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Memristor-Based Edge Detection for
Spike Encoded Pixels

Daniel J. Mannion*, Adnan Mehonic, Wing H. Ng and Anthony J. Kenyon

Department of Electronic and Electrical Engineering, University College London, London, United Kingdom

Memristors have many uses in machine learning and neuromorphic hardware. From
memory elements in dot product engines to replicating both synapse and neuron wall
behaviors, the memristor has proved a versatile component. Here we demonstrate
an analog mode of operation observed in our silicon oxide memristors and apply this
to the problem of edge detection. We demonstrate how a potential divider exploiting
this analog behavior can prove a scalable solution to edge detection. We confirm its
behavior experimentally and simulate its performance on a standard testbench. We show
good performance comparable to existing memristor based work with a benchmark
score of 0.465 on the BSDS500 dataset, while simultaneously maintaining a lower
component count.
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1. INTRODUCTION

Interest in the application of memristors was originally driven by their potential as non-volatile
memory elements. Subsequent work has demonstrated their capability to compute, to emulate
biological synapses, and even to perform some of the functions of the biological neuron. Resistance
switches, a sub-class of memristors, can be seen as devices that switch between two or more
discrete resistance states. However, they exhibit very rich resistance dynamics under a variety of
electrical stimuli. Here we demonstrate that it is not necessary to fully switch such devices to obtain
useful functionality. They can be operated in an analog regime to perform elementary computing
tasks: in our example, edge detection, and potentially far more. This suggests the possibility of
reconfigurable networks of memristors in which different sections of an array can simultaneously
store data, perform Boolean logic, generate spikes, integrate multiple inputs, and perform a variety
of machine intelligence-related tasks. The memristor thus becomes a simple two terminal building
block for a reconfigurable set of computing architectures.

When we consider memristors as computational elements it is largely as accelerators of
mathematical operations such as the dot product operator. These accelerations then lead to the
speed up of conventional algorithms further down the line. In this work we take the premise a step
further by showing that a unique combination of volatile device behaviors with a potential divider
arrangement accelerates not just a single operation but the entire computational problem of edge
detection in a single stage.

Before detailing previous memristor based studies, we should acknowledge that the field of low
power vision is a well researched field with promising alternatives such as event cameras (Gallego
et al., 2019). Event cameras encode images in a different manner than a typical charge-coupled
device. Rather than reporting the absolute value of a pixel, an event camera signals when the change
in a pixel’s value exceeds a threshold. Encoding images in this manner when combined with absolute
pixel values, allows for more efficient algorithms one example being the edge detection and tracking
of Kueng et al. (2016). The technique can be considered a novel sensor technology requiring further
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processing by a central processing unit (CPU) or graphics
processing unit (GPU) to handle the unique data produced by
the camera.

In contrast, memristor based techniques work with absolute
pixel values and are intended as hardware accelerators with the
aim of reducing computational overhead. Alone they will struggle
to achieve the same performance as event cameras, which
exploit the sophisticated processing possible on a CPU/GPU.
For example, in the tracking work of Kueng et al. (2016) edge
detection is achieved through a combination of both a Harris
corner detector and a Canny edge detector. Therefore, memristor
techniques should not be considered the end solution but instead
as accelerators to be used in conjunction with other systems.

The work presented in this paper follows the latter approach
in that it works with absolute pixel values and is intended as
a hardware accelerator. However, it differentiates itself from
existing techniques in both function and form. Firstly, it does
not simply accelerate a single operation, such as a crossbar does
for the dot product operation, but instead accelerates the entire
process of edge detection. The output requires no additional
processing except for the reading of spikes. Secondly, we replace
the commonly used crossbar structure, which is the standard
in memristive image processing, and instead use a potential
divider built from our volatile devices. The combination of
volatile devices placed in a potential divider arrangement is
unique and has not been used before in the application of image
processing. It differs entirely from studies using non-volatile
devices in a crossbar (Yakopcic and Taha, 2017; Khokhar and
Khalid, 2018; Li et al., 2018), differing in both device behavior
and circuit layout. Where potential dividers have been used
before in image processing, they have been non-volatile and
required the frequent reprogramming of weights. For example,
the study that most closely resembles our own approach is the
use of memristive threshold logic to detect moving objects (Maan
et al,, 2015). Although their memristors are also in a potential
divider arrangement their use is more complicated. They are
non-volatile devices requiring a training phase between frames,
in which their conductances are reprogrammed depending on
the previous frames values. In contrast, our approach requires no
programming nor training phase, instead operating on the fly.
This makes for a simpler circuit design.

We will begin by outlining the origin and basis of the
existing memristor based techniques and then detail how our
approach differs.

In conventional computing there exist a number of algorithms
to carry out edge detection, one example being the Sobel
algorithm (Duda, 1973). In this the gradient across neighboring
pixels is calculated from the scalar dot product of the pixel in
question and its surrounding pixels with a predetermined 3 x 3
matrix, referred to as a kernel. Two different kernels are used, one
determining the horizontal gradient, Gy and the other the vertical
gradient, G,.

—10 +1 +1 42 +1
Ge=|-20+2 Gy=]0 0 0
—10 +1 -1 -2-1

The results of these two dot products are combined to find the
overall gradient using Equation (1).

G =,/G + G)? (1)

As a result, Sobel relies on a number of dot product
operations being carried out across the image. However, because
dot products involve the passing of data back and forth
between processors and memory they lead to bottlenecks and
inefficiencies (Fatahalian et al., 2004). Therefore, one approach
to improving the efficiency of edge detection is to accelerate the
dot product operator.

Circuits designed to accelerate dot product operations are
named dot product engines (DPEs). An effective DPE can be
implemented using the memristor (Chua, 1971; Strukov et al.,
2008). The memristor is a two terminal device similar to a resistor
with the exception that its conductance is not fixed. Instead it can
be adjusted with an applied voltage. For example, voltages in one
polarity may make the device more conductive while voltages in
the opposite polarity will make it less conductive. Therefore, a
memristor’s conductance depends on the potentials applied to it
in the past and so can be considered a form of memory.

This memory property is exploited when implementing
memristive DPEs. Memristors are arranged into a crossbar array
with the value of one matrix element encoded in the conductance
of the memristor and the value of the second encoded in the
applied voltage (Alibart et al., 2013). The multiplication of matrix
elements is carried out by applying the voltage to the memristor
producing an output current as defined by Ohm’s law. As is
required in the dot product operator, the output currents for each
element are summed in accordance with Kirchoff’s current law.
Crossbar arrays consisting of memristors have previously been
shown to be effective DPEs (Hu et al., 2016).

The Sobel algorithm was implemented by Can Li et. al. on
a memristive DPE with good performance (Li et al., 2018).
They made use of non-volatile, analog memristors in a crossbar
structure. A variation on directly implementing Sobel on a DPE
is to instead teach the same algorithm to a neural network.
Memristive crossbar arrays are still used as DPEs. However, the
multiplication is of inputs and trained network weights, not of the
matrices directly derived from Sobel. Yakopcic et al. constructed
a multilayer perceptron network and trained it to replicate the
Sobel algorithm, again with good performance (Yakopcic and
Taha, 2017). Their system used non-volatile memristors with
128 discrete conductance states. More bespoke implementations
depart further from the conventional crossbar or neural network
architectures and replace the dot product entirely. Fuzzy
XOR gates implemented with memristors can determine pixel
gradients (Merrikh-Bayat et al., 2014) and swarm computations,
based on the behavior of ants, have been replicated with grids of
memristors (Pajouhi and Roy, 2018).

Although these approaches aim to improve efficiency through
changes to circuit design, none consider the encoding of their
signals, instead choosing to use only continuous real encoding.
An alternative is to use spike-encoded signals. Information is
represented in either spike timings, spike shape, or both. A spike-
based circuit is typically analog and computes at the arrival
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of a spike. It is argued that its inactivity between spikes can
result in a more power efficient network (Joubert et al., 2012).
This has led to the development of neural networks that exploit
such spiking signals, called spiking neural networks (SNNs),
with a variety of CMOS implementations (Indiveri et al., 2006).
Spiking neural networks operate using unsupervised learning
rules, one example being the spike-timing-dependent plasticity
rule (STDP). Applications such as character recognition via
STDP have been demonstrated in both Von-Neumann computer
systems (Diehl and Cook, 2015) and memristive systems (Covi
et al., 2016). However, computation is not solely restricted to
the use of STDP learning rules. Memristors exhibiting generic
analog behavior have been used in the learning of spatiotemporal
patterns and sound localization (Wang et al., 2018) as well as in
the sorting of spike patterns (Werner et al., 2016).

In our application, pixel values are encoded into the frequency
of spike trains. Therefore, the detection of edges is equivalent
to determining the difference in frequency between neighboring
pixels. We present a simple potential divider circuit consisting
of two amorphous silicon oxide memristors whose switching
characteristics we have detailed previously (Mehonic et al., 2017;
Munde et al., 2017; Kenyon et al.,, 2019). The potential divider
design is able to indicate the difference in frequency of its inputs
with the amplitude of spikes at its output. By inserting our
memristive potential divider between neighboring pixels we can
detect differences in pixel values and in turn identify edges.

We will begin by describing the devices used in this work
and how their behavior differs from typical memristors. We then
go on to detail our circuit and experimental data confirming
its behavior. Finally, we describe our model of the circuit and
present simulated results for a collection of images.

2. DEVICES

Our devices are of a metal-insulator-metal (MIM) structure with
a sputtered silicon oxide insulator layer. They consist of a gold
top electrode with a wetting layer of titanium on the oxide
and a bottom electrode of molybdenum. The device size
is 200 x 200 pum. Figure 1A details the dimensions of
each layer. More details regarding fabrication can be found
in Mehonic et al. (2017).

These devices were originally developed as binary memory
cells, able to switch between two distinct low and high resistance
states (Mehonic et al, 2017) but have also demonstrated
a number of neuromorphic uses such as in replicating
synapse functionality (Zarudnyi et al., 2018), neuronal spiking
and integration (Mehonic and Kenyon, 2016) as well as
more conventional machine learning techniques such as
interference (Mehonic et al., 2019). A typical application is as
elements within random access memories, referred to as resistive
random access memory (RRAM). RRAM devices switch between
their two distinct resistance states in response to a sufficiently
large voltage being applied to the device. Although we have
previously shown our devices behave in this manner we do not
use this conventional RRAM behavior in this work. Instead,
we use an analog operating mode which is obtained through a
change in the initial stressing of the device.

2.1. Analog Operation and Current

Transients

It is well known the behavior of a memristor is defined by
its device history. One of the key stages in this history is the
initial stressing of the device, in which the device transitions
from a pristine to an operational state. This initial stressing is
typically carried out using a voltage sweep and is referred to as
electroforming. After electroforming, the device exhibits binary
switching behavior as we have shown in Mehonic et al. (2017).
However, by modifying this initial stressing we find the device
can be forced into an alternative operating mode, one that does
not exhibit discrete jumps in resistance but instead analog and
volatile changes. A characteristic feature of this operating mode
is the observed transient in current in response to constant
potentials, shown in Figure 1B. Therefore, we have devices able
to exhibit either digital or analog behaviors depending on how
the device is initially stressed.

In order to induce the analog operating mode the device
is not electroformed with a voltage sweep but instead has a
constant current driven through the device at the top electrode.
The magnitude of the stressing current can range from -10 to
—100uA and should be maintained until the change in device
conductance slows and levels out. An example of this forming
process is included as an inset to Figure 1B. It should be stressed
this is not an operating condition but an initial step in order
to induce the analog regime and so could be considered a kind
of electroforming. However, it should not be confused with the
electroforming typically associated with memristors. This process
is a smooth transition, very different from the discrete jumps of
electroforming. After removing the current bias and allowing the
device to relax, it is now in the analog regime and will exhibit the
characteristic current transients.

Transients similar to those in Figure 1B have been
documented before in other MIM structures. Studies of
barium strontium titanate capacitors (Zafar et al.,, 1998; Saha
and Krupanidhi, 2001) revealed transients of the same form and
timescale. Although it may seem reasonable to believe transients
are the result of capacitive charging this theory fails in two ways.
Firstly, the change in conductance is in the opposite sense to
what would be expected. If we were simply charging the electrode
we would expect a decrease in current, instead we observe an
initial increase. Secondly, the latter half of the transient, which is
a decrease in current, occurs over a duration of 50s. Considering
our device is driven by a low impedance voltage source, we would
expect significantly shorter timescales. The capacitance of the
device can be approximated to be 35 to 40 pF; assuming a relative
dielectric constant between 3.5 to 4, an area of 4 x 10~%(cm?)
and a thickness of 35 nm. If we then assume the combined source
and lead resistances were to be at the extreme end, say 100 €2, the
time constant of the system would range from 3.5 to 4 ns, many
orders of magnitude smaller than what is observed. Instead, the
cause of this behavior is thought to be drifting oxygen vacancies
in turn modulating electronic conduction (Meyer et al., 2005;
Zhong et al., 2010).

When driven with a negative bias at the top electrode, current
transients consist of two parts; an initial increase in conductance
followed by a later decrease. The increase in conductance is
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FIGURE 1 | (A) Our devices use an active layer of 35 nm sputtered amorphous silicon oxide. The bottom contact is a 280 nm layer of molybdenum and the top
contact is a 115 nm layer of gold with a 3 nm wetting layer of titanium. (B) Examples of the current transients which occur when constant negative voltages are
applied to the top electrode with respect to the bottom electrode. Transients consist of two parts. There is an initial increase in conductance and a subsequent

decrease. In this work we operate only within the first region, the increase in conductance. Inset is a plot of the absolute voltage across the device during the initial
stressing stage. A constant current of —10uA is driven through the device. The applied voltage decreases over time, indicating the reduction in device resistance that
occurs as a result. (C) Negative and positive voltages have an opposite effect on the device’s conductance. When a train of negative voltage spikes were applied to
the device in a potential divider setup with a fixed 1M resistor, the voltage of spikes at the output increases over time (black trace), corresponding to an increase in
conductance of the memristor. In contrast, when a train of positive spikes are interleaved in anti-phase with the negative spikes (red trace), the output voltage
increases to a lesser extent. This demonstrates the competing effects positive voltages have on the memristor. The positive spikes are reversing the changes in
conductance cause by the negative spikes. (D) Setup to demonstrate the competing effects of negative and positive polarities. Gaussian pulses with a full width at
half maximum (FWHM) of 1.3 ms are generated by a signal generator. These are applied to the top contact of the memristor which is in a potential divider with a fixed
1M resistor. The output voltage, Vo, is measured at the output of the potential divider. (E) Our circuit that determines the difference in frequency of two input spike
trains. Both inputs generate pulse trains with a negative amplitude and a frequency proportional to their input value. Each input is connected to a single memristor.
Both memristors then join at a common node. The output of the circuit, Vo, is taken at this common node. The amplitude of output spikes indicate the difference

between the two input frequencies. Larger differences in frequency result in larger amplitudes at the output.

volatile and resets on the order of seconds, whereas the decrease
in conductance is more persistent. In this work, we operate within
only the first portion of the transient. Within this region, applying
a negative bias to the top electrode creates an increase in the
device conductance which can then be reversed with subsequent
positive biases. This behavior is demonstrated in Figure 1C. A
single device was placed in series with a fixed 1 M resistor
connected to ground, forming a potential divider - as shown
in Figure 1D. Any change in device conductance is observed in
the change of the potential divider’s output voltage. An increase
in device conductance will result in larger output amplitudes
while a decrease in conductance will result in smaller output

amplitudes. When a train of pulses with negative amplitudes is
applied to the device (black trace) we observe an increase in
the amplitude of output spikes over time, corresponding to an
increase in device conductance. In contrast, when a positive pulse
train is interleaved in anti-phase with the original negative train
(red trace) the two processes begin to compete. The negative
pulses increase conductivity while the positive pulses decrease
it. Although this still leads to a small increase in conductivity,
which we assume is due to some asymmetries, it is less than when
the negative train does not face competition. It is this competing
behavior between spike trains of opposite polarities that forms
the basis of our circuit.
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3. CIRCUIT DESIGN

To determine the gradient across two neighboring pixels we
require a circuit that detects the difference in frequency between
two spike trains. Our circuit achieves this by exploiting the
opposing effects spike trains of opposite polarities have on
our devices.

Both input sources are connected to each other through a
combination of two memristors in series, as shown in Figure 1E.
The memristors are in opposite orientations with their bottom
contacts connected, forming a potential divider. The amplitudes
of output spikes are therefore dependent on the conductances of
both memristors. Sources produce spikes of negative polarity and
are connected to the top contact of their respective memristor.
For either memristor, when the source directly connected to it
generates a spike and the neighboring source is grounded, it
experiences a negative bias, causing an increase in conductance.
In direct contrast, the second memristor, whose source is
grounded, is in the opposite orientation and so experiences a
bias in the opposite polarity. This causes its conductance to
decrease. We have therefore introduced a form of competition
between the two inputs. When a source fires it acts to increase
the conductance of its attached memristor while decreasing the
conductance of its neighbor.

If the two inputs are of the same frequency any increase
in conductance caused by one input is swiftly canceled out
by the opposing effect of the other. This will result in both
memristors having a similar conductance with no change
in output amplitude. Alternatively, when one input has a
higher frequency than the other, the high frequency input will
overpower the opposing effect of the second input. This will drive
the memristor with the high frequency input to become more
conductive while suppressing increases in the conductance of the
low frequency input. Given the potential divider arrangement,
the amplitude of output spikes for the high frequency input will
increase while those of the low frequency spikes are driven down
to a minimum value. This behavior is shown in Figure 2. The
inputs are initially both set to 50 Hz with no observed change
in the amplitude of output spikes. The frequency of one input
is then set to 100 Hz, resulting in a difference in frequency of
50 Hz. This causes the amplitude of the output spikes caused by
the 100 Hz input to increase in amplitude, whereas the output
spikes generated by the 50 Hz signal remain at their initial value.
Therefore, as the difference in frequency between the two inputs
increases, so does the amplitude of output spikes from the higher
frequency input. These amplitudes can be used as an indicator for
the difference in input frequencies.

Importantly, at no point should the two inputs be allowed to
fire at the same time. If this occurs the circuit would no longer
behave as a potential divider due to neither of the inputs being
grounded. As a result the output voltage will merely follow the
voltage of both inputs producing an erroneous output. In this
work we avoid conflicts by inhibiting the latter spike when two
spikes do happen to overlap. We chose this approach because it
was considered the simplest to implement in a physical system.
Each spike source would be designed with an enable/disable
input, which, when triggered, inhibits any output. The output

A B
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-6 -6
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FIGURE 2 | Experimental data demonstrating the circuit’s ability to detect
differences in frequency between two input spike trains. Two scenarios are
presented: the first with no difference in input frequency and the second with a
difference of 50 Hz. Spikes are Gaussian shaped with a full width at half
maximum (FWHM) of 1.3 ms. Each Gaussian pulse has been cropped to a
width 2 ms. (A,C) These show the input and output signals, respectively, for
the case of no difference in input frequency. Both input 1 (red trace) and input
2 (black trace) are set to 50 Hz. In the plot beneath we see the amplitude of
spikes at the output remain approximately constant for both inputs. For clarity
we have included an envelope tracking the output spikes caused by input 1
(dotted red trace) and input 2 (dotted black trace). (B,D) Shows the input and
output signals, respectively, for the case with a 50 Hz difference in input
frequency between the two inputs. Input 1 is set to 100 Hz while input 2
remains at 50 Hz. For clarity, we have again overlaid two envelopes tracking
the output spikes caused by input 1 and input 2. This time, we observe at the
output that spikes caused by input 1 increase in amplitude over time, whereas
those from input 2 remain constant.

of a source would then connect to its neighbor’s enable/disable
input. Thus, when a source fires and produces a spike, it is
simultaneously inhibiting its neighbor from firing. Crucially, this
implementation uses only local signals, avoiding issues with the
routing of control signals.

Edges manifest as sharp changes in pixel values across the
image, equivalent to large differences between the frequencies
of neighboring pixels. By connecting our circuit between
two neighboring pixels, as shown in Figure 3A, we detect
these differences and produce output spikes with amplitudes
proportional to the differences in frequency. Large amplitude
output spikes correspond to sharp changes in pixel values,
indicating potential edges.

4. METHODOLOGY

4.1. Simulation

In order to simulate the circuit’s performance when applied to
an image, we require a model approximating its behavior. We
constructed a look-up table describing the circuits response.
Given two input frequencies, the look-up table returns the
average amplitude of spikes at the circuit's output. These
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FIGURE 3 | (A) An illustration of how edge detection would be implemented. The circuit is placed between two neighboring pixels. Large differences in pixel values
will produce output spikes with larger amplitudes. (B) The look-up map describing our circuit’s behavior. The average amplitude of output spikes above a threshold is
plotted along the z axis. We use this look-up table during simulations. It approximates the circuit’s output for any given pair of input frequencies. The sampling points
from which this map was interpolated from are illustrated with red circles. (C) Benchmarking results on the BSDS500 dataset. The distribution of F-Measures, defined
in Arbelaez et al. (2011) are plotted for memristive techniques (green) and standard operators (blue). The results are obtained from the set of 200 test images provided
by BSDS500. (D) Comparison of F-Measure scores for a set of operators using both the original test images and images produced by our own circuit as their input.
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An improvement in performance is observed over the Prewitt, Sobel, and log operators.

measurements were taken after the circuit was allowed to settle,
always < 500 ms after inputs were first applied. Spikes take the
same form as those used in Figure 2, they are Gaussian in shape
with a full width at half maximum (FWHM) of 1.5 ms and are
trimmed to a width of 2 ms. The model was constructed using
data obtained from a physical implementation of the circuit with
input frequencies ranging from 50 to 100 Hz. We characterize
the circuit with a sampling resolution of 10 Hz. Each of the points
sampled are illustrated with a red circle in Figure 3B and are used
to form the dataset for interpolation. The look-up table produced
as a result of this process is shown in Figure 3B.

Input frequencies are generated from images such as those
presented in Figure 4A. Pixel values are first converted from
color to grayscale using MATLAB’s r gb2gr ay function. The
function uses the following equation to combine the three
components: 0.2989R + 0.5870G + 0.1140B where R, G, and B
correspond to the red, green and blue components of the pixel.
The grayscale values are then linearly mapped from 0 to 255
to frequencies between 50 and 100 Hz. Example outputs for
each simulation are shown in Figure 4B. In this figure we have
combined the results from both a horizontal and vertical edge
detection. Each pixel represents a single circuit placed between
two neighboring pixels. The value of the pixel is proportional to

the average amplitude of output spikes that are above a defined
threshold - the same quantity as that returned from the look-
up table. Brighter pixels correspond to larger output amplitudes,
which are caused by larger differences in input frequencies and
therefore indicate potential edges.

4.2. Benchmarking
Benchmarking is a useful tool in comparing solutions to
a computational problem. Of the previous memristive edge
detection studies, only one makes use of benchmarking (Khokhar
and Khalid, 2018), with the BSDS500 dataset (Arbeldez
et al, 2011). The BSDS dataset provides 500 images for
testing edge/boundary detection algorithms combined with
a benchmarking script to standardize comparisons between
algorithms. Although the authors make use of the dataset, they do
not use the associated benchmarking script. Instead using their
own custom analysis. We make use of both the dataset as well
as its benchmarking script in the hope that future studies can
compare effectively against our work. The authors of Khokhar
and Khalid (2018) have kindly made their data available for us to
put through the standard benchmark as a comparison.

The performance of each memristor implementation is
compared against a number of standard operators: Prewitt, Sobel,
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edge detection in both the vertical and horizontal plane.

FIGURE 4 | (A) A sample of the original input images presented to the circuit. Source: Arbelaez et al. (2011). In simulation, there exists an edge detection circuit
between each neighboring pixel. Pixels are mapped from their 0-255 value to a frequency range between 50-100 Hz. (B) The corresponding output images of the
simulation. Each pixel represents the output of an edge detection circuit placed between two neighboring pixels. The average amplitude of output spikes above a
threshold is mapped from the voltage to a pixel value from 0 to 255 and is plotted in this image. Brighter pixels indicate edges. We have combined the simulations of

log, Roberts and Canny. Each technique is awarded a score,
named the F-Measure. This score is related to the probability
of a pixel being an edge and the probability of a false positive
with more details on its derivation given in Arbeldez et al.
(2011). The larger the F-Measure the more effective the edge
detection. In Figure 3C we have plotted the F-Measure scores for
each technique, in addition to a random approach which merely
classifies pixels as edges with a 50% probability.

In addition to this, we also characterize the use of our circuit
as an input to standard edge detection operators, quantifying
whether or not it improves performance. For each operator, we
begin by running the benchmarking script using the original

dataset images as inputs to form a set of control data. We then run
a second test but instead now use the output image generated by
our circuit as the input image to the conventional operator. The
performances of these two cases are then compared to identify
any improvements in performance.

5. RESULTS AND DISCUSSION

5.1. Performance

Examples of the circuits output are presented in Figure 4B.
Unfortunately, it is not possible to quantitatively compare our
circuit against the techniques of Li et al. (2018) and Yakopcic
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and Taha (2017). Both studies use different images and in
the case of Li et al. (2018), their input has purposefully
been made to exhibit noise. However, in using the BSDS500
dataset we are able to compare the circuits performance against
other conventional operators as well the memristor based
work of Khokhar and Khalid (2018) who also make use of
this dataset.

Figure 3C shows our circuit’s benchmark performance against
other techniques, where we achieve an F-Measure of 0.465.
This places our performance at the bottom end of conventional
operators, on par with the Canny operator. However, in
comparison to other memristive techniques, such as Khokhar
and Khalid (2018) who achieve an F-measure of 0.366, we present
a jump in performance.

An alternative approach would to consider our circuit
an accelerator, for example, as the input to one of the
standard operators. This technique leads to an improvement in
performance for the Prewitt, Sobel and log operators as shown
in Figure 3D. On the other hand, algorithms that score lower
F-Measures on the BSDS500 dataset, such as the Roberts and
Canny detectors, do not improve through the use of our circuit
as an input.

5.2. Variance
Variability in device performance is a common issue with
memristive devices. In this work, we are primarily concerned
with the variance in device resistances leading to offsets in voltage
at the potential divider’s output and in turn define a maximum
tolerable variability.

Our device resistances varied from 0.77 to 2.17 M when
sampled across 16 devices, with 50% of devices falling within
the resistance range of 0.99-1.66 M. We found these variations
were spatially distributed, neighboring devices would have
similar resistances while those separated were likely to vary.

We consider two scenarios when assessing the effect of
variance on circuit performance. The first is when both devices
of the potential divider have a similar resistance. The second is
when the two devices have different resistances. When the two
devices making up the potential divider have similar resistances,
we find little differences in the circuit behavior other than an
offset in spike amplitudes. Figure 5A shows the circuit’s response
for two instances, a pair of 1.24 and 1.32 M devices and
pair of 2.17 and 2.10 MQ devices. Figure 5B shows the same
plot from a different perspective for clarity. The shape of the
circuit’s response does not vary significantly between each case,
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whereas there is a noticeable offset. Alternatively, when pairs of
devices are not equal and instead have asymmetric resistances
the circuit has an asymmetric response, as shown in Figure 5C.
Fortunately, the asymmetry of the circuit’s response does not have
a significant impact on the circuit performance, with benchmark
scores dropping from an F-Measure of 0.474 to 0.459 when we
account for such effects.

On the other hand, symmetric variances affect the circuit in a
more significant way. The voltage offsets caused by such variances
interfere with the classification of edges. This is because a pixel
is deemed an edge if the output voltage is above a threshold,
however, voltage offsets cause a blurring of this threshold. Some
non-edges are raised above the threshold and some edge pixels
are dragged beneath the threshold, introducing errors in the
output image. Such offsets can be caused by additive thermal
noise, investigated in the Supplementary Material, or by device
variances which we will now detail.

To quantify the effect of variances on the circuit performance,
we simulate the circuit with varying device resistances. Devices
exhibit a gaussian distribution of resistances allocated randomly
across the image. These variances lead to voltage offsets at the
outputs of each circuit, an example of which is included as an
inset of Figure 5D. We simulated and benchmarked the system
for a range of distributions with varying standard deviations.
This resulted in a drop of performance as shown in Figure 5D.
The system performs no better than the random control beyond
approximately a standard deviation of 250 k2. Through this we
can define a maximum acceptable standard deviation by using the
score of other memristive studies as a threshold. Taking Khokhar
and Khalid (2018) as the threshold with a score of 0.366, we
can determine a maximum allowable standard deviation of
50 k€2. The standard deviation of our current devices can be
approximated to be 472 k2, although this should be treated
with caution seeing as we have only 16 samples to characterize
hence the approach is not statistically significant. At this stage, it
appears the variance in our devices is too large for the system to
be realized. Although we cannot comment on the specific cause of
such variances, if this were the result of sample fabrication, then
it is a matter of refining fabrication processes. However, a more
detailed study would have to be carried out to identify the causes
of such variances and the ultimate limitations.

5.3. Scalability

Our chosen figure of merit to compare the scalability of
techniques considers the number of components required for
each additional raster/pixel added to the circuit. This includes
both the number of additional memristors as well as any
periphery circuitry included at output or intermediate layers.
This quantifier allows for a quick comparison regardless of
whether a scanned or parallel approach is taken. We do not
consider the input circuitry. Table 1 compiles the component
count per raster for each of the studies cited in this paper.
Although data could be collected for most techniques it was
not possible to fully assess (Khokhar and Khalid, 2018). We
approximate their output to require a single comparator per
raster in order to threshold outputs as stated in their paper.
However, they also require peripheral circuitry to regularly

TABLE 1 | Comparison of the increase in component count required for each
additional implemented raster.

Study Memristors Operational amplifiers Size of

per per raster/Pixel raster
raster/Pixel

Mannion et al. (this study) +2 +1 (Comparator) 1x2

Li et al. (2018) +25 +1 (Transconductance) 5x5

Yakopcic and Taha (2017) +461 +40 (20 Summing, 20 3x3

Unity Gain)
Khokhar and Khalid (2018) +225 Not available 1x2

update memristor weights, which they do not document. This
will act to increase both the component count and circuit
footprint, hence, we can say with some confidence it is a more
complex circuit than the others presented here.

Of the remaining two techniques by Li et al. (2018) and
Yakopcic and Taha (2017), the approach of Li et al. is by
far superior with respect to component count. This is not
surprising considering their approach features a single crossbar
array with one transimpedance amplifier per column whereas
Yakopcic’s neural network consists of 10 input neurons, 20
hidden layer neurons and 2 memristors for each synapse
connection to represent +/- weights. Equally, Yakopcic’s hidden
neurons consist of two operational amplifiers, further increasing
circuit size.

When comparing our circuit to these three techniques we
must consider how the system will be implemented. Either a
scanned approach may be taken, whereby only a single kernel
is physically implemented and then scanned across the image,
or a parallel approach is taken, with multiple copies of the
circuit operating in parallel, each on their respective section
of the image. The scanned approach favors scenarios where
latency is less of a concern and small footprints are desired,
whereas the parallel approach suits scenarios requiring the real
time processing of images. Our circuit requires approximately
a twelfth of the memristors required by Can Li yet the same
number of output operational amplifiers, albeit in a different
configuration. That said, our circuit should not be considered the
better technique solely on this basis. As detailed in the following
section on limitations, our circuit has a finite settling time due to
the memory properties of our devices. Therefore, if a scanning
implementation is being used we require a finite relaxation
time between the presentation of inputs to avoid mixing. As a
result, a scanning approach would favor a crossbar technique
such as Li et al. (2018) whereas our circuit is better suited to a
parallel implementation.

5.4. Limitations

Although our circuit provides the advantage of a potentially
reduced component count, we identify some limitations. The
first applies to any technique determining the gradient across
neighboring pixels and it concerns the resolution of the image.
For high resolution images, a sharp edge may occur across
a number of pixels. The change in intensity associated with
the edge is now spread across the group of pixels, thereby
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FIGURE 6 | The effect of image resolution on circuit performance. The
benchmarking score (F-Measure) is plotted against the scale factor of the
image resolution. An improvement in performance is observed for lower
resolution images. For example, the highest score occurred when the images
were at a 1/3 of their original resolution. It was not possible to investigate the
effect of increasing image resolution as there were no high resolution images
available for the dataset.

reducing the change experienced by each individual pair of pixels,
essentially smoothing out the edge. The higher the resolution, the
worse this effect will be. A simple solution is to down-sample
the image. However, although this will help in some cases,
the image resolution will always play a role in limiting which
edges can be detected. We investigate this limitation by reducing
the resolution of the benchmark images, processing the image
and then scaling the image back to its original resolution for
benchmarking. The scores of the circuit for different resolutions
are plotted in Figure 6. When the image is reduced in resolution
and then applied to the circuit the performance is generally
better than at the benchmark’s original resolution. However,
if the resolution is reduced beyond a third of its original,
the performance drops owing to the loss in information that
is occurring.

The second limitation is specific to our approach. Once inputs
are applied to the circuit, the output has a finite settling time
after which it is then stable. The output should not be read
before this time to avoid incorrect readings. This limits the
operating frequency of the circuit. The configuration used in
this work has a settling time consistently < 500 ms. This time
can be adjusted through changes in a number of parameters
including the amplitudes or widths of input spikes and the chosen
operating frequencies.

6. CONCLUSION

We have shown how a potential divider of two memristors
can indicate the difference in frequencies between two spike
trains. We confirmed this behavior experimentally and applied
the circuit to the problem of edge detection successfully

achieving a jump in performance compared to other memristive
techniques. The circuit requires no external control signals,
training signals or power supply, instead operating exclusively
on input signals. This proves an advantage for scalability.
Without the need for these external signals, as required with
DPEs or neural networks, we have reduced the complexity of
routing signal paths and computational overhead. Equally, its
passive nature combined with spike operation makes it well
suited for low power applications. Besides edge detection, the
circuit may also have broader applications. Its fundamental
behavior is the detection of differences in frequency between
two input spike trains. This may prove useful in other
computational schemes.

Furthermore, in showing an alternative operating region
devoid of switching has computational uses, we have
demonstrated yet another function resistance switching
devices can provide. With the very same devices able to
implement arrays of memory and both analog and discrete
computations, envisage reconfigurable networks of
these devices having real potential in delivering flexible
hardware accelerators.

we
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