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Different from conventional single-task optimization, the recently proposed multitasking
optimization (MTO) simultaneously deals with multiple optimization tasks with different
types of decision variables. MTO explores the underlying similarity and complementarity
among the component tasks to improve the optimization process. The well-known
multifactorial evolutionary algorithm (MFEA) has been successfully introduced to solve
MTO problems based on transfer learning. However, it uses a simple and random
inter-task transfer learning strategy, thereby resulting in slow convergence. To deal
with this issue, this paper presents a two-level transfer learning (TLTL) algorithm,
in which the upper-level implements inter-task transfer learning via chromosome
crossover and elite individual learning, and the lower-level introduces intra-task transfer
learning based on information transfer of decision variables for an across-dimension
optimization. The proposed algorithm fully uses the correlation and similarity among
the component tasks to improve the efficiency and effectiveness of MTO. Experimental
studies demonstrate the proposed algorithm has outstanding ability of global search
and fast convergence rate.

Keywords: evolutionary multitasking, multifactorial optimization, transfer learning, memetic algorithm,
knowledge transfer

INTRODUCTION

In recent years, the development of evolutionary computation has attracted extensive attention.
Based on the Darwinian theorem of “Survival of the Fittest” (Dawkins, 2006; Ma et al., 2014a), the
population-based evolutionary algorithms (EAs) have been successfully used to solve a wide range
of optimization problems (Deb, 2001; Qi et al., 2014; Ma et al., 2018). Multitasking optimization
(MTO) problems have emerged as a new interest in the area of evolutionary computation (Da
et al., 2016; Gupta et al., 2016a; Ong and Gupta, 2016; Yuan et al., 2016). Inspired by the ability
of human beings to process multiple tasks at the same time, MTO aims at dealing with different
optimization tasks simultaneously within a single solution framework. MTO introduces implicit
transfer learning across different optimization tasks to improve the solving of each task (Gupta
and Ong, 2016; Gupta et al., 2016b). If the component tasks in an MTO problem possess some
commonalities and similarities, sharing knowledge among these optimization tasks is helpful to
solve the whole MTO problems (Bali et al., 2017; Yuan et al., 2017).
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Transfer learning is a new machine learning method that
has caught increasing attention in recent years (Pan and Yang,
2010; Tan et al., 2017). It focuses on solving the target problem
by applying the existing knowledge learned from other related
problems (Gupta et al., 2018). In general, the more commonalities
and similarities are shared between the source problem and
target problem, the more effectively the transfer learning work
for them. Multifactorial evolutionary algorithm (MFEA) is the
first work to introduce transfer learning into the domain of
evolutionary computation to deal with MTO problem (Gupta and
Ong, 2016). In MFEA, the knowledge is implicitly transferred
through chromosomal crossover (Gupta and Ong, 2016). As
a general framework, MFEA uses a simple inter-task transfer
learning by assortative mating and vertical cultural transmission
with randomness, which tends to suffer from excessive diversity
thereby leading to a slow convergence speed (Hou et al., 2017).

To deal with the aforementioned issues of MFEA, this
paper proposes a two-level transfer learning (TLTL) framework
in MTO. The upper level performs inter-task knowledge
transfer via crossover and exploits the knowledge of the elite
individuals to reduce the randomness, which is expected to
enhance the search efficiency. The lower level is an intra-
task knowledge transfer for transmitting information from one
dimension to other dimensions within the same optimization
task. The two levels cooperate with each other in a mutually
beneficial fashion. The experimental results on various MTO
problems show that the proposed algorithm is capable of
obtaining high-quality solutions compared with the state-of-the-
art evolutionary MTO algorithms.

In the rest of this paper, section “Background and Related
Work” introduces the background of MTO and MFEA as
well as the related work of transfer learning in evolutionary
computation. The proposed TLTL algorithm is described in
section “Method.” Section “Experimental Methodology” presents
the MTO test problems. The comparison results between
the proposed algorithm and the state-of-the-art evolutionary
multitasking algorithms are shown in section “Results.” Finally,
section “Discussion and Conclusion” concludes this work and
points out some potential future research directions.

BACKGROUND AND RELATED WORK

This section introduces the basics of MTO and MFEA, and the
related work of Evolutionary MTO.

Multitasking Optimization
The main motivation of MTO is to exploit the inter-task synergy
to improve the problem solving. The advantage of MTO over the
counterpart single-task optimization in some specific problems
has been demonstrated in the literature (Xie et al., 2016; Feng
et al., 2017; Ramon and Ong, 2017; Wen and Ting, 2017;
Zhou et al., 2017).

Without loss of generality, we consider a scenario in which
K distinct minimization tasks are solved simultaneously. The
j-th task is labeled Tj, and its objective function is defined as
Fj (x) : Xj → R. In such setting, MTO aims at searching the

space of all optimization tasks concurrently for
{

x
∗

1, . . . , x
∗

k

}
=

argmin{F1(x1), . . . , FK(xk)}, where each x
∗

j is a feasible solution
in decision space Xj. To compare solution individuals in
the MFEA, it is necessary to assign new fitness for each
population member pi based on a set of properties as follows
(Gupta and Ong, 2016).

Definition 1 (Factorial Cost)
The factorial cost of an individual is defined as αij = γδij + Fij,
where Fij and δij are the objective value and the total constraint
violation of individual pi on optimization task Tj, respectively.
The coefficient γ is a large penalizing multiplier.

Definition 2 (Factorial Rank)
For an optimization task Tj, the population individuals are sorted
in ascending order with respect to the factorial cost. The factorial
rank rij of an individual pi on optimization task Tj is the index
value of pi in the sort list.

Definition 3 (Skill Factor)
The skill factor τi of an individual pi is the component task on
which pi performs the best τi = argmin{rij}.

Definition 4 (Scalar Fitness)
The scalar fitness of an individual pi in a multitasking
environment is calculated by βi = max{1/ri1, . . . , 1/riK}.

Multifactorial Evolutionary Algorithm
This subsection briefly introduces MFEA (Gupta and Ong, 2016),
which is the first evolutionary MTO algorithm inspired by the
work (Cloninger et al., 1979). MFEA evaluates a population of
N individuals in a unified search space. Each individual in the
initial population is pre-assigned a dominant task randomly.
In the process of evolution, each individual is only evaluated
with respect to one task to reduce the computing resource
consumption. MFEA uses typical crossover and mutation
operators of classical EAs to the population. Elite individuals
for each task in the current generation are selected to form the
next generation.

The knowledge transfer in MFEA is implemented through
assortative mating and vertical cultural transmission (Gupta and
Ong, 2016). If two parent individuals assigned to different skill
factor are selected for reproduction, the dominant tasks, and
genetic material of offspring inherit from their parent individuals
randomly. MFEA uses a simple inter-task transfer learning and
has strong randomness.

Evolutionary Multitasking Optimization
Transfer learning is one active research field of machine learning,
where the related knowledge in source domain is used to
help the learning of the target domain. Many transfer learning
techniques have been proposed to enable EAs to solve MTO
problems. For example, the cross-domain MFEA, i.e., MFEA,
solves multi-task optimization problems using implicit transfer
learning in crossover operation. Wen and Ting (2017) proposed
a utility detection of information sharing and a resource
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FIGURE 1 | The general flowchart of proposed algorithm.

redistribution method to reduce resource waste of MFEA. Yuan
et al. (2017) presented a permutation-based MFEA (P-MFEA)
for multi-tasking vehicle routing problems. Unlike the original
MFEA using a random-key representation, P-MFEA adopts a
more effective permutation-based unified representation. Zhou
et al. (2017) suggested a novel MFEA for combinatorial MTO
problems. They developed two new mechanisms to improve
search efficiency and decrease the computational complexity,
respectively. Xie et al. (2016) enhanced the MFEA based
on particle swarm optimization (PSO). Feng et al. (2017)
developed a MFEA with PSO and differential evolution (DE).
Bali et al. (2017) put forward a linearized domain adaptation
strategy to deal with the issue of the negative knowledge
transfer between uncorrelated tasks. Ramon and Ong (2017)
presented a multi-task evolutionary algorithm for search-based

software test data generation. Their work is the first attempt
to demonstrate the feasibility of MFEA for solving real-world
problems with more than two tasks. Da et al. (2016) advanced
a benchmark problem set and a performance index for single-
objective MTO. Yuan et al. (2016) designed a benchmark
problem set for multi-objective MTO that can facilitate the
development and comparison of MTO algorithms. Hou et al.
(2017) proposed an evolutionary transfer reinforcement learning
framework for multi-agent intelligent system, which can adapt
to the dynamic environment. Tan et al. (2017) introduced an
adaptive knowledge reuse framework across expensive multi-
objective optimization problems. Multi-problem surrogates
were proposed to reuse knowledge gained from distinct
but related problem-solving experiences. Gupta et al. (2018)
discussed the recent studies on global black-box optimization
via knowledge transfer across different problems, including
sequential transfer, multitasking, and multiform optimization.
For a general survey of transfer learning, the reader is referred to
Pan and Yang (2010).

METHOD

This section introduces the TLTLA algorithm for MTO.
The upper level is an inter-task knowledge learning, which
uses the inter-task commonalities and similarities to improve
the efficiency of cross-task optimization. The lower level
transfer learning focuses on intra-task knowledge learning,
which transmits the information from one dimension to other
dimensions to accelerate the convergence. The general flowchart
of the proposed algorithm is shown in Figure 1.

At the beginning of TLTLA, the individuals in the population
are initialized with a unified coding scheme. Let tp indicate the
inter-task transfer learning probability. If a generated random
value is greater than tp, the algorithm goes through four steps
to complete the inter-task transfer learning process. The parent
population produces offspring population by crossover operator

FIGURE 2 | The unified coding and different decoding in multi-tasking optimization with quadratic assignment problem (QAP) and knapsack problem (KP).
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FIGURE 3 | Representation scheme of an individual.

and mutate operator. In chromosome crossover, part of the
knowledge transfer is realized with the random inheritance
of culture and gene from parent to children. However, this
pattern is accompanied by strong randomness. To deal with
this issue, this paper suggests knowledge transfer of inter-task
elite individuals. Finally, the individuals with high fitness are
selected into the next generation. If the generated random value
is less than tp, the algorithm performs a local search based
on intra-task knowledge transfer. According to the individual
fitness and the elite selection operator, the algorithm executes
1-dimensional search using information from other dimensions.
Detailed description of the above two processes are provided in
the following subsections.

Encoding and Decoding
To facilitate the knowledge transfer in the multitasking
environment, Gupta et al. (2016b) suggested using the unified
individual coding scheme. Let K denote the number of distinct
component tasks in the multitasking environment, the search
space dimension of the i-th task is denoted as Di. Through
the unified processing, the number of decision variables of
every chromosome is set to DMTO = max{Di}. Each decision
variable in a chromosome is normalized in the range [0, 1]
as shown in Figure 2. Conversely, in the phase of decoding,
each chromosome can be decoded into a task-specific solution
representation. For the i-th task Ti, we extract Di decision
variables from the chromosome, and decoded these decision
variables into a feasible solution for the optimization tasks Ti.
In general, the extracted part is the first Di decision variables
of the chromosome.

Initialization
In the initialization, a population p0 of N individuals is generated
randomly by using a unified coding scheme. Every individual
is encoded in a chromosome and associated with a set of
properties including factorial cost, skill factor, factorial rank, and
scalar fitness. The four properties have been described in section
“Background and Related Work.” Representation scheme of an
individual is shown in Figure 3.

In such a setting, considering K optimization tasks in
the initial multitasking environment, we assign the equal
computation resource to each component task. In other words,
the subpopulation of each component task is composed by N/K
individuals in the evolutionary process.

FIGURE 4 | Five points in two-task optimization problem.

Fitness Evaluation
In a multitasking environment, an individual may optimize one
or multiple optimization tasks. Herein, a generic way is used to
calculate the fitness of each individual (Gupta and Ong, 2016).
Figure 4 and Table 1 illustrate the fitness assignment of the
individuals in a two-task optimization problem.

As shown in Figure 4, five individuals and their corresponding
fitness function values on different tasks are given. According
to the definitions of four properties described in the section
“Background and Related Work,” the corresponding values are
shown in Table 1. For example, individual p2 has factorial costs
0.8 and 2 on component tasks T1 and T2, respectively. After
sorting all individuals based on their factorial costs in ascending
order, the factorial ranks of individual p2 on tasks T1 and T2 are
2 and 4, respectively. Thus, the final scalar fitness and skill factor
of individual p2 are 1/2 = max{1/2, 1/4} and T1, respectively.

Inter-Task Knowledge Transfer
This subsection describes the inter-task transfer learning in
Algorithm 1, which enables the discovery and transfer of
existing genetic material from one component task to another.
Individuals in the multitasking environment may have different
cultural backgrounds, i.e., different skill factors. When the
cultural background of an individual is changed, the individual

TABLE 1 | The results of calculating individual fitness.

Individual Factorial cost Factorial rank Skill factor Scalar fitness

αi1 αi2 ri1 ri2 τi βi

p1 0.5 3 1 5 T1 1

p2 0.8 2 2 4 T1 1/2

p3 1.5 1 4 3 T2 1/3

p4 1 0.5 3 1 T2 1

p5 2 0.8 5 2 T2 1/2

Bold values in the case used to explain the concept of individual fitness evaluation
in multitasking environment.
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is transferred from one task to another (Gupta and Ong, 2016).
One of the drawbacks in MFEA is the strong randomness in its
inter-task knowledge transfer. To deal with this issue, an elite
individual transfer is proposed in this subsection.

Algorithm 1: Inter-task transfer learning.
Require:
Pt, the current population;
rmp, the balance factor between crossover and mutation;
N, the population size;
K, the number of component tasks.
1. for i = 1 to N/2 do
2. Randomly choose parents (pa, pb) from Pt
3. if (τa == τb) or (rand < rmp)
4. (ca, cb) = crossover on (pa, pb)
5. ca and cb randomly inherits τa or τb
6. else
7. ca = mutation in (pa) and cb = mutation on (pb)
8. ca inherits (τa) and cb inherits (τb)
9. end if

10. end for
11. for i = 1 to N do
12. Evaluate ci on task τi
13. end for
14. Compute factorial rank for all individuals
15. Record elite individuals (factorial rank == 1) as

Bt = {b1,. . .,bK} and set
16. for i = 1 to K
17. Evaluate bi on task τr , where r = rand (K) and r ! = i
18. Put the evaluated individualinto
19. end for
20. Rt = Ct ∪ Pt ∪ Br

t
21. Compute scalar fitness for all individuals

22. Select N elite individuals from Rt to Pt+1
23. Set t = t+1

There are two ways of inter-task individual transfer in
Algorithm 1. One is implicit genetic transfer through
chromosomal crossover as shown in line 5 (Gupta and
Ong, 2016). If two parent individuals with different cultural
backgrounds undergo crossover, their offspring can inherit
from one of them (Cavallisforza and Feldman, 1973; Gupta and
Ong, 2016). The other is the elite individual transfer among
tasks, which interchanges the skill factor of the best individuals
among tasks in lines 17. If multiple optimization tasks are of
commonality and similarities, a good solution to one task is
also expected to have a good performance on other tasks. To
reduce resource consumption, this operation is applied to the
best individuals only.

Individual Production
In inter-task transfer learning, the proposed algorithm uses the
simulated binary crossover (SBX) (Deb and Agrawal, 1994; Ma
et al., 2016b) operator and the polynomial mutation (Ma et al.,
2016a) operator to produce the offspring population.

In lines 2–9 of Algorithm 1, assortative mating and
vertical cultural transmission are performed in the parent pool.
Specifically, two randomly selected parent individuals undergo
crossover or mutation based on the balance factor rmp. In
the crossover operation, the mating of parent individuals with
different skill factor may lead to the emergence of genetic transfer
(Cavallisforza and Feldman, 1973; Feldman and Laland, 1996).
Each child imitates the skill factor from one of the two parent
individuals randomly. The random inheritance mechanism can
be considered as an inter-task knowledge transfer, which shares
relevant information for promoting population evolution.

FIGURE 5 | An example of transfer learning among different dimensions.
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TABLE 2 | Nine bi-tasking benchmark problems.

Two-task Intersection Task Rs DT Global optimal Landscape
problem and similarity

1 CI+HS Griewank 1.0000 50 (0, 0, . . ., 0)∈[−100, 100]50 Multimodal+Non-separable

Rastrigin 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

2 CI+MS Ackley 0.2261 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

Rastrigin 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

3 CI+LS Ackley 0.0002 50 (42.0969, . . ., 42.0969)∈ [−50, 50]50 Multimodal+Non-separable

Schwefel 50 (420.9687, . . ., 420.9687)∈ [−500, 500]50 Multimodal+Separable

4 PI+HS Rastrigin 0.8670 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

Sphere 50 (0, . . ., 0, 20, . . ., 20)∈ [−100, 100]50 Unimodal+Separable

5 PI+MS Ackley 0.2154 50 (0, . . ., 0, 1, . . ., 1)∈ [−50, 50]50 Multimodal+Non-separable

Rosenbrock 50 (1, 1, . . ., 1)∈ [−50, 50]50 Multimodal+Non-separable

6 PI+LS Ackley 0.0725 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

Weierstrass 25 (0, 0, . . ., 0)∈ [−0.5, 0.5]25 Multimodal+Non-separable

7 NI+HS Rosenbrock 0.9434 50 (1, 1, . . ., 1)∈ [−50, 50]50 Multimodal+Non-separable

Rastrigin 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

8 NI+MS Griewank 0.3669 50 (10, 10, . . ., 10)∈ [−100, 100]50 Multimodal+Non-separable

Weierstrass 50 (0, 0, . . ., 0)∈ [−0.5, 0.5]50 Multimodal+Non-separable

9 NI+LS Rastrigin 0.0016 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

Schwefel 50 (420.9687, . . ., 420.9687)∈ [−500, 500]50 Multimodal+Separable

Inter-Task Knowledge Transfer of Elite Individuals
Due to the strong randomness of assortative mating and
vertical cultural transmission, population evolution has some
limitations in the global search and convergence. In lines 15–19 of
Algorithm 1, an elite individual transfer is introduced to alleviate
this issue.

In each generation, the best individual of each component
task (i.e., the factorial rank of this individual is 1) is recorded in
line 15. Considering the commonalities and similarities among
different tasks, a new skill factor for each best individual is
assigned and evaluated with respect to the new task. The inter-
task knowledge transfer of elite individuals is shown in line 17.
If multiple optimization tasks are of strong commonalities and
similarities, a good solution of one task is also expected to have
good performance on the other tasks.

Evaluation and Selection
As shown in line 20, the combined population Rt consists
of parent population Pt , offspring population Ct , and learned
individuals Br

t . An elitist selection operator is used and the
individuals with higher scalar fitness are selected into the next
generation in line 22.

Intra-Task Knowledge Transfer
Besides, inter-task transfer learning, the proposed algorithm is
also characterized with intra-task transfer learning as shown
in Algorithm 2. The intra-task transfer learning transmits the
knowledge from one dimension to other dimensions within the
same task. The proposed cross-dimensional one-dimensional
search complements well with SBX and is expected to prevent the
algorithm from getting trapped in local optima.

Algorithm 2: Intra-task transfer learning.
Require:

Pt , the current population;
S, the number of variables in unified individual coding.
1. for i = 1 to S do
2. Randomly select an individual pr from Pt
3. Off (1, S) = differential evolution on {xi}
4. for j = 1 to S do
5. dj = (pr (1),. . .,pr(j-1), Off (j), pr (j+1), . . ., pr (S))
6. Evaluate dj on task τpr
7. if dj is better than pr
8. pr(j) = Off (j)
9. end if

10. end for
11. end for

One-Dimensional Mutation
At the beginning of Algorithm 2, an individual is randomly
selected from the current population in line 2. In line 3, S
offspring genes [Off (1),. . .,Off (S)] are generated by DE mutation
operator (Qin and Suganthan, 2005; Ma et al., 2014b,c), with
the parent genes coming from the i-th dimension variable xi
of the population.

One-Dimensional Search Among Dimensions
As shown in lines 4–10 of Algorithm 2, S offspring are
iteratively used to compare with the S variables of the selected
individual pr as shown in Figure 5. Three individuals with the
same dominant task are given in the search space. Firstly, we
randomly select an individual p2 from the current population.
Secondly, three decision variables 2, 3, and 5 are extracted in
the 1st dimension of individuals p1, p2, and p3, respectively.
Thirdly, three extracted decision variables undergo DE to
generate three offspring genes 4, 2 and 1.5. Finally, the cross-
dimensional search for individual p2 is performed to find
out improved solutions. Offspring genes 1.5 and 2 replace

Frontiers in Neuroscience | www.frontiersin.org 6 January 2020 | Volume 13 | Article 1408

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01408 December 26, 2019 Time: 16:33 # 7

Ma et al. Two-Level Transfer Learning for Multitasking

TA
B

LE
3

|T
he

m
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
fu

nc
tio

n
va

lu
es

ob
ta

in
ed

by
TL

TL
A

an
d

M
FE

A
on

ni
ne

tr
i-t

as
ki

ng
op

tim
iz

at
io

n
pr

ob
le

m
s.

P
ro

b
le

m
T

LT
LA

M
FE

A

T
1

T
2

T
3

T
1

T
2

T
3

C
I+

H
S
+
+

A
ck

le
y

(5
0D

)
0.

00
E
+

00
(0

)
0.

00
E
+

00
(0

)
1.

83
E

-1
3

(4
.7

2E
-1

3)
3.

36
E

-0
1

(0
.0

65
0)

2.
00

E
+

02
(4

3.
58

07
)

2.
87

E
+

00
(0

.5
16

7)

C
I+

M
S
+
+

S
ch

w
ef

el
(5

0D
)

2.
75

E
-1

2
(9

.2
9E

-1
2)

1.
74

E
+

01
(5

5.
60

38
)

2.
96

E
+

02
(1

.3
2E
+

03
)

5.
26

E
+

00
(0

.8
44

3)
2.

68
E
+

02
(5

8.
36

10
)

3.
77

E
+

03
(4

97
.5

76
3)

C
I+

LS
+
+

W
ei

er
st

ra
ss

(2
5D

)
9.

20
E

-1
2

(2
.0

9E
-1

1)
6.

36
E

-0
4

(1
.1

1E
-1

9)
6.

64
E

-0
1

(1
.2

56
8)

2.
02

E
+

01
(0

.0
73

8)
3.

91
E
+

03
(5

83
.5

65
8)

2.
03

E
+

01
(2

.1
08

7)

P
I+

H
S
+
+

A
ck

le
y

(5
0D

)
2.

20
E
+

01
(4

6.
72

83
)

7.
85

E
-0

4
(0

.0
03

0)
1.

45
E
+

00
(0

.9
41

0)
2.

78
E
+

02
(6

6.
17

48
)

1.
25

E
+

01
(1

.7
73

1)
5.

24
E
+

00
(1

.0
12

1)

P
I+

M
S
+
+

S
ch

w
ef

el
(5

0D
)

1.
05

E
+

00
(1

.0
19

1)
2.

06
E
+

01
(2

3.
19

07
)

2.
96

E
+

02
(1

.3
2E
+

03
)

3.
76

E
+

00
(0

.5
51

7)
8.

96
E
+

02
(2

06
.5

21
0)

3.
94

E
+

03
(4

13
.8

82
2)

P
I+

LS
+

R
as

tr
ig

in
(5

0D
)

1.
74

E
-1

2
(7

.6
7E

-1
2)

1.
98

E
-1

8
(7

.9
0E

-3
4)

0.
00

E
+

00
(0

)
4.

91
E
+

00
(1

.0
32

4)
5.

42
E
+

00
(1

.1
19

3)
2.

45
E
+

02
(4

1.
21

49
)

N
I+

H
S
+
+

A
ck

le
y

(5
0D

)
3.

54
E
+

01
(2

0.
17

67
)

0.
00

E
+

00
(0

)
2.

68
E

-1
4

(3
.4

3E
-1

4)
5.

98
E
+

02
(2

13
.2

00
4)

2.
06

E
+

02
(4

6.
61

45
)

3.
60

E
+

00
(0

.8
25

2)

N
I+

M
S
+
+

R
as

tr
ig

in
(5

0D
)

3.
00

E
-1

2
(1

.3
3E

-1
1)

1.
04

E
-0

2
(0

.0
32

1)
1.

98
E
+

01
(4

9.
87

44
)

4.
74

E
-0

1
(0

.0
78

4)
2.

01
E
+

01
(2

.8
08

5)
5.

59
E
+

02
(1

32
.9

28
3)

N
I+

LS
+
+

G
rie

w
an

k
(5

0D
)

0.
00

E
+

00
(0

)
6.

36
E

-0
4

(1
.1

1E
-1

9)
0.

00
E
+

00
(0

)
2.

07
E
+

02
(5

7.
57

01
)

3.
81

E
+

03
(5

18
.0

79
0)

4.
58

E
-0

1
(0

.0
67

1)

the parent genes 3 and 4, respectively, as they obtain better
fitness. On the contrary, offspring gene 4 is abandoned as it
attains no improvement.

Evaluation and Selection
The evaluation and selection of a temporary individual dj
constructed by the one-dimensional search are shown in
lines 8–11. To reduce the number of function evaluations,
the temporary individual dj is evaluated only on task
τpr . In line 7, if the new constructed individual dj is
better than pr in terms of fitness value, pr is updated by
dj in line 8.

EXPERIMENTAL METHODOLOGY

The proposed TLTLA is compared with the state-of-
the-art evolutionary MTO algorithms, i.e., MFDE (Feng
et al., 2017), MFEA (Gupta and Ong, 2016), and SOEA
(Gupta and Ong, 2016). The benchmark MTO problems
(Da et al., 2016) are used to test the algorithms. All
test problem are bi-tasking optimization problems. To
verify the effectiveness of the compared algorithms,
component tasks in MTO problems possess different types
of correlation in Da et al. (2016). To demonstrate the
scalability of the proposed algorithm on more complex
problems, we also construct nine tri-tasking optimization
problems in this study.

Optimization Functions
This section introduces seven elemental single-
objective continuous optimization functions (Da
et al., 2016) used to construct the MTO test
problems. The specific definitions of these seven
functions are shown as follows. In particular, the
dimensionality of the search space is denoted
as D.

(1) Sphere:

F1(x) =

D∑
i=1

x2
i , x ∈ [−100, 100]D

(2) Rosenbrock:

F2(x) =

D−1∑
i=1

(100(x2
i − xi+1)

2
+ (xi − 1)2), x ∈ [−50, 50]D

(3) Ackley:

F3(x) = −20 exp(−0.2

√√√√ 1
D

D∑
i=1

x2
i )−

exp(
1
D

D∑
i=1

cos(2πxi))+ 20+ e, x ∈ [−50, 50]D
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TABLE 4 | The mean and standard deviation of function values obtained by four compared algorithms on nine bi-tasking optimization problems.

Problem Task TLTLA MFDE MFEA SOEA

CI+HS T1 0.00E+ 00 (0) 1.00E− 03 (3.05E− 03) 3.73E− 01 (0.0617) 9.08E− 01 (0.0585)

T2 0.00E+ 00 (0) 2.61E+ 00 (7.96) 1.95E+ 02 (34.4953) 4.10E+ 02 (49.0439)

CI+MS T1 1.20E− 14 (2.47E− 14) 1.00E− 03 (0.003) 4.39E+ 00 (0.4481) 5.32E+ 00 (1.2338)

T2 0.00E+ 00 (0) 3.00E− 03 (0.012) 2.27E+ 02 (52.2778) 4.41E+ 02 (65.0750)

CI+LS T1 3.41E− 14 (1.21E− 14) 2.12E+ 01 (0.04) 2.02E+ 01 (0.0798) 2.12E+ 01 (0.2010)

T2 6.36E− 04 (1.11E− 19) 1.84E+ 04 (1578.16) 3.70E+ 03 (429.1093) 4.18E+ 03 (657.2786)

PI+HS T1 2.88E+ 01 (62.1998) 7.83E+ 01 (15.37) 6.14E+ 02 (131.0438) 4.45E+ 02 (57.2891)

T2 9.63E− 08 (3.86E− 07) 2.20E− 05 (2.90E− 05) 1.01E+ 01 (2.4734) 8.40E+ 01 (17.1924)

PI+MS T1 1.02E+ 00 (1.1088) 1.00E− 03 (0.001) 3.49E+ 00 (0.6289) 5.07E+ 00 (0.4417)

T2 2.65E+ 01 (24.5602) 6.03E+ 01 (20.53) 7.02E+ 02 (267.8668) 2.40E+ 04 (10487.2597)

PI+LS T1 1.60E− 12 (4.90E− 12) 4.60E− 01 (0.58) 2.00E+ 01 (0.1302) 5.05E+ 00 (0.6299)

T2 1.59E− 14 (6.32E− 14) 2.20E− 01 (0.47) 1.93E+ 01 (1.7291) 1.32E+ 01 (2.3771)

NI+HS T1 3.52E+ 01 (20.8321) 8.93E+ 01 (48.60) 1.01E+ 03 (346.1264) 2.43E+ 04 (5842.0394)

T2 2.54E+ 00 (11.3913) 2.05E+ 01 (15.41) 2.87E+ 02 (92.4182) 4.48E+ 02 (61.1642)

NI+MS T1 5.55E− 17 (2.23E− 16) 2.03E− 03 (0.0042) 4.20E− 01 (0.0654) 9.08E− 01 (0.0702)

T2 1.35E− 03 (0.0030) 2.97E+ 00 (1.08) 2.71E+ 01 (2.6883) 3.70E+ 01 (3.4558)

NI+LS T1 3.85E+ 01 (89.1612) 9.62E+ 01 (20.02) 6.51E+ 02 (98.6871) 4.37E+ 02 (62.6339)

T2 6.36E− 04 (7.31E− 10) 3.94E+ 03 (730.99) 3.62E+ 03 (325.0275) 4.14E+ 03 (524.4335)

FIGURE 6 | Convergence trends of tasks in CI+HS.

(4) Rastrigin:

F4(x) =

D∑
i=1

(x2
i − 10 cos(2πxi)+ 10), x ∈ [−50, 50]D

(5) Schwefel:

F5(x) = 418.9829× D−
D∑

i=1

xi sin(|xi|
1
2 ), x ∈ [−500, 500]D

(6) Griewank:

F6(x) = 1+
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos(
xi
√

i
), x ∈ [−100, 100]D

(7) Weierstrass:

F7(x) =

D∑
i=1

(

kmax∑
k=0

[ak cos(2πbk(xi + 0.5))])− D
kmax∑
k=0

[ak cos(2πbk
· 0.5)]a = 0.5, b = 3, kmax = 20, x ∈ [−0.5, 0.5]D

Two Multitasking Optimization Problem
Sets
The nine bi-tasking optimization problems were first proposed
in Da et al. (2016), based on which nine tri-tasking optimization
problems are constructed in this paper. The properties of the
bi-tasking optimization problems are summarized in Table 2,
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FIGURE 7 | Convergence trends of tasks in CI+MS.

FIGURE 8 | Convergence trends of tasks in CI+LS.

which clearly shows the commonalities and similarities among
component tasks.

For the global optimal solutions of the two component tasks,
complete intersection (CI) indicates that the global optima of
the two optimization tasks are identical on all variables in the
unified search space. No intersection (NI) means that the global
optima of the two optimization tasks are different on all variables
in the unified search space. Partial intersection (PI) suggests that
the global optima of the two tasks are the same on a subset of
variables in the unified search space.

The similarity (Rs) of a pair of optimization tasks are
divided into three categories (Da et al., 2016). According to
the Spearmans rank correlation similarity metric [40], Rs < 0.2
indicates low similarity (LS), 0.2 < Rs < 0.8 means medium
similarity (MS), and Rs > 0.8 denotes high similarity (HS).

In addition to the above nine bi-tasking optimization
problems, this paper attempts to solve tri-tasking optimization
problems. Nine constructed tri-tasking optimization problems
are shown in Table 3.

RESULTS

Experimental Results on Bi-Task
Optimization Problems
On the nine bi-tasking optimization problems, the population
size is set to N = 100 for TLTLA, MFDE, MFEA, and SOEA. The
maximum number of function evaluations is set to be 50,000 for
SOEA and 100,000 for TLTLA, MFDE, and MFEA. Since SOEA
is a single-tasking algorithm, it has to be run twice on bi-tasking
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FIGURE 9 | Convergence trends of tasks in PI+HS.

FIGURE 10 | Convergence trends of tasks in PI+MS.

problems. As such, SOEA consumes the same computational
budget with other algorithms. All compared algorithms are
performed in 20 independent runs on each MTO problem. The
balance factor between crossover and mutation is set to rmp = 0.3
in TLTLA, MFDE, and MFEA.

Table 4 presents the mean and standard deviation of
function values obtained by the four compared algorithms
on nine bi-tasking optimization problems. The best
mean function value on each task is highlighted in
bold. Compared with MFEA, MFDE and SOEA, TLTLA
obtains much better performance. TLTLA obtains the best
results in 17 out of 18 independent optimization tasks,
except the task T1 of the PI+MS problem. To study the
search efficiency of TLTLA, MFDE, MFEA, and SOEA,
Figures 6–14 show the convergence trends of all compared
algorithms on the representative optimization tasks. In

terms of convergence rate, TLTLA obtains a better overall
performance than MFDE, MFEA, and SOEA on most of
optimization tasks.

On the MTO problems with the high inter-task similarity or
complementarity, such as CI+HS, CI+MS, CI+LS, PI+HS, and
NI+HS, as shown in Tables 2, 4, TLTLA performs much better
than MFEA, MFDE and SOEA in terms of solution quality. In
particular, TLTLA obtains the corresponding global optimum 0
on tasks T1and T2 of CI+HS and task T2 of CI+MS. Three
MTO algorithms, i.e., TLTLA, MFEA, and MFDE, work better
than the traditional single-task optimization algorithm SOEA
thanks to the use of inter-task knowledge transfer. However,
the knowledge transfer in MFEA and MFDE is of strong
randomness. TLTLA handles this issue by the inter-task elite
individual transfer and intra-task cross-dimensional search. The
inter-task elite individual transfer is more suitable for MTO
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FIGURE 11 | Convergence trends of tasks in PI+LS.

FIGURE 12 | Convergence trends of tasks in NI+HS.

problems with CI, i.e., the global optima of two component
optimization tasks are identical in the unified search space. The
intra-task transfer learning can improve the population diversity
and complement well with SBX.

On some MTO problems, the component tasks have different
number and/or different kinds of decision variables, such
as PI+LS problem. Let one of the component tasks be α-
dimensional and the other be β-dimensional (supposing α < β).
Therefore, all the individuals in the unified search space are
encoded by β decision variables. Using cross-dimensional search,
TLTLA is able to utilize the information of the extra β− α

decision variables to optimize the α-dimensional component
task, which is ignored by the other compared algorithms. This
may be the reason TLTLA performs the best on PI+LS problem.

On separable and non-separable optimization tasks, as shown
in Tables 2, 4, TLTLA performs well on all separable optimization
tasks but not on the non-separable Rosenbrock function. The

reason is that Rosenbrock function is fully non-separable
problem making the cross-dimensional search of intra-task
knowledge transfer inefficient.

Experimental Results on Tri-Tasking
Optimization Problems
To study the scalability of the proposed algorithm in solving
more complex tri-tasking optimization problems, we construct
nine tri-tasking optimization problems based on the bi-
tasking problems (Da et al., 2016). Specifically, nine tri-tasking
optimization problems are constructed by adding an additional
task into a bi-tasking optimization problem proposed in Da
et al. (2016). All compared algorithms are performed in 20
independent runs on each tri-tasking problem. TLTLA is
compared with MFEA. Both algorithms are extended to handle
tri-tasking problems. The balance factor between crossover and
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FIGURE 13 | Convergence trends of tasks in NI+MS.

FIGURE 14 | Convergence trends of tasks in NI+LS.

mutation is set to rmp = 0.3 for all compared algorithms. The
population size is set to N = 150 for all compared algorithms.
The maximum number of function evaluations is set to 150,000
for all compared algorithms. It is important to note that the
experimental settings assign an equal amount of computing
resources for each component optimization task in bi-tasking and
tri-task optimization problems.

Table 3 reports the mean and standard deviation of the
function values obtained by TLTLA and MFEA on nine tri-
tasking optimization problems. The best mean function value
on each task is highlighted in bold. As can be summarized in
Table 3, TLTLA performs significantly better than MFEA in
dealing with the tri-tasking problems. The experimental results
in Tables 3, 4 demonstrate the high scalability of the proposed
algorithm. When the number of component tasks is increased,
TLTLA can still obtain solutions of high quality. In particular,
on task T2 of NI+HS+Ackley and task T1 of NI+LS+Griewank,
the proposed algorithm gets more improvements in solving
tri-tasking problem than the corresponding bi-tasking problem.

The reason is that the corresponding global optimum 0 of the
added Griewank task is found, which indicates that TLTLA can
utilize the population diversity in the multitasking environment
to escape from the local optima.

The Effectiveness Analysis of Two
Proposed Knowledge Transfers
In this section, we empirically study the effectiveness of the
two proposed knowledge transfer methods, including inter-task
and intra-task knowledge transfers. Two variants of TLTLA,
namely TLTLA-U and TLTLA-L are designed to compared with
TLTLA. The former is the same as TLTLA without using the
intra-task knowledge transfer, the latter is TLTLA without using
the inter-task knowledge transfer. MFEA is also involved in the
comparison as the baseline. Table 5 shows the mean and standard
deviation of the function values obtained by each compared
algorithm on nine bi-tasking optimization problems. The best
mean function value on each task is highlighted in bold. The sums
of rankings of the four compared algorithms are also presented.
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TABLE 5 | The mean and standard deviation of function values between the algorithms TLTLA, TLTLA-U, TLTLA-L, and MFEA.

Problem Task TLTLA Rank TLTLA-U Rank TLTLA-L Rank MFEA Rank

CIHS T1 0.00E+00 (0) 1 3.38E-01 (0.0701) 3 7.93E-02 (0.0311) 2 3.73E-01 (0.0617) 4

T2 0.00E+00 (0) 1 1.75E+02 (51.3951) 2 5.49E+02 (39.1071) 4 1.95E+02 (34.4953) 3

CIMS T1 1.20E-14 (2.47E-14) 1 5.35E+00 (0.9860) 3 2.10E+01 (0.1022) 4 4.39E+00 (0.4481) 2

T2 0.00E+00 (0) 1 2.33E+02 (60.9264) 3 5.44E+02 (49.9483) 4 2.27E+02 (52.2778) 2

CILS T1 3.41E-14 (1.21E-14) 1 2.01E+01 (0.0431) 2 2.11E+01 (0.0457) 4 2.02E+01 (0.0798) 3

T2 6.36E-04 (1.11E-19) 1 3.65E+03 (435.9930) 3 1.91E+00 (1.4314) 2 3.70E+03 (429.1093) 4

PIHS T1 2.88E+01 (62.1998) 1 6.80E+02 (165.2077) 4 5.44E+02 (39.4790) 2 6.14E+02 (131.0438) 3

T2 9.63E-08 (3.86E-07) 1 7.07E+00 (1.6748) 2 8.99E+00 (4.8763) 3 1.01E+01 (2.4734) 4

PIMS T1 1.02E+00 (1.1088) 1 3.27E+00 (0.4646) 2 2.09E+01 (0.0578) 4 3.49E+00 (0.6289) 3

T2 2.65E+01 (24.5602) 1 6.43E+02 (580.1922) 3 2.60E+02 (46.9642) 2 7.02E+02 (267.8668) 4

PILS T1 1.60E-12 (4.90E-12) 1 1.99E+01 (0.1446) 2 2.10E+01 (0.1169) 4 2.00E+01 (0.1302) 3

T2 1.59E-14 (6.32E-14) 1 2.08E+01 (3.0661) 3 2.26E+01 (1.8860) 4 1.93E+01 (1.7291) 2

NIHS T1 3.52E+01 (20.8321) 1 1.06E+03 (1.20E+03) 4 2.72E+02 (40.9484) 2 1.01E+03 (346.1264) 3

T2 2.54E+00 (11.3913) 1 2.58E+02 (90.7596) 2 5.28E+02 (38.6019) 4 2.87E+02 (92.4182) 3

NIMS T1 5.55E-17 (2.23E-16) 1 3.76E-01 (0.0754) 3 6.74E-02 (0.0172) 2 4.20E-01 (0.0654) 4

T2 1.35E-03 (0.0030) 1 2.76E+01 (2.6969) 3 5.55E+01 (2.3183) 4 2.71E+01 (2.6883) 2

NILS T1 3.85E+01 (89.1612) 1 6.52E+02 (120.3008) 4 5.42E+02 (34.9702) 2 6.51E+02 (98.6871) 3

T2 6.36E-04 (7.31E-10) 1 3.70E+03 (613.1705) 4 1.93E+00 (1.6964) 2 3.62E+03 (325.0275) 3

SUM 18 52 55 55

In Table 5, using only one knowledge transfer method,
TLTLA-U and TLTLA-L achieve similar overall performance to
MFEA. However, combining two proposed knowledge transfers,
TLTLA performs much better than MFEA, TLTLA-U, and
TLTLA-L on nine test problems, which indicates that the inter-
task and the intra-task knowledge transfer procedures cooperate
with each other in a mutually beneficial fashion. Therefore,
the inter-task and intra-task transfer learning components are
indispensable for the proposed algorithm.

DISCUSSION AND CONCLUSION

In this paper, a novel evolutionary MTO algorithm with TLTL
is introduced. Particularly, the upper level transfer learning uses
the commonalities and similarities among tasks to improve
the efficiency and effectiveness of genetic transfer. The lower
level transfer learning focuses on the intra-task knowledge
learning, which transmits the beneficial information from one
dimension to other dimensions. The intra-task knowledge
learning can effectively use decision variables information from
other dimensions to improve the exploration ability of the
proposed algorithm. The experimental results on two-task and
three-task optimization problems show the superior performance
and high scalability of the proposed TLTLA.

Evolutionary MTO is a recent paradigm introducing the
transfer learning of machine learning into the evolutionary
computation (Zar, 1972; Noman and Iba, 2005; Chen et al.,
2011; Zhu et al., 2011, 2015a,b,c, 2016, 2017; Gupta and Ong,
2016; Hou et al., 2017). There remain many open challenging
problems. For instance, how to avoid the negative transfer? Most
evolutionary MTO algorithms were proposed based on the inter-
task similarity and commonality. However, on problems with

few inter-task similarity and commonality, these algorithms may
have worse performance than those with no transfer learning. To
deal with this issue, introducing similarity measurement between
two tasks could be a good choice. Moreover, how to extend
the existing transfer learning based optimization algorithms to
solve large-scale multitask problems in real applications remains
a challenging problem.
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