressed mice (Tian et al., 2019) and schizophrenic
patients with depression (Okubo et al., 2019). B. breve
supplementation also improved mood and cognition in elderly
people with mild cognitive impairment (Kobayashi et al., 2019).
However, none of the accompanying physiological changes
among these studies overlapped, making it difficult to identify
an exact mechanism of B. breve. In spite of this, one study
demonstrated that antidepressive mechanism of B. breve involves
the generation of benzoic acid (Zhao et al., 2018; Figure 2D).

Benzoic Acid and Central Glu System
Among the 18 bacterial strains isolated from gut microbiota,
B. breve was the most efficient converter of albiflorin to benzoic
acid via microbial carboxylesterase, at the rate of 75% as
compared to L. casei, Lactobacillus acidophilus and B. longum
at about 5%. The same study further showed that orally
administered benzoic acid alleviated depression in mice (Zhao
et al., 2018). Benzoic acid readily crosses the intestinal barrier and
BBB to inhibit D-amino acid oxidase that catabolizes D-serine,
a co-agonist of N-methyl-D-aspartate receptor (NMDAR, a
type of Glu receptor) (Zhao et al., 2018). Both D-serine and
NMDARs are therapeutic targets in neuropsychiatric disorders,
such as depression, schizophrenia and cognitive impairment
(Durrant and Heresco-Levy, 2014). Indeed, a dysfunctional Glu
system is linked to the pathophysiology of depression (Pytka
et al., 2016). In line with this, B. breve intake increased Glu

synapses in chronic-stressed mice while treating its depressive-
like behaviors (Tian et al., 2019).

Bifidobacterium longum
Bifidobacterium longum treatment decreased depressive-like
symptoms in innately anxious mice (Savignac et al., 2014) and IBS
patients with mild to moderate depression and/or anxiety (Pinto-
Sanchez et al., 2017). B. longum supplementation also presented
anxiolytic efficacy in numerous human and animal studies
(Bercik et al., 2010, 2011; Allen et al., 2016; Orikasa et al., 2016).
However, B. longum did not affect the gut inflammatory state in
animals and humans, indicating a lack of immunomodulatory
function (Bercik et al., 2010, 2011; Pinto-Sanchez et al., 2017).
Other physiological changes, such as BDNF expression and
plasma KYN/TRP ratio, seen in B. longum-treated mice and
humans were inconsistent (Bercik et al., 2010, 2011; Orikasa et al.,
2016; Pinto-Sanchez et al., 2017). Collectively, these data suggest
that brain neural activity and HPA axis are possible targets of
B. longum signaling mechanisms (Figure 2C).

Serpin, Central Neural Activity, and HPA Axis
Both in vitro and in vivo studies showed that B. longum weakened
the excitability of murine myenteric neurons (Bercik et al., 2011;
Khoshdel et al., 2013). Mice with inflamed intestines that were
fed with B. longum demonstrated reduced anxiety-like behaviors,
and this effect ceased upon vagotomy (Bercik et al., 2011).
Intriguingly, B. longum intake also alleviated anxiety in colon-
inflamed mice that were vagotomized before treatment (Bercik
et al., 2010). The author postulated that vagus afferents are an
essential conduit when B. longum signals enterocytes, but not
colonocytes (Bercik et al., 2011). The genome of B. longum
encodes serpin, a serine protease inhibitor (Ivanov et al., 2006;
Mkaouar et al., 2016). Serpin can inhibit the activation of enteric
neurons by suppressing the secretion of elastase-like proteases
from IECs (Ivanov et al., 2006; Buhner et al., 2018). These studies
support the premise that B. longum interacts with the host via
the neural pathway (similar to L. rhamnosus). Following this,
the neural activity and HPA axis of the brain may be altered.
Individuals consuming B. longum had increased neural activity
in the PFC and decreased neural activity in the amygdala and
fronto-limbic regions (Allen et al., 2016; Pinto-Sanchez et al.,
2017). Anomalies in the anatomy and activity of the amygdala
and PFC are also commonly observed among depressed patients
(Liu W. et al., 2017). Furthermore, B. longum intake exerted
simultaneous glucocorticoids-lowering and anxiolytic effects in
humans and mice (Allen et al., 2016; Orikasa et al., 2016),
suggesting that B. longum potentially modulates the HPA axis.

Lactobacillus gasseri
Supplementation of L. gasseri improved mood (Sashihara et al.,
2013) and depressive-like symptoms (Sawada et al., 2017) in
stressed individuals. However, no studies have evaluated the effect
of L. gasseri on clinically depressed individuals. Interestingly,
L. gasseri is the only dietary probiotic which showed consistent
sleep-enhancing effects in humans (Nishida et al., 2017a,b;
Sawada et al., 2017). Irregular sleeping patterns are frequently
associated with MDD (American Psychiatric Association, 2013;
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Wallace and Milev, 2017), supporting the use of L. gasseri as a
potential treatment for MDD-related sleep disturbances.

Gassericins, Gut Microbiota, and Parasympathetic
Activity in Sleep
Stressed individuals that were given probiotic-based milk
containing either heat-killed or live L. paracasei showed
alterations in the gut microbiota profile. Heat-killed L. gasseri
decreased Bacteroides vulgatus and increased Dorea longicatena
populations (Nishida et al., 2017a), whereas live L. gasseri
decreased growth of inflammatory Enterobacteriaceae and
Veillonella (Sawada et al., 2017). Both studies also showed
that L. gasseri enhanced sleep quality of participants. Another
study reported that heat-killed L. gasseri (in milk) increased the
population of Clostridium cluster IV group and SCFAs levels
in individuals with altered bowel movements (Sawada et al.,
2016). Using a similar methodology, decreased Clostridium
cluster IV and increased Bifidobacterium populations were
found in another group of participants (Sugawara et al.,
2016). Taken together, these results suggest that heat-killed
L. gasseri does not have a specific microbial target, but
rather modifies the preexisting gut microbiota that is unique
to each individual. Nevertheless, these changes in the gut
microbiota composition favor an anti-inflammatory state
(Sawada et al., 2016; Sugawara et al., 2016; Nishida et al.,
2017a). L. gasseri likely alters the gut microbiota profile
through its unique, heat-resistant gassericins A and T with
potent antibacterial properties against enteric pathogens
(Pandey et al., 2013).

Heat-killed L. gasseri decreased expression of leukocytic
stress-responsive microRNAs and salivary cortisol levels in
stressed individuals (Nishida et al., 2017b). L. gasseri intake
also prevented downregulation of EIF2-related genes in IBS
patients (Nobutani et al., 2017). These studies suggest that
L. gasseri confers protection against detrimental effects of stress.
Moreover, heat-killed L. gasseri intake promoted parasympathetic
nerve activity while improving sleep quality of stressed
individuals (Nishida et al., 2017b). In healthy individuals,
administration of either live or heat-killed L. gasseri increased
their parasympathetic activity (Otomi et al., 2015; Sugawara et al.,
2016). Therefore, L. gasseri may modify the gut microbiota profile
in such a way that lowers gut inflammation and stress response,
which may consequently promote parasympathetic activity to
facilitate sleep (Figure 2C).

CHALLENGES AND PERSPECTIVES FOR
PROBIOTICS AS TREATMENT FOR
DEPRESSION

The existence of different gut microbiota compositions,
depression subtypes and probiotic formulations complicate
treatment outcomes and necessitate an individualized approach
when using probiotics to treat depression. Despite these
challenges, probiotics confer some benefits over antidepressant
drugs, and there are more promising candidate probiotics that
can potentially treat depression.

Heterogeneity of Gut Microbiota
Composition
Several factors are known to influence the gut microbiota
composition, such as diet, medications, genetics, age,
geographical location and smoking (Thursby and Juge,
2017). Recently, approximately 1000 gut-derived putative
bacterial species that do not belong to any existing genus were
discovered in humans (Almeida et al., 2019). Such tremendous
diversity complicates the understanding of how introduced
probiotics affect the overall gut microbiota. One study showed
that tolerability of individuals’ gut microbiota toward the
colonization of probiotics ranges from permissive to resistant
(Zmora et al., 2018). This appears to depend on the baseline
abundance of probiotic species in the host gut microbiota. For
instance, those who were permissive toward the colonization of
Lactobacillus had prior low levels of Lactobacillus populations
before treatment (Zmora et al., 2018). Similarly, B. longum
colonized the gut for a longer period in 30% of users who initially
had low levels of B. longum (Maldonado-Gomez et al., 2016).
Another study showed that the antidepressive effect of multi-
species probiotics (MSP) only manifests when the administered
MSP successfully colonized the gut of rats (Abildgaard et al.,
2019). This is consistent with the observation that lower levels of
two main probiotic genera, Lactobacillus and Bifidobacterium, are
commonly found in individuals with MDD (Aizawa et al., 2016).

Despite most studies supported the effectiveness of probiotic
supplements in reducing depression, not all randomized
controlled trials reported the same outcome (Table 2). For
instance, L. rhamnosus did not affect scores of anxiety,
depressions, sleep, cognition, inflammatory and stress responses
among healthy adults (Kelly et al., 2017). L. rhamnosus also
did not affect perceptions of wellbeing, anxiety and stress
among healthy older adults (Ostlund-Lagerstrom et al., 2016).
In healthy individuals, L. helveticus exhibited no antidepressive
effect (Chung et al., 2014; Ohsawa et al., 2018). These results
imply that probiotics are less efficacious among the healthy
population, which agree with a meta-analysis that reported
an insignificant effect of probiotics on mood, particularly in
healthy individuals (Ng et al., 2018). Therefore, probiotics could
be generally more effective in colonizing gut microbiota of
depressed individuals that are different from healthy people
(Jiang et al., 2015; Zheng et al., 2016). In some cases, probiotic
colonization may be optional for their effects to manifest.
For instance, heat-killed L. paracasei benefited the human and
animal host, in terms of neurochemical and behavioral changes
(Corpuz et al., 2018; Murata et al., 2018; Wei et al., 2019).
Some probiotics, such as L. reuteri, L. paracasei, L. plantarum,
L. gasseri, L. kefiranofaciens, B. breve, and B. infantis, promoted
the colonization of other beneficial microbes that contributed
to the reduction of depressive-like symptoms in animals (Marin
et al., 2017; Dhaliwal et al., 2018; Jang et al., 2019; Sun et al., 2019;
Tian et al., 2019; Wei et al., 2019).

Heterogeneity of Depression
Major depressive disorder is characterized by depressed mood
and/or anhedonia, in addition to excessive guilt, suicidal ideation,
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TABLE 2 | Selected preclinical and clinical studies on the behavioral and physiological effects of single-species probiotics.

Probiotic species Model Behavioral changes Physiological changes References

Lactobacillus
rhamnosus

Normal, healthy BALB/c male mice ↓ Anxiety
↓ Depression
↑ Memory
No effect on locomotion

↓ Stress-induced ↓ in plasma CORT levels
↓ GABAAa2 mRNA expression in the PFC and amygdala
↓ GABAB1b mRNA expression in the HPC, amygdala and locus coeruleus
↑ GABAAa2 mRNA expression in the HPC
↑ GABAB1b mRNA expression in cortical regions (cingulate and prelimbic)

Bravo et al. (2011)

BALB/c male mice subjected to MS ↓ Depression ↓ Stress-induced ↑ in plasma CORT levels
↑ Recovery toward basal corticosterone levels

McVey Neufeld
et al. (2018)

Healthy human males (aged 22–33,
mean ≈ 23–25 years)

No effect on mood and
anxiety

No changes in cortisol response to stress, plasma levels of IL10, IL1β, IL6, IL8 and
TNFα, and whole blood levels of TLR-4

Kelly et al. (2017)

Pregnant women (14–16 weeks
gestation)

↓ Anxiety
↓ Depression

N/A Slykerman et al.
(2017)

(With prebiotics)
Obese individuals (aged 18–55, mean
≈ 35–58 years)

↓ Depression
↓ Food cravings
↑ Satiety

N/A Sanchez et al.
(2017)

Lactobacillus casei
strain Shirota

Healthy middle-age human adults
(aged 48–79, mean ≈ 62 years)

↓ Depression in those with
low mood

N/A Benton et al. (2007)

Individuals with chronic fatigue
syndrome (aged 18–65 years)

↓ Anxiety
No effect on depression

↑ Fecal Lactobacillus and Bifidobacteria populations Rao et al. (2009)

Healthy students under stressful
examination (aged < 40, mean ≈
23 years)

↓ Stressful feelings
No effect on anxiety

↓ Salivary cortisol levels
↓ Gastrointestinal symptoms
↓ Fecal Bacteroidaceae populations
↑ Diversity of the gut microbiota
Prevented changes in expression of approx. 100 stress-responsive genes

Kato-Kataoka et al.
(2016)

Lactobacillus brevis Sprague–Dawley male depressed rats ↓ Depression N/A Ko et al. (2013)

ICR male mice ↑ Sleep duration N/A Han et al. (2017)

C3H-HeN male mice ↑ Sleep duration
↑ Wheel-running

N/A Miyazaki et al.
(2014)

Lactobacillus
reuteri

C57BL/6J, C57BL/6N, and BALB/cJ
male mice subjected to CUMS

↓ Depression ↓ Stress-induced ↑ in intestinal IDO1 expression
↓ Stress-induced ↑ in KYN levels
↑ Stress-induced ↓ in fecal H2O2 levels
↑ Stress-induced ↓ in Lactobacillus populations

Marin et al. (2017)

C57BL/6 male mice subjected to
immobilization stress

↓ Anxiety
↓ Depression

↓ Stress-induced ↑ in activated microglia infiltration into the HPC
↓ Stress-induced ↑ in colon shortening, myeloperoxidase activity and IL-6 expression
in the colon
↓ Stress-induced ↑ in blood CORT, IL-6, and LPS levels
↓ Stress-induced colitis
↓ Stress-induced ↑ in Proteobacteria populations
↑ Stress-induced ↓ in HPC BDNF expression
↑ Stress-induced ↓ in Bacteroidetes, Firmicutes, and Actinobacteria populations

Jang et al. (2019)

Lactobacillus
plantarum

MS vs. naïve male C57BL/6J mice ↑ Locomotion
In naïve mice:
↓ Anxiety
In MS mice:
↓ Depression
↓ Anhedonia

↓ Stress-induced ↑ in CORT in MS mice
↑ DA, DOPAC, and HVA in the PFC of MS and naïve mice
↓ 5-HIAA and no change in 5-HT levels in the PFC of MS mice
↑ 5-HT levels in the PFC of naïve mice
↓ 5-HIAA levels in the PFC of naïve mice
↑ IL-10, ↓ IL-6 and no effect on TNF-α levels in the serum of MS mice

Liu Y.W. et al.
(2016)
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TABLE 2 | Continued

Probiotic species Model Behavioral changes Physiological changes References

Germ-free C57BL/6JN male mice ↓ Anxiety
↑ Locomotion
No effect on depression

↑ 5-HT and DA levels in the striatum, but not the PFC or HPC
No effects on serum GR levels

Liu W.H. et al.
(2016)

Swiss albino male mice subjected to
CUMS or sleep-deprivation stress

↓ Anxiety
↓ Depression
↑ Memory
↑ Learning
↑ Locomotion

↓ Stress-induced ↑ in malonaldehyde, MAOs and nitrate levels in the brain
↓ Stress-induced ↑ in serum levels of TNF-α, CORT, and LPS
↑ Stress-induced ↓ in glutathione and HPC BDNF levels
↑ Abundance of Lactobacillus
↓ Stress-induced ↓ abundance of Bacteroidetes and Roseburia
↑ Fecal acetic and butyric acid levels
Prevented stress-induced ↑ in permeability of BBB and intestinal barrier, and
Enterobacteriaceae levels

Dhaliwal et al.
(2018)

MDD patients undergoing SSRI
medications (mean age ≈ 39 years)

↑ Memory
↑ Attention
↑ Learning
No effect on depression
and stress

↓ Plasma KYN levels
↑ 3-hydroxykynurenine/KYN ratio
No changes in plasma levels of TNF-α, IL-6, IL-1β, and cortisol

Rudzki et al. (2019)

Stressed human adults with mild levels
of depression (aged 18–60, mean ≈
31 years)

↓ Anxiety
↓ Stress
↑ Memory
↑ Learning
↓ Depression (not stat. sig)

↓ Plasma IFN-γ and TNF-α levels
↓ Plasma IL-1β and cortisol levels (not stat. sig.)

Lew et al. (2018)

Faecalibacterium
prausnitzii

Sprague–Dawley male rats subjected to
CUMS

↓ Anxiety
↓ Depression

↓ Stress-induced ↓ in plasma levels of CORT, CRP, and IL-6
↑ SCFAs levels in the cecum
↑ Stress-induced ↓ in plasma IL-10 levels

Hao et al. (2019)

Lactobacillus
helveticus

Sprague–Dawley male rats subjected to
chronic restraint stress

↓ Anhedonia
↓ Anxiety
↑ Locomotion
↑ Memory

↓ Stress-induced ↑ in CORT and adrenocorticotropic hormone levels
↓ Stress-induced ↓ in plasma IL-10 levels
↑ Stress-induced ↓ in HPC BDNF expression
↑ Stress-induced ↓ in 5-HT and NE levels in the HPC
No changes in stress-induced ↓ in plasma IFN-γ and TNF-α levels

Liang et al. (2015)

Sprague–Dawley male rats with
hyperammonemia-induced
neuroinflammation

↓ Anxiety
↑ Memory
↑ Learning

↓ Stress-induced ↑ in KA/KYN ratio
↓ Stress-induced ↑ in PGE2 levels in the cerebellum and HPC
↓ Stress-induced ↑ in IL-1β levels in the cerebellum, HPC, and PFC
↓ 5-HT levels in the cerebellum and HPC
↑ Stress-induced ↓ in KYN/TRP ratio
No effect in stress-induced ↑ in 5-HIAA levels in the HPC, cerebellum, and PFC

Luo et al. (2014)

C57BL/6J male mice subjected to
sub-chronic social defeat stress

↓ Anhedonia
↓ Anxiety

↑ Stress-induced ↓ in dopamine D3 and serotonin 1A receptors expression
Restore stress-induced changes in gene expression in the nucleus accumbens
No effects on serum CORT levels and gut microbiota composition

Maehata et al.
(2019)

Healthy elderly humans (aged 60–75,
mean ≈ 65 years)

↑ Memory
↑ Attention
↑ Learning
No effects on stress levels
and depression

No effects on plasma levels of BDNF and whole blood viscosity Chung et al. (2014)

Healthy middle-aged humans (aged
50–70, mean ≈ 58 years)

↑ Memory
↑ Attention
No effects on depression

N/A Ohsawa et al.
(2018)
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TABLE 2 | Continued

Probiotic species Model Behavioral changes Physiological changes References

Lactobacillus
paracasei

CORT-induced depressed male
C57BL/6J mice
(live or heat-killed L. paracasei)

↓ Depression
↓ Anhedonia
↓ Anxiety

↑ Stress-induced ↓ abundance of Bifidobacterium (live)
↑ Stress-induced ↓ in 5-HT levels in the HPC, PFC, and striatum (live)
↑ Stress-induced ↓ DA levels in the HPC and PFC (heat-killed)
↑ Stress-induced ↓ in BDNF levels and MR and GR receptors expression in the HPC
No effect on serum CORT levels, both basal and in response to stress

Wei et al. (2019)

Senescence-accelerated female
SAMP8 mice (heat-killed L. paracasei)

Prevented age-related
cognitive decline

↓ 5-HT-degrading enzymes, particularly MAOA, levels in the HPC
↑ 5-HT levels in brain tissues and serum
↓ BDNF expression and CREB phosphorylation in the HPC
No effect on the gene expression of 5-HT-synthesis-related enzyme

Corpuz et al. (2018)

Senescence-accelerated male and
female SAMP8 mice (live L. paracasei)

Prevented age-related
cognitive decline and
anxiety

↓ Serum TNF-α and MCP-1 levels
↑ Levels of DA, DC, 5-HT and 5-HIAA levels in the striatum and HPC
↑ Levels of serum BDNF, IL-10, SOD, and GPx

Huang et al. (2018)

Healthy females under examination
stress (heat-killed L. paracasei)
(aged > 18, mean ≈ 21 years)

Prevented decline in mood
and immunity

↓ Frequency of common cold in those susceptible
No effect on salivary secretory IgA concentrations

Murata et al. (2018)

Bifidobacterium
infantis

Naïve Sprague–Dawley male rats No effect on depression ↓ Plasma IFN-γ, TNF-α, IL-10, and IL-6 levels
↓ 5-HIAA levels in the frontal cortex
↓ DOPAC levels in the amygdaloid cortex
↓ NE levels in the HPC (not stat. sig.)
↑ Plasma TRP and KYN levels
No effects in baseline CORT levels

Desbonnet et al.
(2008)

Sprague Dawley male rats subjected to
MS

↓ Depression ↓ Stress-induced ↑ in plasma IL-6 and corticotrophin-releasing factor mRNA
expression in the amygdala
↑ Stress-induced ↓ in NE levels in the brainstem
No effects on plasma TRP/KYN ratio and baseline CORT concentrations

Desbonnet et al.
(2010)

Male adult C57BL/6J mice subjected to
CUMS

↓ Depression
↓ Anhedonia
↓ Anxiety

↓ Stress-induced ↑ Veillonellaceae and Desulfovibrio populations
↑ 5-HT and 5-HTP levels in the HPC
↑ Expression of Tph1 mRNA in RIN14B cells (in vitro)
↑ BDNF levels in the PFC
↑ Stress-induced ↓ in cecum butyrate levels
↑ Alpha diversity of gut microbiota
↑ Glutamatergic synapse
↑ Phenylalanine/tyrosine/TRP biosynthesis
No effect on spleen regulatory T cells

Tian et al. (2019)

Clostridium
butyricum

C57BL/6 male mice subjected to
CUMS

↓ Depression
No effect on locomotion

↑ Stress-induced ↓ in brain levels of 5-HT and BDNF
↑ Stress-induced ↓ in intestinal GLP-1 secretion and cerebral expression of GLP-1
receptor

Sun et al. (2018)

(With SSRIs or SNRIs)
Treatment-resistant MDD patients
(mean age ≈ 42–44 years)

↓ Depression N/A Miyaoka et al.
(2018)

Lactobacillus
kefiranofaciens

Kunming male mice subjected to
CUMS

↓ Depression
↓ Anhedonia

↓ Stress-induced ↑ in serum CORT levels and KYN/TRP ratio
↓ IL-6 and IFN-γ levels in the spleen
↓ Abundance of Proteobacteria
↑ Stress-induced ↓ serum TRP levels
↑ IL-10 levels in the spleen
↑ Abundance of anti-inflammatory Actinobacteria, Bacteroidetes, Lachnospiraceae,
Coriobacteriaceae, Bifidobacteriaceae, and Akkermansia

Sun et al. (2019)
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TABLE 2 | Continued

Probiotic species Model Behavioral changes Physiological changes References

Bifidobacterium
breve

Innately anxious BALB/c male mice ↓ Depression
↓ Anxiety
No effect on locomotion

No effect on CORT levels, both baseline and in response to stress Savignac et al.
(2014)

Male adult C57BL/6J mice subjected to
CUMS

↓ Depression
↓ Anhedonia
↓ Anxiety

↓ Chronic stress-induced CORT release
↓ Stress-induced ↑ Veillonellaceae populations
↑ Expression of Tph1 mRNA in RIN14B cells (in vitro)
↑ BDNF levels in the PFC
↑ Stress-induced ↓ in alpha diversity of the gut microbiota
↑ Glutamatergic synapse
↑ Phenylalanine/tyrosine/TRP biosynthesis
No effect on spleen regulatory T cells

Tian et al. (2019)

Schizophrenic individuals with anxiety
and depression (aged > 20, mean ≈
41–46)

↓ Depression
↓ Anxiety

↑ Relative abundance of Parabacteroides
↑ Serum IL-22 and TRANCE expression
No effects on Bifidobacterium populations and serum levels of IL-6 and TNF-α

Okubo et al. (2019)

Elderly humans with mild cognitive
impairment (mean age ≈ 83 years)

↑ Mood
↑ Memory
↑ Attention
↑ Learning

N/A Kobayashi et al.
(2019)

Bifidobacterium
longum

Innately anxious BALB/c male mice ↓ Depression
↓ Anxiety
No effect on locomotion

No effect on CORT levels, both baseline and in response to stress Savignac et al.
(2014)

Healthy human males (aged 18–40,
mean ≈ 25 years).

↓ Stress
↓ Anxiety
↓ Memory
↓ Attention
↑ Learning

↓ Salivary cortisol output and anxiety scores in response to stressor
↑ Neural activity of the PFC

Allen et al. (2016)

IBS patients with mild to moderate
depression and/or anxiety (median
age = 40 and 46.5 years)

↓ Depression
↑ Life quality
No effect on anxiety

↓ Responses to negative emotional stimuli in the amygdala and fronto–limbic regions
↓ Urine levels of methylamines and aromatic amino acids metabolites
No effect on fecal microbiota profiles, serum inflammatory markers (CRP, TNF-α,
IFN-γ, IL-1β, IL-6, IL-8, IL-10, IL12), BDNF, substance P and 5-HT levels

Pinto-Sanchez
et al. (2017)

Lactobacillus
gasseri

University male students with daily
strenuous exercise (aged < 30, mean
≈ 20 years)

↑ Mood in depressed
individuals

Prevent stress-induced ↓ in natural killer cell activity Sashihara et al.
(2013)

Medical (cadaver dissection course)
male students (aged 24)

↓ Depression
↓ Anxiety
↑ Sleep quality

↓ Salivary cortisol release
↓ Growth of inflammatory Enterobacteriaceae and Veillonella
Prevented the downregulation of EIF2-related genes of peripheral leukocytes

Sawada et al.
(2017)

Medical (cadaver dissection course)
students (heat killed L. gasseri) (aged
18–34, mean ≈ 21 years)

In men:
↓ Sleep latency
↑ Sleep duration
In women:
↓ Somatic symptoms

↓ Diarrhoea-like symptoms (in men)
↑ Fecal Bacteroides vulgatus levels
↓ Fecal Dorea longicatena levels
No effect on salivary stress markers (cortisol, CgA, and alpha amylase levels)

Nishida et al.
(2017a)

Medical students in pre-examination
(heat-killed L. gasseri) (mean age ≈
25 years)

↓ Sleep latency
↓ Sleep awakenings

↑ Ratio of parasympathetic/sympathetic nerve activity
↑ Stage N3 in the non-REM sleep period
↓ Stress-induced ↑ in salivary cortisol levels
↓ Stress-induced ↑ expression of stress-responsive microRNAs

Nishida et al.
(2017b)
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changes in appetite and sleep, psychomotor retardation, poor
concentration and fatigue (American Psychiatric Association,
2013). From these diagnostic criteria, approximately a thousand
combinations of symptoms (Ostergaard et al., 2011) and 19
depression subtypes (Harald and Gordon, 2012; Sharpley and
Bitsika, 2014) can be derived. These subtypes of depression
are often grouped as a single term, namely depression,
which should not be the case when evaluating therapeutic
potential of probiotics.

Some associations can be drawn by matching behavioral
benefits of probiotics to the characteristics of depression subtypes
(Table 2). For instance, the sucrose preference test in rodents
reflects the anhedonia subtype (Dedic et al., 2011). Probiotics that
have been shown to improve the outcome of this test include
L. helveticus (Liang et al., 2015), L. plantarum (Liu Y.W. et al.,
2016), L. paracasei (Wei et al., 2019), L. kefiranofaciens (Sun et al.,
2019), B. infantis (Tian et al., 2019), and B. breve (Tian et al.,
2019). Among these probiotics, L. plantarum (Liu Y.W. et al.,
2016) and L. paracasei (Wei et al., 2019) also modulated the
central DA system, whereas B. infantis and B. breve upregulated
tyrosine (precursor to DA) biosynthesis (Tian et al., 2019). An
impaired DA system represents the hallmark pathophysiology
of anhedonia (Dunlop and Nemeroff, 2007). This provides a
proof of concept that these probiotics may be effective in
treating anhedonia.

Somatic depression subtype is characterized by psychomotor
agitation/retardation (i.e., locomotion), changes in
weight/appetite, insomnia/hypersomnia and fatigue without
physical exertion (Sharpley and Bitsika, 2014). Probiotics that
improved locomotor activity of rodents include L. plantarum
(Liu W.H. et al., 2016; Dhaliwal et al., 2018), L. helveticus (Liang
et al., 2015) and L. brevis (Miyazaki et al., 2014). Intake of
L. brevis increased sleep duration in healthy mice (Miyazaki
et al., 2014; Han et al., 2017), and L. gasseri enhanced sleep
quality in medical students with mild depression (Nishida
et al., 2017a,b). L. rhamnosus supplementation modulated
appetite-associated genes and attenuated appetite in zebrafish
(Falcinelli et al., 2016, 2017). In combination with prebiotics,
L. rhamnosus exerted antidepressive effect and appetite control
in obese individuals (Sanchez et al., 2017). Hence, symptoms
of somatic depression are rather distinct and may be improved
differently with different probiotics.

Cognitive depression subtype is distinguished by poor
concentration and memory function as well as indecisiveness
(Sharpley and Bitsika, 2014). Behavioral assessments for memory
function in mice include the Morris water maze, Barnes maze
and other behavioral tests (Dedic et al., 2011). Administration
of probiotics including L. helveticus (Ohland et al., 2013; Luo
et al., 2014; Liang et al., 2015), L. plantarum (Dhaliwal et al.,
2018), and L. paracasei (Corpuz et al., 2018; Huang et al.,
2018) enabled animals to perform these memory test more
effectively. Attention, memory and learning behaviors in humans
are assessed by cognitive tests, such as the Stroop, verbal-learning
and digit-symbol tests. Improvements in these tests have been
shown with the intake of (1) L. helveticus (Chung et al., 2014;
Ohsawa et al., 2018) and B. longum (Allen et al., 2016) in healthy
adults; (2) L. plantarum in MDD patients (Rudzki et al., 2019)

and stressed adults with mild depression (Lew et al., 2018); and
(3) B. breve in elderly with mild cognitive impairment (Kobayashi
et al., 2019). Thus, some probiotics appear to improve cognition
regardless of depression.

Anxious depression subtype refers to major depression that
comorbid with high levels of anxiety (Harald and Gordon, 2012).
In mice, anxiety can be measured by behavioral tests, such as
the elevated plus maze and open field tests (Dedic et al., 2011).
In humans, anxiety is generally assessed with questionnaires.
Probiotics that exhibit anxiolytic effect include L. rhamnosus
(Bravo et al., 2011; Bharwani et al., 2017; McVey Neufeld et al.,
2017; Slykerman et al., 2017), L. helveticus (Ohland et al., 2013;
Luo et al., 2014; Liang et al., 2015), L. plantarum (Liu W.H. et al.,
2016; Liu Y.W. et al., 2016; Dhaliwal et al., 2018; Lew et al., 2018),
B. longum (Bercik et al., 2010, 2011; Savignac et al., 2014; Allen
et al., 2016) and B. breve (Savignac et al., 2014; Okubo et al.,
2019; Tian et al., 2019). Moreover, MSPs intake often decreased
depression and anxiety simultaneously in randomized controlled
trials (Mohammadi et al., 2016; Kouchaki et al., 2017; Jamilian
et al., 2018; Raygan et al., 2018; Ostadmohammadi et al., 2019;
Salami et al., 2019).

Conventional SSRIs that target the 5-HT system often fail
to treat anhedonic patients and, in some cases, worsen their
symptoms (Dunlop and Nemeroff, 2007). Antidepressant
drugs (e.g., SSRI and SNRI) are also ineffective against
other depression subtypes, namely the somatic (Tylee
and Gandhi, 2005), cognitive (Shilyansky et al., 2016)
and anxious depression (Ionescu et al., 2014). Therefore,
certain probiotics may serve as an adjuvant or alternative
treatment for MDD and its subtypes. A pilot study showed
that MSP, together with a magnesium supplement, decreased
depression in SSRI treatment-resistant patients (Bambling et al.,
2017). A clinical trial also reported that the combination
of B. longum and L. helveticus decreased depression in
MDD patients with prior use of standard antidepressants
(Kazemi et al., 2019).

Single-Species and Multi-Species
Probiotic
In studies that investigated behavioral effects of probiotics,
about 60% of animal studies and 50% of human studies used
single-species probiotics (SSPs) (Joseph and Law, 2019). Studies
with SSPs promote a better understanding of the function and
contribution of individual probiotic, which is difficult to measure
in MSPs. However, MSPs may have higher potency in humans.
In MDD patients, SSP (L. plantarum) did not reduce depression
but improved cognition (Lew et al., 2018), whereas MSPs had
repeatedly shown antidepressive efficacy (Akkasheh et al., 2016;
Bambling et al., 2017; Ghorbani et al., 2018; Kazemi et al.,
2019). MSPs often gave better therapeutic efficacy compared to
that of SSPs in gut-related disorders and pathogen infections,
which could be explained by an overall higher dosage (Chapman
et al., 2011, 2012). Indeed, MSPs with a higher dosage improved
symptoms of depression and anxiety in healthy individuals
compared to that of a lower dosage (Tran et al., 2019). MSPs are
also hypothesized to exhibit synergistic effects that would have an
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expanded effect on the host physiology (Chapman et al., 2012).
In contrast, SSPs are speculated to promote better colonization as
it does not have to compete for nutrient or adhesion sites in the
host (Chapman et al., 2011). This highlights the need for more
studies to understand how probiotics in MSPs interact with each
other and with existing gut microbiota, and which probiotic(s) is
suitable in formulation of MSPs for antidepressive efficacy.

Advantages of Probiotics as
Antidepressive Treatment
Probiotics are generally safe for consumption, except for
immune-compromised and critically sick individuals wherein
probiotics may cause sepsis, pneumonia, endocarditis and
allergies (Didari et al., 2014). Still, it has been viewed by some that
more human trials are required to establish the dosage efficacy
and long-term safety profile of probiotics (Kothari et al., 2018).
For antidepressant drugs such as SSRIs, side effects occur in
40-60% of users which include sexual dysfunction, suicidality,
emotional numbness and addiction (Read and Williams, 2018).
A meta-analysis data showed that users of antidepressant
drugs were associated with a 33% increased risk of mortality
(Maslej et al., 2017). On the other hand, probiotics possess
fewer side effects than antidepressant drugs. For instance,
rats fed with L. brevis-fermented milk exhibited comparable
antidepressive efficacy to fluoxetine-treated rats, but without
side effects of fluoxetine (decreased appetite and weight loss)
(Ko et al., 2013).

Antidepressant usage is also associated with stigma, such as
being perceived as emotionally weak and dependent on drugs,
which contributes to the disease severity and poor adherence to
treatment (Castaldelli-Maia et al., 2011). In a survey study, 77%
of depressed patients prefer to hide their use of antidepressant
medication from others (Martinez et al., 2018). However, the
prevalence of perceived stigma against antidepressants differs
based on the population studied (Castaldelli-Maia et al., 2011).
To this end, probiotics may help as an alternative treatment for
depression, given that probiotics have not been associated with
any perceived social stigma (Wallace and Milev, 2017).

Candidate Probiotics With Potential
Antidepressive Effect
Bifidobacterium pseudocatenulatum is known for its regulation of
obesity-related changes in metabolism and the immune system
(Cano et al., 2013; Moya-Perez et al., 2014, 2015; Sanchis-Chorda
et al., 2018). B. pseudocatenulatum intake reversed diet-induced
obesity, depression, high corticosterone and low hippocampal
5-HT levels in mice (Agusti et al., 2018). However, a high-fat
diet model is meant to study the pathophysiology of obesity
and type 2 diabetes (Winzell and Ahren, 2004; Wang and Liao,
2012). It is, thus, unclear if B. pseudocatenulatum would decrease
depression in mice without obesity. Another study showed that
anxiety-like behaviors diminished in chronic-stressed mice fed
with B. pseudocatenulatum, but depressive-like behaviors were
unevaluated (Moya-Perez et al., 2017). Therefore, further studies
are required to determine whether B. pseudocatenulatum has an
independent antidepressive effect.

Bacillus coagulans supplementation relieved symptoms of
both IBS and depression in patients diagnosed with IBS and
MDD. This clinical recovery is accompanied by a decrease in
serum myeloperoxidase, an inflammatory marker (Majeed et al.,
2018). However, patients might have experienced less depression
as a result of reduced IBS symptoms. Interestingly, B. coagulans
intake increased levels of circulating IL-10, fecal F. prausnitzii
and SCFAs in older adults (Nyangale et al., 2014, 2015). As
F. prausnitzii and butyrate are associated with antidepressive
properties (Hao et al., 2019), B. coagulans may also indirectly
reduce depression and improve gut health.

Bifidobacterium bifidum and L. acidophilus were often
included in the formulation of MSPs to treat depressive
symptoms in patients with MDD (Akkasheh et al., 2016;
Bambling et al., 2017; Ghorbani et al., 2018) and other health
conditions, such as polycystic ovarian syndrome, multiple
sclerosis and IBS (Kouchaki et al., 2017; Ostadmohammadi
et al., 2019; Zhang et al., 2019). Surprisingly, B. bifidum
and L. acidophilus have not been tested independently for
its antidepressive effect. B. bifidum intake improved mood
and reduced symptoms of abdominal pain, diarrhea and
constipation in patients with gastrointestinal disorders (Urita
et al., 2015). However, the mood elevation could be due to
recovery of gastrointestinal symptoms rather than effect of
probiotics solely. Both in vitro and in vivo models showed
that L. acidophilus protects the intestinal barrier integrity by
preventing pathogen adherence and release of proinflammatory
cytokines (Chen et al., 2009; Justino et al., 2015; Alamdary
et al., 2018; Lepine et al., 2018; Najarian et al., 2019). Taken
together, B. bifidum and L. acidophilus potentially exhibit
antidepressive effect and their direct influence on depression
warrants further investigation.

Bacteroides fragilis has been proposed as a potential probiotic,
although its pathogenicity needs to be taken into consideration.
B. fragilis secretes polysaccharide A and expresses sphingolipids
that benefit the host gut health and immune system (Troy
and Kasper, 2010; Tan et al., 2019). Bacteroides genus is
likely to be the largest GABA producer amongst human
gut microbiota, with B. fragilis produces GABA at low pH.
The same study also found that neural patterns of a typical
MDD patient correlated with low fecal levels of Bacteroides
(Strandwitz et al., 2019). Hence, antidepressive potential of
B. pseudocatenulatum, B. coagulans, B. bifidum, L. acidophilus,
and B. fragilis warrants further investigation. It is also
worth noting that Bifidobacterium adolescentis’s antidepressive
capability may be a new probiotic candidate (Jang et al.,
2019). Evidently, an increasing number of probiotics are
being presented as a potential treatment for depression. This
provides a wide repository of available probiotics, with different
species combinations, that can be assessed for clinical efficacy
against depression.

CONCLUSION

The MGB axis enables the bidirectional communication between
the gut microbiota and the brain. When this axis becomes
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maladaptive, the host physiology is adversely affected which may
lead to the development of depression. Probiotics have shown
clinical efficacy in the treatment of depression by modulating
the MGB axis. Yet, the complexity of gut microbiota and
heterogeneity of depression presents a challenge to explain the
underlying mechanisms that contribute to this clinical efficacy.
Nonetheless, cumulative evidence suggests the therapeutic
potential of probiotics for certain depression subtypes, with
fewer side effects and less stigma compared to standard
antidepressants.

Limitations of this review include: (1) inferences of probiotic
mechanisms were derived from preclinical and in vitro data; (2)
interactions of probiotics with other members of gut microbiota
were unexplored, therefore the mechanisms of MSPs was unable
to be explored; (3) strain-specific effects of bacterial species
were neglected; (4) potential applications for probiotics for
depression subtypes are hypothesized, however, clinical evidence
is limited; (5) effect sizes of probiotics as antidepressants was
not evaluated. Notwithstanding these caveats, this review adds
further understanding to the potential antidepressive effects and
therapeutic potentials of probiotics. Venema (2017) stated that it
is imperative to grasp the underlying molecular mechanisms of

the MGB axis, and which microbial populations are pertinent for
this intervention, to advance the marketability of probiotics.
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