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Editorial on the Research Topic

Mitochondrial Dysfunction and Neurodegeneration

Neurodegenerative diseases are incurable and inexorably progressive conditions that affect
the central nervous system and result in a selective pattern of neuronal death. Parkinson’s
disease (PD) and Alzheimer’s disease (AD) are the most common neurodegenerative diseases.
While most cases are idiopathic, studies have confirmed that genetic factors contribute to the
pathogenesis of both PD and AD. PD is characterized by loss of dopamine (DA)-producing
neurons of the substantia nigra, and as a consequence of a reduction in striatal DA content. A
neuropathological hallmark is the presence of Lewy body inclusions in many of the remaining
neurons and Lewy-neurite pathology in the neuropil. The classic histopathological hallmarks of
AD are the extracellular accumulation of amyloid-β (Aβ) plaques and intracellular deposition of
hyperphosphorylated tau into neurofibrillary tangles. Despite distinct clinical and pathological
features, the formation of misfolded protein aggregates is a common feature of neurodegenerative
diseases, which can be mainly classified into synucleinopathies, tauopathies, and amyloidopathies.
Neurodegenerative diseases share critical processes, such as mitochondrial anomalies, oxidative
damage, and inflammation that are implicated in the gradual loss of neuronal function and
cell death.

A plethora of reports indicate that mitochondrial dysfunction is a central factor in the
pathophysiology of neurodegenerative diseases (Lin and Beal, 2006; Tapias et al., 2017, 2018,
2019). Elevated oxidative stress can damage the mitochondrial respiratory chain. Mitochondrial
complexes I and III and the mitochondrially located monoamine oxidase (MAO) B are the main
source of reactive oxygen and nitrogen species. A region-dependent regulation of MAO has
been reported in PD and AD (Tong et al., 2017; Quartey et al.). Furthermore, perturbations in
mitochondrial dynamics, mitochondrial transport within axons, mitophagy, and accumulation of
somatic mtDNA mutations are associated with impaired mitochondrial function. Compromised
mitochondrial quality control mechanismsmay lead to the accumulation of defective mitochondria
and concomitant oxidative damage, defective calcium (Ca2+) homeostasis and signaling, synaptic
pathology, and ferroptotic neuronal death. The present Research Topic aims to critically evaluate
the current literature on molecular mechanisms associated with neurodegenerative diseases and
it provides novel insights into disturbances in mitochondrial function, which occur during
neurodegeneration. This topic also suggests that the development of novel mitochondria-targeted
therapeutic strategies may be useful in the treatment of neurodegenerative diseases.

Mechanisms for the maintenance of mitochondrial integrity and functionality are crucial
for neuronal survival. Mitochondrial dynamics play a key role in ensuring mitochondrial
quality control and are tightly regulated by the fusion/fission machinery, which allows
the formation or degradation of a mitochondrial syncytium. The molecular process
of fusion is driven by the GTPases Opa1 and Mitofusin-1 (Mfn1) and Mfn2 while
dynamin-related protein (Drp1) interacts with the mitochondrial fission 1 protein (Fis1),
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mitochondrial fission factor (Mff) and mitochondrial dynamics
proteins of 49 and 51 kDa (MiD49/51) to mediate mitochondrial
fission.It has been recently shown that mitofilin (Mic60), a
component of the MICOS complex that plays a key role in
the maintenance of mitochondrial structure and function,can
regulate mitochondrial dynamics (Li et al., 2016; Van Laar et al.,
2016; Van Laar et al.). Axonal transport, a cellular mechanism
responsible for the active trafficking of lipids, proteins,
neurotransmitters, and organelles, is essential for neuronal
network function and viability. Anterograde transport carries
new synthesized material from the cell body to distal axons and is
mediated by kinesin motor proteins. Dynein-driven retrograde
transport is required for efficient distribution of cargoes from
the axon terminals toward the soma. Mitochondrial movement
along both microtubule and actin filaments is regulated by a
motor adaptor complex that attaches the anterograde kinesin-1
motor and retrograde dynein motor to the outer mitochondrial
membrane, in a process mediated by the membrane-anchored
Miro (RhoT1/2) and Milton (Trak1/2) proteins (Schwarz, 2013).
Decreased mitochondrial trafficking within axons accompanied
by inhibited neurite outgrowth was found in cultures of dorsal
root ganglia sensory neurons overexpressing the muscarinic
acetylcholine type 1 receptor (Sabbir et al.). There is growing
evidence of a crosstalk between fusion-fission and axonal flux
mitochondrial dynamics and axonal transport integrity (Misgeld
and Schwarz, 2017; Tapias et al., 2017; Franco-Iborra et al.; Perez
et al.).

Mitophagy is a specialized type of autophagy that mediates the
clearance of damagedmitochondria by lysosomes.Mitochondrial
autophagy is inextricably linked to protein import since the
translocation of the PTEN-induced putative kinase 1 (Pink1)
into the mitochondrial inner membrane via the Tim/Tom
complex plays a pivotal role in regulating Pink1/Parkin-
mediated mitophagy (Poole et al., 2008; Geisler et al., 2010;
Vives-Bauza et al., 2010). Moreover, impaired lysosomal
degradation can impact mitochondria by causing mitophagy
deficits; aminochrome, a product of DA oxidation and the
precursor of neuromelanin, induces mitochondrial dysfunction
by blocking the selective clearance of damaged mitochondria
by autophagy (Segura-Aguilar and Huenchuguala). Protein post-
translational modifications such as enzymatic glycosylation
and non-enzymatic glycation together with a disruption of
the mitochondrial quality control system, result in defective
mitophagy and excessive accumulation of dysfunctional proteins
(Videira and Castro-Caldas). Altered autophagy phenotypes have
recently been associated with optineurin, a multifunctional cargo
adaptor protein observed in diverse brain regions of rats after
exposure to rotenone (Wise et al.). Mitochondria contribute
to aging, mitochondrial-related diseases, and neurodegeneration
through the accumulation of somatic mtDNA mutations—point
mutations and large-scale deletions (Simon et al., 2001; Dolle
et al., 2016; Hoekstra et al., 2016; Chinnery and Gomez-Duran;
Emperador et al.). Point mutations are likely to arise from an
inefficient base excision repair system while mtDNA deletions
and rearrangements may result from errors in replication and/or
double-strand break repair (Krishnan et al., 2008). Although
the precise mechanism by which mtDNA damage contributes to
both aging phenotypes and neurodegeneration remains unclear,

a direct relationship between age-related oxidative damage to
mtDNA and oxidation of glutathione has been reported in the
brains of mice and rats (de la Asuncion et al., 1996).

It has also been reported that there is a link between impaired
mitochondrial function and depression (Bansal Kuhad and
Kuhad, 2016; Allen et al.). Patients suffering from depression
show reduced glucose metabolism in different regions of the
brain (Baxter et al., 1989; Gardner et al., 2003). Hypothalamic-
pituitary-adrenal axis hyperactivity has been implicated in the
upregulation of glucocorticoid synthesis in depression, which
plays a pivotal biphasic role in modulating mitochondrial
functions. Indeed, following acute and chronic immobilization-
induced stress, glucocorticoid receptors regulated the expression
of several mitochondrial genes in the rat hippocampus
(Hunter et al., 2016).

Sustained synaptic release of glutamate, the primary excitatory
neurotransmitter in the mammalian central nervous system
and the metabolic precursor for the inhibitory neurotransmitter
gamma-aminobutyric acid (GABA), results in the overactivation
of the N-methyl-D-aspartate (NMDA) receptors and the
subsequent loss of ionic homeostasis and excessive influx of
Ca2+ into the cell, which causes excitotoxicity. Ca2+ is the most
important signaling entity in neurons and its levels are tightly
regulated by organelles such as mitochondria and the ER and
by buffering through Ca2+-binding proteins, such as calmodulin,
calbindin, and parvalbumin. As shown in some manuscripts
of this Research Topic, disruption of the processes underlying
Ca2+ homeostasis and signaling have been consistently observed
in neurodegenerative diseases and glaucoma (Cheung et al.;
Muller et al.; Verma et al.; Barodia et al., 2019; Schrank
et al., 2019). The acidic C-terminus of α-synuclein (α-syn)
contains a Ca2+-binding domain and a transient increase in
free intracellular Ca2+ can accelerate α-syn aggregation (Nath
et al., 2011; Follett et al., 2013). Oligomeric forms of α-syn can
exacerbate the intracellular concentration of Ca2+ by forming
pore-like structures in the plasma membrane (Pacheco et al.,
2015). α-Syn can interact with calmodulin in a Ca2+-dependent
manner, resulting in an increased rate of α-syn fibrillation
(Martinez et al., 2003). α-Syn causes sustained elevations of
cytosolic Ca2+ and it initiates a toxic calmodulin–calcineurin
cascade, which contributes to DA neuronal death (Caraveo
et al., 2014; Luo et al., 2014). Disturbances in Ca2+ homeostasis
promote Aβ formation and tau hyperphosphorylation (Buxbaum
et al., 1994; LaFerla, 2002; Mattson and Chan, 2003). There
are deleterious effects of presenilin 1 and synthetic Aβ

oligomers in producing Ca2+ dysregulation, which can induce
a rapid Ca2+ release mediated by the ryanodine and inositol
triphosphate receptors (Mattson et al., 1992; Stutzmann et al.,
2003; Demuro et al., 2005). In vivo experiments have shown
that Aβ plaque deposition promotes Ca2+ overload and
calcineurin activation, which leads to downstream synaptic
and dendritic spine pathology (Kuchibhotla et al., 2008;
Wu et al., 2010). Age-dependent alterations in mitochondrial
Ca2+ efflux accelerate memory deficits and increase both
amyloidosis and tau hyperphosphorylation in 3xTg-AD mice
(Jadiya et al., 2019). Rescue of the expression of NCLX (a critical
component of the mitochondrial Na+/Ca2+ exchange) in these
mice restored cognitive function and attenuated hippocampal

Frontiers in Neuroscience | www.frontiersin.org 2 December 2019 | Volume 13 | Article 1372

https://doi.org/10.3389/fnins.2018.00898
https://doi.org/10.3389/fnins.2018.00402
https://doi.org/10.3389/fnins.2018.00342
https://doi.org/10.3389/fnins.2018.00441
https://doi.org/10.3389/fnins.2018.00106
https://doi.org/10.3389/fnins.2018.00381
https://doi.org/10.3389/fnins.2018.00289
https://doi.org/10.3389/fnins.2018.00682
https://doi.org/10.3389/fnins.2018.00061
https://doi.org/10.3389/fnins.2018.00386
https://doi.org/10.3389/fnins.2017.00648
https://doi.org/10.3389/fnins.2018.00470
https://doi.org/10.3389/fnins.2018.00523
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tapias Mitochondrial Dysfunction and Neurodegeneration

neuronal degeneration. Elevated Ca2+ influx plays a key role
in promoting pathological tau phosphorylation via modulation
of Ca2+-binding proteins and/or dysregulation of the enzymatic
activity of kinases and phosphatases (Zempel et al., 2010; Mairet-
Coello et al., 2013).

Two main pathways cell death have been distinguished,
namely apoptosis (programmed cell death) and necrosis
(accidental cell death). Ferroptosis, a term coined in 2012,
is a form of regulated cell death induced by erastin which
is characterized by the iron-dependent accumulation of
lipid hydroperoxides with a genetic, morphological, and
biochemical profile different from apoptosis and necrosis
(Dixon et al., 2012). Several biological processes determine
the sensitivity to ferroptosis, such as the metabolism of
amino acids, polyunsaturated fatty acids, and iron as well
as the biosynthesis of glutathione, NADPH, coenzyme Q10,
selenium, and phospholipids (Stockwell et al., 2017). Evidence
supporting an involvement of ferroptosis in the pathogenesis
of neurodegenerative diseases include iron accumulation, lipid
peroxidation, depletion of GSH, and mutations in the transferrin
and cerulopasmin encoding gene (Guiney et al., 2017). Deficient
regulation of ferroptosis has been described in PD. Toxin-
mediated ferroptotic activation was observed in LUHMES
cells, MPTP-treated mice, and organotypic slice cultures (Do
Van et al., 2016). The conversion of arachidonic acid—one of
the main substrates of lipid peroxidation for ferroptosis—to
polar degradation products was substantially accelerated in
the hippocampus of different transgenic mouse models of AD
as well as in post-mortem hippocampal tissue form patients
with AD (Furman et al., 2016). Ferroptotic cell death can be
triggered through diverse mechanisms. Upregulation of the
selenoenzyme glutathione peroxidase 4 activity or treatment
with ferroptosis inhibitors can confer neuroprotection in
different cellular and animal models of PD and AD (Friedmann

Angeli et al., 2014; Do Van et al., 2016; Guiney et al., 2017;
Hambright et al., 2017). The nuclear factor erythroid-2-related
factor 2 (Nrf2) transcriptionally regulates numerous genes
involved in both oxidative damage and inflammation, which
are implicated in ferroptosis. It indirectly controls the lipid
content that is a critical determinant of sensitivity to ferroptotic
cell death (Doll et al., 2017). Therefore, it has been suggested
that compounds which target Nrf2 may counteract ferroptotic-
mediated neuronal loss and exert beneficial effects in the
treatment of neurogenerative diseases (Abdalkader et al.).
Although pathologically-related aggregate species of α-syn, Aβ

and tau regulate lipid peroxidation, glutathione levels, and iron
homeostasis, as yet no studies have explored their potential role
in ferroptotic cell death.

In conclusion, this special issue provides scientists and
clinicians with new insights into the molecular mechanisms
underlying the role of mitochondrial dysfunction in the
pathophysiology of neurodegenerative diseases such as PD and
AD. Furthermore, it may provide further rationale for the
development of effective therapeutic interventions targeting
mitochondria to treat these devastating illnesses.
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