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Blood brain barrier (BBB) conserves unique regulatory system to maintain barrier
tightness while allowing adequate transport between neurovascular units. This
mechanism possess a challenge for drug delivery, while abnormality may result
in pathogenesis. Communication between vascular and neural system is mediated
through paracellular and transcellular (transcytosis) pathway. Transcytosis itself showed
dependency with various components, focusing on caveolae-mediated. Among several
factors, intense communication between endothelial cells, pericytes, and astrocytes
is the key for a normal development. Regulatory signaling pathway such as VEGF,
Notch, S1P, PDGFB, Ang/Tie, and TGF-B showed interaction with the transcytosis
steps. Recent discoveries showed exploration of various factors which has been proven
to interact with one of the process of transcytosis, either endocytosis, endosomal
rearrangement, or exocytosis. As well as providing a hypothetical regulatory pathway
between each factors, specifically miBNA, mechanical stress, various cytokines,
physicochemical, basement membrane and junctions remodeling, and crosstalk
between developmental regulatory pathways. Finally, various hypotheses and probable
crosstalk between each factors will be expressed, to point out relevant research
application (Drug therapy design and BBB-on-a-chip) and unexplored terrain.
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INTRODUCTION

Blood Brain Barrier Concept and Constituents

The neurovascular unit is a complex system of blood vessels and nerves, together with neighboring
cells and the extracellular matrix. There are numerous similarities, functions, interactions, and
remodeling process interconnected between these two systems (vascular and nervous) in the body.
A prominent example is the formation of the blood brain barrier (commonly abbreviated as BBB).
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The BBB is a complex mixture of various transport systems
located between blood vessels and the brain. It is predominantly
composed of endothelial cells, neurons, oligodendrocytes,
pericytes, astrocytes, microglia, and surrounded by the
extracellular matrix which is mainly composed of collagen
and laminin. The primary function of the BBB is to provide
a safety mechanism to prevent potentially harmful material
from entering the brain, while still enabling the transcytosis
of nutrients and signaling factors. Failure to maintain the BBB
integrity results in abnormalities, mainly infectious diseases such
as meningitis, multiple sclerosis, neurodegenerative diseases,
and a plethora of brain disorders. Understanding the exact
mechanisms of transcytosis in the BBB will provide useful
insights for diseases and their possible treatments.

Among this complex mixture of cells, endothelial cells (ECs)
are squamous cells that form the lining wall of the vascular
system. The differentiation of endothelial cells is organ and
tissue specific, modified via responses of the appropriate gene
expression toward hemodynamic forces, extracellular stress,
interaction with adjunct cells, and matrix secretions (Marcu
et al., 2018). Brain microvasculature endothelial cells (BMECs)
have an adaptation to form tight barriers and also active
transport protein, such as P-glycoprotein (Stebbins et al., 2015).
Expression of p-glycoprotein at BMECs, which is one of the efflux
transporters, shows dependency to p-catenin upregulation (Lim
et al., 2008). This clearance process showed that transcytosis in
the BBB can be accomplished from abluminal to luminal sides.
The response and behavior of BMECs also shows dependence on
cytokine stimuli (Carroll et al., 2015). The primary formation of
BBB tight junction is also regulated by ECs, together with other
cells. Pericyte is interconnected with ECs in microvasculature,
and act as the co-regulator of ECs. In the BBB, this type
of cell plays an important role as one of the supporting
cell types for BBB integrity and permeability via cell to cell
communication and ECM to cell communication. Pericytes
have been shown to regulate the differentiation of ECs into
HBMECs. These cells also interact with astrocytes to induce
polarization of astrocytes surrounding the blood vessel. A lack
of pericytes in the mouse model and cell culture experiment
causes increased BBB permeability. Treatment of imatinib, which
depletes pericytes, inhibits the release of tracers from ECs
to the brain via transcytosis. Thus it can be inferred that
pericytes have a role in regulating transcytosis in the BBB
(Armulik et al., 2010). Astrocytes are part of the modified glial
cells. The primary role of these cells is to support neurons.
In the BBB complex, the foot of astrocytes encircles ECs
and blood vessels. Astrocytes also enable nutrients transport
and delivery to neurons. A recent study showed astrocytes
may promote blood flow and microvasculature remodeling
(Figley and Stroman, 2011). One of the prominent mechanisms
for tight junction regulation by astrocytes is by regulating
the accumulation of agrin, a heparin sulfate proteoglycan
which is important for BBB integrity in the basal lamina
(Abbott et al., 2006).

However, the exact mechanism whereby transcytosis may be
affected by co-regulation between ECs, pericytes, and astrocytes
is still unclear (Figure 1). Various relevant factors also still

need further elucidation. This review will focus on revealing
and summarizing current findings of interaction between ECs,
pericytes, and astrocytes as well as the crosstalk of factors which
may affect transcytosis in the BBB.

Paracellular and Transcellular BBB
Permeability

Molecular transport across the BBB is highly dependent on
its permeability, which is defined by the paracellular pathway
(molecules cross through ECs junctions) and the transcellular
pathway (endocytosis followed by endosomal rearrangement
and exocytosis from the cell). These mechanism contributes
to the brain’s nutrition supply, as comprehensively reviewed
by Lalatsa and Butt (2018). BMECs have a specialized tight
junction in order to prevent undesirable paracellular transport
and consequently direct the necessary molecules by a specific
transcellular pathway (Zhou et al., 2019). The importance of
transcytosis is emphasized under certain conditions including
hypertension and strokes (Knowland et al., 2014). When
pathogenesis occurs, the primary response is upregulation
of caveolin, which facilitates caveolae assembly (Knowland
et al, 2014). A similar finding in the case of multiple
sclerosis also stresses the significant upregulation of caveolae-
mediated transcytosis (Lengfeld et al, 2017). This response
may be a reaction to facilitate the recovery process, which
requires a higher supply of nutrients, as well as clearance of
toxic materials.

Transcellular pathways in cells are categorized into clathrin
mediated and non-clathrin mediated. Detail mechanism in
several types of transcytosis can be studied extensively in the
comprehensive review by Pulgar (2019) and Villasefior et al.
(2019). Non-clathrin mediated transport makes use of dynamin,
coat proteins, small GTPases, and RhoGAP proteins. Caveolae-
mediated transcytosis is one of the non-clathrin mediated
pathway. Transportation between cells using extracellular vesicles
(EVs) is very important during development and maintenance
of the BBB. A recent study showed atheroprotective intercellular
communication via EVs between ECs and smooth muscle
cells through miRNAs regulation (Hergenreider et al., 2012).
Based on these interactions, the transport pathway plays an
essential role in intercellular communication. Which brings us
to question, is there any interaction between paracellular and
transcellular pathways? In the case of water transport, lack of
protein transporter in the paracellular path may significantly
impair the transcellular path (Kawedia et al, 2007). It has
been elucidated that Cav-1 also plays a part in the regulation
of TJ protein expression in HBMECs (Song et al, 2007),
indicating a central role for the transcellular pathway in the BBB
maintenance (Figure 2).

Caveolae Biosynthesis

There are two main proteins which play a major role in caveolae
biosynthesis. The first is caveolin, along with multiple isomers
(Cav-1, Cav-2, and Cav-3). The second one is cavin, which
currently has four known isomers. These two components are
an essential part of caveolae, and the absence of either one
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will significantly suppress the amount and function of caveolae.
Lipodystrophic phenotype has been observed both in mice and
humans lacking caveolae, suggesting its importance for lipid
transcytosis. A recent discovery has showed that binding of
these components with phosphatidylserine plays a crucial role
in caveolae formation (Hirama et al., 2017). Cav-1 and Cav-2
will form 8S oligomer on endoplasmic reticulum, followed by
transport via COP 1II (coat protein complex II) to the Golgi. In
this place, 85 Cav-1/Cav-2 will undergo oligomerization with
cholesterol forming the 70S subunit, followed by transport to
plasma membrane (Hayer et al., 2010).

In the context of the BBB, HBMECs have been modified
to limit the number of caveolae, thus limiting leakiness and
transcytosis. One reason for this regulation is the role of Mfsd2a,
which is a facilitator at the cell membrane to transport the
LPC-DHA supply to the brain. In contrast with the increasing
lipid content, the cell will undergo suppression of caveolae
amounts (Andreone et al.,, 2017). Meanwhile, elevated caveolae
occurrence is a sign of pathogenesis (Table 1), indicating BBB
leakiness with interaction of several other factors of transcytosis
(Gu et al.,, 2012). However, attenuation of caveolae expression
inhibits the expression of T] proteins (Song et al., 2007) and
also accelerates neurodegeneration and aging (Head et al,
2010). Keeping the balance of caveolae number for appropriate
amount of transcytosis has been a challenging aspect for
maintaining BBB stability.

TABLE 1 | Several diseases with abnormality concerning transcytosis, as well as
abnormality of the Cav-1 as the component of endocytosis.

Pathological condition with implication for abnormality of transcytosis
in BBB

> Focal cerebral ischemia
e Upregulation of Cav-1 and Cav-2 (Xie and Lu, 2018)
» Moyamoya disease
e Downregulation of Cav-1 (Chung et al., 2018)
> Dengue hemorrhagic fever
e Upregulation of Cav-1 (Chanthick et al., 2016)
> Traumatic brain injury
e Upregulation of Cav-1 phosphorylation (Nag et al., 2009)
> Alzheimer disease
e Upregulation of Cav-1 (Gaudreault et al., 2004)
e Downregulaton of PICALM (Ando et al., 2016)
> Influenza associated encelopathy
e downregulation of Cav-1 (Imakita et al., 2019)
> Cortical spreading depolarization
e Upregulation of Cav-1 (Sadeghian et al., 2018)
e Independent of paracellular (Sadeghian et al., 2018)
> Parkinson disease
e Upregulation of Cav-1 (Cha et al., 2015)
e Downregulation of TJ protein (Kuan et al., 2016)
> Multiple sclerosis
e Upregulation of Cav-1 (Lutz et al., 2017)
> Amytrophic lateral sclerosis
e Endosomal rearrangement (Rabs) instability (Farg et al., 2014)
e Exocytosis (SNARE) abnormality (Kawamata et al., 2014)

SHARED DEVELOPMENTAL PATHWAY

Vascular Endothelial Growth Factor

(VEGF)

Vascular endothelial growth factor (VEGF) has cytoprotective
effects on ECs by preventing apoptosis, mediated through
phosphatidyl inositol 3-kinase (PI3K)/Akt pathway (Ferrara
et al., 2003). Action of VEGF in angiogenesis is prominent,
but for maintenance at the latter stages of development,
pericytes will take over this function. Instead of maintaining,
VEGF reduces barrier robustness through the nitric oxide
synthase (NOS)/cGMP-dependent pathway (Mayhan, 1999). The
activation of eNOS in Human Umbilical Vein Endothelial Cells
(HUVEG:s) is also crucial for caveolae formation (Bai et al., 2017).
Endocytosis of VEGF receptors are also caveolae dependent,
inferred from a study of leukemia cell line (Caliceti et al.,
2014). In vivo retina study using Macaca fascicularis shows
administration of VEGF will induce angiogenic phenotype both
in ECs and pericytes, thus it might be resulting in BBB instability
in adults (Witmer et al., 2004). This side effect can be neutralized
by administration of Angl, which attenuates the activity of
MMP-2 and MMP-9, without disturbing the angiogenesis
in mice cerebrovascular (Valable et al., 2005). Activation of
VEGF/PI3K/Akt pathway may induce actin reorganization in
human angioma cells (Wang et al., 2011), a process known to
be crucial for endocytosis and endosomal rearrangement (Podar
and Anderson, 2008; Romer et al.,, 2010; Coelho-Santos et al,,
2016). This might be one of the ways for VEGF controlling
caveolae and transcytosis in the ECs. In the early symptoms of
stroke and cerebral ischemia, regions of the brain can end up
in hypoxic conditions. During hypoxia, VEGF will be secreted
from the pericytes which affects claudin-5 and BBB integrity via
paracellular pathway (Bai et al., 2015). Other secreted cytokines
such as IL-6 and G-CSF attenuates BBB transcellular robustness
via an unknown mechanism. Another study also highlights
astrocytes role in BBB integrity attenuation for VEGF-A secretion
during pathological condition (Argaw et al., 2012). Balance
between VEGF activities to properly upregulate transcytosis
while maintaining BBB stability still needs further investigation.

Platelet-Derived Growth Factor
(PDGF)-B/PDGF Receptor Beta (PDGFR§)

At early stages of vessel formation, tip ECs will secrete PDGF-
B to promote the recruitment of pericyte progenitor cells.
This mitogen growth factor will be detected by PDGFRB
on the pericytes, leading the migration to tip ECs in
the process of angiogenesis (Hellstrom et al, 1999). The
expression will gradually decrease following vessel maturation,
but irregularities will arise in the pathological conditions
of several diseases as indicated by the increasing PDGF-B
expression in mature vasculature (Gallini et al, 2016). This
pathway still persists in the postnatal angiogenesis, indicating
an important communication between pericytes and endothelial
progenitor cells (EPCs) (Baumgartner et al., 2010). Lack of
pericytes caused by diminished signaling of PDGF-B/PDGFRf
also showed fatality in mice phenotypes (Lindahl et al., 1997).
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FIGURE 1 | Close interaction between ECs, astrocytes, and pericytes as the backbone of BBB. Together they share some common developmental pathways, which

In the neurovascular unit within adult mice, the expression
of PDGFRp exclusively persists only at pericytes (Winkler
et al, 2010), differing from humans which also retain it in
general ECs (Muhl et al,, 2017). Transcription factor Foxf2
maintains PDGFRp expression specifically in brain pericytes
to support BBB integrity (Reyahi et al, 2015), indicating the
role of the FOX family for maintaining the BBB. Endocytosis
receptor Ephrin-B2 supports the internalization and also
signaling of PDGFRf in mice vascular smooth muscle cells
(Nakayama et al., 2013), leaving room for further study in brain
pericytes. Reactivation of PDGF-B/PDGFRp signaling through
administration of TGF-f can restore the function of the BBB
after focal cerebral ischemia (Shen et al, 2018), indicating a
crosstalk shared by these two pathway. In vitro experiment also
showed protective effects of PDGF-BB on astrocytes through
activation of antioxidant mechanism (Cabezas et al., 2018).
Mice model also support this findings, emphasizing astrocytes
roles to recover neuronal damage after hemorrhage (Zhou
et al, 2019). Another complementary communication is the
PDGF-D/PDGFRP signaling which is supported by the co-
receptor Neuropilinl (NRP1) in ECs (Muhl et al, 2017).
This communication involves NRP1 translocation, indicating a
regulation for other pathways involving NRP1. NRP1 is also
a co-receptor for the VEGF signaling pathway, indicating a
crosstalk between these two pathways. NRP1 also regulates

HMGBI1, which induces caveolae formation in general ECs
(Ma et al, 2019). Possibly PDGF signaling is able to manage
transcytosis via this pathway, additionally activating a regular
PI3K/AKT pathway for actin dynamic regulation.

Transforming Growth Factor-g (TGF-g)

Transforming growth factor (TGF-B) plays an important
role in angiogenesis together with VEGF. These cytokines
have a range of different effects on ECs depending on the
conditions: TGF-B may induce apoptosis via MAPK pathway
on general ECs, while VEGF will protect general ECs from
apoptosis (Ferrari et al., 2009). The process of apoptosis may
induce vascular remodeling, which includes vessel pruning and
maturation. Thus the role of TGF-f is indispensable within
normal vessels. TGF-f1 dimer starts by binding with TGF-f
receptor II, followed by TGF-f receptor 1. This heterotetramer
complex undergoes phosphorylation, subsequently activating
Smad transcription factors: Smad2/3 will be activated first,
forming a heterocomplex with Co-Smad Smad4. Subsequent
transport of this complex to the cell nucleus may regulate
expression of target genes (Daly et al., 2008). Transport of TGF-
B receptor in HeLa cells model is known to be dependent on
clathrin and caveolae, including the novel endosomal fusion
between two vesicles which are regulated by Rab5 (He et al,
2015). Expression of TGF-p maintains cerebrovascular integrity
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FIGURE 2 | (A) Caveolae formation in endothelial cells. Nu, nucleus.

(B) Caveolae is the main endocytosis pathway of ECs compared to clathrin.
Uptake of spherical nucleic acids (SNAs) as the nanocarrier showed 60%
reduction in the Cav-1 deficient cells, also showed 10% reduction in clathrin
heavy chain (CLTC) deficient cells. Reproduced with permission and courtesy
of Chad Mirkin (Choi et al., 2013).

by regulating N-cadherin expression in cooperation with Notch
signaling (Lietal, 2011). However, activation of TGF-p also
upregulates o-SMA (Smooth Muscle Actin) and actin in the
brain pericytes, as well as the VEGE MMP-3, and MMP-9
which promotes barrier instability (Thanabalasundaram et al.,
2011). This is an issue requiring further investigation. TGEF-
B expression in brain pericytes has showed upregulation via
Foxf2 expression (Reyahi et al., 2015). Treatment of brain
pericytes with bFGF (basic Fibroblast Growth Factor) may
promote expression of desmin, vimentin, and nestin which
suppress barrier leakiness (Thanabalasundaram et al., 2011). Both
TGF-p and bFGF are secreted from astrocytes (Abbott et al,
2006), further proving their role in regulating BBB functions, as
well as interaction with ECs and pericytes. ECs specific TGF-
P receptor III (Endoglin) the co-receptor of TGF-BRI, activates
ALK1-Smad1/5/8, which can leads to vessel destabilization.
In myofibroblast model, TGF-BRI activation may suppress
Cav-1 expression via p38/MAPK pathway, and its shown to
be independent to Smad activation (Sanders et al, 2015).
This dual activity of TGF-p signaling should be investigated
even further in BBB.

Sphingosine-1-Phosphate (S1P)

Sphingosine-1-phosphate (SI1P) is synthesized by two types
of sphingosine kinase (Sphk 1 and 2). The HBMECs only
expressed four out of five known SIP G-protein coupled
receptors. S1P exposure to ECs might induce proangiogenic
gene expression, cell migration, maintenance of cell proliferation,

and inhibition of apoptosis (Kimura et al., 2001; Kuwabara
et al, 2003). Secretion of SIP from pericytes and astrocytes
to retinal microvasculature ECs will promote barrier stability
through upregulation of various junctional proteins, as well
as the expression of N-cadherin which promotes cell-to-cell
interaction (Paik et al., 2004; McGuire et al., 2011). Expression
of SIP will induce activation of the PI3K/protein kinase B
(Akt/PKB) pathway and also upregulate antiapoptotic Bcl-2
and downregulate proapoptotic Bim (Limaye et al, 2005).
Upregulation and dephosphorylation of the junctional molecule
PECAM-1 was also observed in HUVECs (Limaye et al,
2005). S1P and LRP1 showed synergistic effects on chemotactic
migration of HBMECs (Vézina et al, 2018). Vessel carrier
effects showed by the chaperone HDL-associated ApoM may
deliver S1P to the S1P1 and S1P3 receptors, promoting ECs
proliferation, preventing apoptosis, and also improve barrier
stability at the BBB (Galvani et al., 2015; Ruiz et al.,, 2017).
However, S1P3 receptor activation in astrocytes isolated from
mice shows that it might activates RhoA which induces
inflammatory cytokines and S1P expression, indicating an
autocrine loop which participates in BBB breakdown (Dusaban
et al., 2017). In HUVECs and mice model, S1P/S1P1R activity
possibly have a vasoprotective effects by regulating the amount
of proinflammatory adhesion proteins (in this case ICAM-
1) (Galvani et al, 2015). Activation of SIPIR signaling was
reported to induce translocation of N-cadherin (making the
bond between general ECs and pericytes stronger), and it has
also been proposed that it alters the adhesive property of
N-cadherin. This activity in general ECs gives rise to complex
cellular communication via various ligands interacting with a
single receptor, but activated through different pathways (Paik
et al., 2004). Loss of the SIP1R will induce BBB leakiness
(Yanagida et al., 2017). Meanwhile, activation of this receptor
will also contribute to the synthesis and also recovery of rat
fat-pad ECs glycocalyx, which mediates vascular robustness and
adsorptive-mediated transcytosis (Zeng et al., 2015). Conversely,
S1P2 receptor plays a role in suppressing the PI3K pathway
which is activated via SIP1R. This inhibition is achieved through
the coupling mechanism of Rho-dependent activation of PTEN
phosphatase. Activation of these pathways will induce vascular
permeability, promoting disruption of adherens junctions and
stimulates stress fibers resulting in the leaky barrier (Sanchez
et al., 2007). Interestingly, activation of the PI3K/Akt pathway
by VEGF has been discovered to induce transcytosis via actin
dynamics and Cav-1 activation (Wang et al., 2011; Jin et al., 2015;
Chen et al,, 2018). Multiple responses from PI3K/Akt pathway
activation or suppression is indicating another regulatory
pathway is necessary for a balanced transcytosis in ECs, and
the outcome of this pathway may differ depending on the cell’s
dynamics. A previous study using HeLa cells showed that SIP
regulates transport proteins tetraspanins (CD63, CD81) and
flotillin into exosomes in the process of MVEs (Multi Vesicular
Endosomes) maturation (Kajimoto et al., 2013). SI1P also has
a protective effect on general ECs and adheren junctions, as
well as actin and cytoskeleton arrangement (Kajimoto et al.,
2013; Shepherd et al, 2017). In regulation of the synaptic
system, sphingosine was shown to regulate the assembly of
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FIGURE 3 | Complex shared developmental pathway between ECs, pericytes, and astrocytes to regulate transcytosis in BBB. Notice the central role of PI3K,
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SNARE complex via synaptobrevin (Darios et al., 2009). In
neurons, S1P also regulates localization of synapsin I, showing
supporting activity of exocytosis process (Riganti et al., 2016). It
is currently unknown whether S1P also plays similar role in the
HBMECs or BBB complex.

Angiopoietin/Tyrosine Kinase With
Immunoglobulin-Like and EGF-Like
Domains (Ang/TIE)

The mechanism of Ang/TIE pathway involves several
angiopoietin ligands (Ang 1, 2, and 4 in humans) and TIE1/TIE2.
Angl which is expressed from pericytes induces occludin
expression in brain capillary ECs through TIE2 activation,
thus promoting barrier tightness (Hori et al., 2004). Angl
also inhibits FOXOLI activity via Akt activation in HUVECs:,
possibly interacting with various downstream target genes
which involved in transcytosis (Daly et al., 2004). In vitro
HUVECs study shows that after activation by Angl, TIE2
will undergo internalization mediated by clathrin vesicles

(Bogdanovic et al, 2009). Normally, Ang2 is not expressed
in adult brain ECs, as Ang2 promotes barrier permeability
via upregulation of Caveolin-1 (Cav-1) (Gurnik et al, 2016).
Release of Ang2 showed dependency on VAMP3 in human
brain ECs (Zhou et al, 2016). The expression of Angl
and Ang2 will undergo changes during the normal aging
process, whereby the former will be more expressed and
meanwhile the latter will be suppressed. Expression of both
receptors (TIE1 and TIE2) has been shown to be stable
both in young ECs or adult ECs (Hohensinner et al., 2016).
This regulation leads to vessel stability and ECs settlement
in HUVECs (Hohensinner et al, 2016). Along with the
senescence of HUVECs, some expression of junction proteins
will be downregulated (Occludin and claudin-5), while ZO-1
will be upregulated compared to the younger ECs in vitro
(Krouwer et al, 2012). A recent discovery has clarified
that TIE2 receptors in human brain pericytes also play a
vital role in the angiogenesis process (Teichert et al., 2017).
Silencing of TIE2 expression in pericytes will induce pro-
migratory phenotypes of ECs, indicating a close reciprocal
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relationship (Figure 3) between pericytes and ECs (Teichert
et al, 2017). This discovery also provides a hypothetical
connection between astrocytes and pericytes, since astrocytes
also express Angl (Lee et al., 2003) which could regulate TIE2 in
pericyte membranes.

Notch

There are four types of Notch receptor in mammals, which
showed interaction with five membrane-bound ligands, Jagged1,
Jagged2, and also delta-like ligand (DII) type 1, type 3, and
type 4. Both brain pericytes and HUVECs showed expression of
Jaggedl during co-culture (Kofler et al., 2015), indicating their
importance in communication. Among several types of Notch
receptors and ligands, only D114 and Notch4 specifically expressed
on mammalian ECs (Shutter et al., 2000). In mice model,
stimulation of DIlI4 ligand will induce EphrinB2 expression in
ECs. Furthermore, pericytes lacking in EphrinB2 expression will

have a defects on vessel recruitment with ECs and impaired
interaction with ECM (Foo et al, 2006). In a study using
HUVECs, upregulation of D114 shows inhibition to the expression
of VEGFR2 and NRP1, which regulates VEGF type A pathway
(Williams et al.,, 2006), suggesting a mechanism to limit the
number of caveolae and transcytosis across BBB. Inhibition of
Notch signaling by GSI (y-secretase inhibitor) showed its’ effects
to increase blood vessel diameter, but not the vessel length,
indicating a local shear stress regulation (Lee et al., 2017; Davis
et al., 2018). Brain ECs showed activity to regulate astrocytes’
GLT-1 via Notch signaling pathway, which requires close contact
between cells confirmed by in vitro experiment (Lee et al,
2017). This brings us to question- how does Notch signaling
between ECs and astrocytes occur in the BBB when ECs are
enveloped by pericytes and basal lamina? It has been discovered
that DII-4 and Jaggedl can be transported for intercellular
communication, by passing through the extracellular matrix
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FIGURE 5 | lllustration of BBBoC for drug or toxic compound testing.
Interaction between various components of the BBB will regulate transcytosis
resembling in vivo conditions. Reproduced with permission and courtesy of
Yeoheung Yun (Koo et al., 2018). (A) Diagram of BBBoC design with inlet and
outlet for medium flow. (B) Steps of cell seeding and gel-cell matrix formation.
(C) Established model of BBBoC in this study.

(Sheldon et al., 2010; Sharghi-Namini et al., 2014; Gonzalez-
King et al., 2017). These discoveries bring our attention to the
role of exosomes in signal trafficking, and that they possibly also
regulate transcytosis.

FACTORS AFFECTING REGULATION OF
TRANSCYTOSIS

Numerous factors might have a connection, either regulating
directly or indirectly the transcytosis mechanism (Figure 4).
In this review we would like to highlight some factors which
have been indicated to regulate either endocytosis, endosomal
rearrangement, exocytosis, or components of transcytosis.

Physicochemical (pH, Temperature, O,,
CO,, ROS) of the Molecules and

Environment

Through several discoveries, physicochemical factors have been
shown to play an indispensable role in balanced transcytosis
in the BBB. Transcytosis via transferrin receptor showed a
dependence on pH and the polarity of proteins (Sade et al., 2014).
The release of iron also utilizes pH changes in endosomes to
change the affinity between iron and transferrin (Qian et al.,
2002). It is undetermined whether changes in pH might alter

the expression of transcytosis’ components or not. A temperature
shift induces membrane reorganization and actin dynamics
which is cholesterol-dependent (Rémer et al.,, 2010), indicating
the role of temperature in governing transcytosis. Similar findings
in neuron behavior highlights temperature-sensitive clathrin-
independent endocytosis, which is mediated by dynamin and
actin (Delvendahl et al., 2016). Further investigation is required
to elucidate the mechanisms behind the effects of these factors.
Oxygenation upregulates SSeCKS, a cytoskeleton protein which
is expressed by astrocytes to invoke BBB tightness via VEGF
suppression and Angl stimulation (Lee et al., 2003). Exposure
to normobaric hyperoxia also can slow BBB damage (Liang
et al,, 2015). On the other hand, hyperoxia/ROS might induce
the Fas-BID apoptosis signaling cascade, which is mediated by
Cav-1 (Zhang et al,, 2011). Signifying balanced regulation is
necessary to maintain an appropriate amount of oxygen in the
BBB. Hypoxic conditions might alter the content of exosomes
for intercellular signaling. It has been shown that Notch ligands
transport will be upregulated during hypoxia (Gonzalez-King
etal., 2017). Hypoxia may induce oxidative stress, mainly caused
by reperfusion (Thornton et al., 2017), triggering BBB breakdown
via NOX4 activation (Casas et al., 2017). ROS which is produced
by NOX is disruptive to the BBB, and has showed a dependence
on cytokines, which actively downregulate junctional proteins
in BBB (Rochfort et al., 2014). ROS disrupts brain ECs™ tight
junctions arrangement via RhoA/PI3K/PKB pathway (Schreibelt
et al,, 2007). ROS also enhance the transcellular migration of
monocytes across BBB (Van der Goes et al., 2002), possibly due
to stimulation of caveolae production via c-Src (Coelho-Santos
etal,, 2016). HyO; from ecSOD in caveolae might also promoting
VEGF activity, which causing leakiness (Oshikawa et al., 2010).
These data indicate that ROS will increase BBB permeability
through transcytosis regulation. Supplementation of alpha lipoic
acid (ALA) and melatonin helps to alleviate ECs oxidative stress
brain (Patifio et al., 2016; Badran et al., 2018), possibly explored
as the treatment.

Mechanical Stress

The importance of normal blood flow for healthy brain
microvasculature development since infancy has been proved
(Farzam et al., 2017). Maintenance of regular blood flow by
neurovascular control as well as cardiac function is prominent
especially in childhood, and failure may lead to sleep-
disordered breathing (Kontos et al,, 2017). The maintenance
of a healthy brain in adults is also closely related to normal
hemodynamics, where individuals with cardiac problems will also
suffer from brain aging (Sabayan et al.,, 2015). Hemodynamics
affect neural activity and both systems are coupled and
synchronized spatiotemporally, especially in excitatory neuron
activity (Ma et al., 2016). One of the regulators between neural
activity and HBMECs is pericytes, which control the capillary
diameter within the central nervous system, depending on the
neurotransmitter (Peppiatt et al., 2006). Pericyte activity as the
regulator of blood flow in the neurovascular unit is also detected
in the adult brain and during brain aging. Phenotypes such
as BBB breakdown, neurodegeneration, and neuroinflammation
were observed in pericyte-deficient model mice (Bell et al., 2010).
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In vitro experiments on bovine BMECs showed some proteins
related to tight junction of BBB, Occludin and ZO-1 are
regulated by blood flow (Berardi and Tarbell, 2009). When
there is a higher shear stress, the expression will also be
upregulated, and this process is dependent on cyclic strain
(Collins et al., 2005). Mechanical stress has been shown to
regulate cell behavior and other factors involving transcytosis.
Shear stress affects the production of NO, independent of
intracellular calcium (Chen et al, 2018). A recent discovery
is that there is a close reciprocal connection between Hippo
pathway (mechanosensory pathway) and caveolae. It has been
elucidated that caveolae are regulating the mechanosensory
action of cells, and they affect the expression of YAP/TAZ
which is the transcription factor of Cav-1 and Cavinl (Rausch
et al., 2019). Shear stress also affects vessel growth by regulating
miRNA expression (Guan et al., 2017). Reduced blood flow
will alter ion homeostasis and receptor-mediated transcytosis of
insulin at the BBB, but not significantly altered the paracellular
transports (Hom et al., 2001). Pericyte ability to express a-SMA
indicates the cell have a contractile ability for regulating
blood vessel diameter and blood flow (Alarcon-martinez et al.,
2018). In some study, effects of mechanical stress to the
cell permeability has been well-elucidated. One example is in
the renal epithelial cells, where fluid shear stress modulated
the endocytosis via mTOR pathway (Long et al., 2017). In the
HUVECs, shear stress affects the endocytosis through PECAM-
1 via various pathways depending on the binding of distinct
epitopes (Han et al., 2015).

It is indeed a result from specialization that HBMECs behave
differently under exposure to shear stress compared to HUVECs
as the representative of other ECs. HBMECs can maintain a
cobblestone-like appearance under high shear stress, and most
likely this mechanism is to minimize the paracellular transport
by minimizing the length of tight junctions (Ye et al.,, 2014;
Reinitz et al, 2015). The detailed explanation needs to be
studied even further. In HBMECs, Mfsd2a (Major Facilitator
Superfamily Domain Containing 2A) has been known to facilitate
the uptake of DHA into brain (Nguyen et al., 2014) as well
as maintaining low rates of transcytosis in the cerebrovascular
units (Zhao and Zlokovic, 2014). By transporting DHA inside
the cells, the caveolae vesicles formation can be inhibited by
intracellular lipid concentration, thus promoting BBB integrity
(Andreone et al., 2017). Mfsd2a expression is shown to be
downregulated by the metastatic brain tumor to disrupt BBB
integrity and lipid metabolism (Tiwary et al, 2018). Another
study also showed a lethal microcephaly phenotype was shown
in the absence of Mfsd2a (Guemez-gamboa et al., 2015). The
expression of Mfsd2a showed partial dependency to LXR/Srebpl
and Srebp2 (Chan et al., 2018). Interestingly, shear stress was
shown to activate Srebpl splicing mediated by integrins in EC
(Liu et al., 2002). SREBP splicing is also showed dependency to
shear stress through S1P and S2P activation, allowing SREBP(N)
to translocates into nucleus and activating SRE-mediated genes
(Lin et al., 2003). Inferred from this pathway, this hypothesis
opens up a possibility for explaining how mechanotransduction
may affecting transcytosis. In astrocytes, mechanical stress is
positively regulating the expression of GFAP. P2Y2 and P2Y4

are the mediators of calcium signaling in astrocytes, which also
colocalize with GFAP (Paniagua-Herranz et al., 2017). These
calcium receptors are dependent to caveolae regulation (Pani
and Singh, 2009), suggesting a crosstalk between these factors to
transcytosis process in astrocytes, as well as feedback regulation
for promoting caveolae formation.

Basement Membrane and Junctions

Remodeling

Close contacts between neurovascular units are maintained
through several ways. One of them is the peg-socket junctional
complex, where the pericytes act like a peg and are inserted into
EC’s sockets through facilitation of proteins, such as N-cadherin
and connexin 43 (CX43) hemichannels. Hemichannels are
membrane protein structures which are coupled to each other
in adjacent cells, providing a channel for signaling molecules
and exchange of metabolites (Orellana et al., 2011). The roles of
CX43 as hemichannel between pericytes and ECs has been clearly
elucidated. It has a crucial part in the maintenance of intercellular
communication between pericytes and ECs, consequently
promoting stability of barrier properties (Li and Roy, 2009;
Bobbie et al., 2010). Inactivity of CX43 expression may leads to
pericytes detachment and activation of ECs apoptosis (Tien et al.,
2014). Gap junction alteration as part of tissue remodeling also
contributes to alteration of transcytosis. During inflammation,
expression of Cx43 and Cav-3 in astrocytes will be downregulated
via iINOS activity. Cx43 as the regulator of gap junctions has
also showed interaction with Cav-1/Cav-2 during transcytosis,
however its relation with Cav-3 still has not been elucidated (Liao
et al,, 2010), leaving room for further study. N-cadherin is one
of the transmembrane glycoproteins that is expressed by ECs,
together with VE-cadherin. While VE-cadherin is indispensable
for vascular morphogenesis, N-cadherin is essential to the
process of vascular maturation through pericytes recruitment
(Tillet et al., 2005). The regulation of N-cadherin is closely
connected to the S1P pathway, where the activation of SIP1R will
promote N-cadherin-dependent of the pericyte-EC connection
(Paik et al., 2004). Albumin also plays a crucial role in the
transcytosis of myeloperoxidase (MPO) via caveolae-albumin
binding proteins (ABPs) (Tiruppathi et al., 2004). MPO itself
will be localized at fibronectin and induce nitration of ECM,
thus promoting the tissue remodeling by binding with adhesion
plaques (Baldus et al., 2001). The expression of Cav-1 was
upregulated after the induction of juvenile traumatic brain injury
(jTBI), demonstrating signs of BBB repair attempts (Badaut
et al., 2015). Upregulation of MMP-2 and MMP-9 expression
was the result of the decreased amount of Cav-1, together with
downregulation of T] protein ZO-1. Rescue experiment using
NOS inhibitor showed reserved expression of Cav-1, inhibition
of MMPs activity, and restored BBB integrity (Gu et al., 2012;
Sadeghian et al., 2018). Pericytes may induce rapid localized
MMP-9 activity during ischemia (Underly et al., 2017). MMP-2
is the major contributor to occludin degeneration, meanwhile
Cav-1 actively redistributes claudin-5 (Liu et al, 2012). BBB
stabilization through astrocytic laminin (laminins-111 and -
211) secretion occurs through pericytes’ integrin a2 (ITGA2)
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binding. Lack of astrocytic laminins may induce pericytes into
contractile form, which compromise BBB integrity (Yao et al.,
2014). Consequently, all these data represent exemplary cases of
how basal lamina might regulate BBB transcytosis.

Various Cytokines

The cytokine family contains the key molecules for cellular
signaling. The exchange of cytokines between ECs, pericytes,
and astrocytes are necessary to maintain BBB integrity,
especially in the process of transcytosis (Dohgu and Banks,
2013). Discovery of the cytokines related to transcytosis is
continuously studied, for example the CTRP5, which promotes
LDL transcytosis (Lietal., 2018). It is indeed interesting that
several pro-inflammatory cytokines are shown to be promoting
transcytosis, one example is the HMGBI1 which promotes
albumin transcytosis through activation of Src and Cav-1
phosphorylation (Shang et al., 2016). Which bring us to question:
what about dual-functioning cytokines? And also the anti-
inflammatory cytokines?

Cytokine signaling has also showed a dependence on the
transcytosis process. One case of this phenomenon is the
trafficking of IL-11, which is known to maintain barrier function
at the intestinal epithelium. Trafficking of IL-11 through IL-11R1
showed a unidirectional transcytosis process, and IL-11R1/2
also controls redirection of gpl130 to the apical part of the
cells (Monhasery et al., 2016). Following gp130, one of the
inhibitors of the JAK/STAT pathway, the SOCS3 was showed
to have another function in the stabilization of cavin-1. In
return, cavin-1 also modulate SOCS3 ability to inhibit IL-6
signaling via cAMP (Williams et al., 2018). In this case we can
see clearly how cytokines might alter cell-signaling processes,
regulating transcytosis and at the same time was also showed
dependency on the transcytosis process. Further investigation
should be conducted regarding the way cytokines might alter
endosomal rearrangement, including whether the quantity of
cytokines exposure plays a part in transcytosis, and vice versa.

miRNA Intercellular Transport (EC,

Pericytes, Astrocytes)

miRNA is another factor which is both regulating and regulated
by transcytosis. It has been proven to actively contribute in cell-
to-cell communication, a process heavily relying on transcytosis,
mainly through EVs. During diabetic complication located on
the limb, miR-503 through the shedding of microparticles
(MPs) is transferred from ECs to pericytes, resulting in pericyte
detachment and increased vessel permeability (Caporali et al,
2015). Cav-1 downregulation by miR-192 is also observed in
synovial tissue fibroblast-like cells (Li et al., 2017), as well as
another miR-199a-5p targeting clathrin in cancer cells (Huang
et al,, 2017). It is plausible to see whether miRNA also regulates
BBB permeability and transcytosis, given the specialization of
HBMECs and the neurovascular unit. An attempt has been
made to characterize miR-155 effects on HBMECs (Chen et al.,
2015), further research should be arranged to see the combined
interaction when co-cultured with astrocytes and pericytes,
or in vivo study. Previous study showed pericytes capability

to regulate vasculogenesis by secreting miRNA targeting Flil
(Larsson et al., 2009). Astrocytes through EVs of cytokines (TNF-
a and IL-1P) also regulates miR-501-3p which disrupts tight
junction (Chaudhuri et al.,, 2018; Toyama et al., 2018). Another
study showed miR-107, which endogenously expressed in ECs
but also present in the cerebrospinal fluid, may protect BBB
robustness from amyloid-beta (Liu et al., 2016), effects of miRNA
also supports recovery after intracerebral hemorrhage (Xi et al,,
2017). In contrast, there are also miRNA with BBB disrupting
activities, for example miR-155 disrupting tight junction protein
expression (Zheng et al., 2017), and miR-181c which secreted
by cancer cells (Tominaga et al., 2015). There have been several
findings where miRNA was alternating the course of signaling
pathway related to BBB transcytosis, mainly VEGF (Chamorro-
Jorganes et al., 2016), Ang/Tie (Fang et al, 2016), PDGFRB
(Tanaka et al., 2013), and TGF-beta (Zhou et al., 2016). miRNA
was also showed to interact with other factors concerning
transcytosis, especially mechanotransduction pathway (Demolli
et al, 2015) and cytokines expression (Guo et al, 2017).
Altogether, miRNA functions and transport system might be
one of the factors affecting and also affected by transcytosis.
Further research is needed to elucidate the detail mechanism and
interaction in order to design an effective treatment strategy.

CONCLUSION: FUTURE APPLICATIONS
AND PERSPECTIVES

By exploring factors of transcytosis which have been described
above, we can apply the knowledge to the development of drug
design and also BBB-on-a-chip.

Drug Therapy Design

One of the obstacles for brain disease treatment is the special
design and low permeability of the BBB which requires
customized drug design. This design will enable drugs to
be taken for transport, which mainly involves caveolae-
dependent transcytosis (Choi et al., 2013; Piazzini et al., 2018).
Several candidates have been tested as potential protagonists
of Cav-1, which upregulates caveolae formation (Table 2).
Nevertheless, specific protagonists of Cav-1 still have not
been found, requiring future study. Targeting the growth
factor receptor also seems promising for inducing caveolae
formation, even though specificity and delivery should be
considered. There are also agents targeting other receptors
which may have an indirect effects to caveolae formation
(Table 2). Targeting S1P1R might induce small molecule
selective of BBB opening, indicating a possibility for drug
administration (Yanagida et al., 2017). Recent study successfully
create a temperature sensitive liposome (Bredlau et al., 2018)
utilizing hyperthermia, and conjugated cation transporter which
utilize ECs' glycocalyx negative charge (Kou et al, 2018).
Inactivating P-gp remains a challenge to prevent drug efflux,
and a recent study showed it can be internalized due to ROS
activation dependent on Cav-1 (Hoshi et al., 2019), consequently
emphasizing the control of transcytosis upregulating factors to
drug therapy strategies.
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TABLE 2 | Some signaling receptors, along with the characteristics of endocytosis, exocytosis (if available), protagonist, and antagonist molecules.

Signaling pathway

membrane receptors

Endocytosis characteristics

Exocytosis
characteristics

Protagonist

Antagonist

Relation to phenotype observed

TGF-R |

VEGFR 1

VEGFR 2

S1P1R

TIE2

Dll4

Notch

G Protein-Coupled
Receptor (GPCR)

EphrinB2

PDGFR- B

Cav-1

Caveolae-mediated

endocytosis

Clathrin-mediated
endocytosis

Novel clathrin/caveolae dependent (He

etal., 2015)

Caveolae dependent (Celus et al.,
2017)

Caveolae dependent (Caliceti et al.,
2014)

Clathrin dependent (Reeves et al.,
2016), Caveolae dependent (Ephstein
etal., 2013)

Clathrin dependent (Bogdanovic et al.,
2009) Caveolae dependent (Hossain
etal., 2017)

Clathrin dependent (Sheldon et al.,
2010)

Clathrin dependent (Meloty-Kapella
etal., 2012)

Clathrin dependent Caveolae
dependent (Zhang and Kim, 2017)
Clathrin dependent (Gaitanos et al.,
2016)

EphB2-Caveolae dependent
(Nakayama et al., 2013)
EphB2-null-Clathrin dependent

CTGF, SDC2 (Chang, 2016)
TGF-8

VEGF-A;B

VEGF-A;C;D;E, Gremlin,

Fingolimod (Quancard et al.,
2012), Ponesimod (Bell et al.,
2018)

ANG1, ANG4

Exosomal markers:
LAMP1 TSG101
Rab5 (Sheldon

et al., 2010)

GRI977143, kynurenic acid,
3-methoxycatechol

EphAd

PPARy, Pioglitazone (Werion
et al., 2016) Chlorogenic acid
derivatives (Lee et al., 2017)

SB431542 (Paonessa et al., 2019), A
83-01 (Yakoub and Sadek, 2018)

Sunitinib, Pazopanib, Axitinib
(Musumeci et al., 2012)

Monomeric Gremlin©'414, Sorafenib,
Sunitinib, Pazopanib, Vandetanib,
Axitinib (Musumeci et al., 2012)

CYM5442 (Kim et al., 2018),
NIBR-0213 (Quancard et al., 2012),
AD2900 (Song et al., 2017)

ANG2, ANG3

Dll4-Fc (Sheldon et al., 2010),
MEDIO639 (Jenkins et al., 2012)

Egfl7 (Nichol et al., 2010)

GDP-B-S

Dasatinib (Barquilla and Pasquale,
2014)

Sorafenib, Sunitinib (Musumeci et al.,
2012)

Lovastatin and/or Celecoxib (Shimato
et al., 2013) GGTI-286 Incadronate
(Iguchi et al., 2006)

MBCD (Moriyama et al., 2017; Wu
etal., 2019)

Nystatin (Burger et al., 2011)
Dynasore (Wu et al., 2019)

In homozygous KO mice, lethality was observed. Severe
hemorrhage and abnormal vessel development was also
present (Larsson et al., 2001)

Lack of this receptor induced by tamoxifen may cause
increased angiogenesis, upregulation of VEGFR2
expression, but non-significant BBB Permeability. It also
cause lethality in germline mice (Ho et al., 2012).

Deficient of blood-island formation and vasculogenesis was
observed in the KO mice (Shalaby et al., 1995), in
heterozygous KO mice, angiogenesis was perturbed
(Oladipupo et al., 2018)

Knockout mice showed lethality and severe hemorrhage
since infancy (Liu et al., 2000)

Global deletion will cause lethality to mice embryo,
pericytes specific deletion may cause developmental delay
and abnormal vessel maturation (Teichert et al., 2017)

Heterozygous deletion will induce arteriovenous
malformation and haploinsufficient lethality in mice (Krebs
et al., 2004)

Lack of Notch1 in KO mice cause lethality (Conlon et al.,
1995), meanwhile artery enlargement and vein
underdevelopment was observed in heterozygous KO (Kim
et al., 2008)

In GPR124 KO mice, embryonic lethality, with abnormality in
CNS vascular and BBB was observed (Cullen et al., 2011)
Blocking of EphrinB2 may inhibit angiogenesis in brain via
VEGFR2 regulation (Sawamiphak et al., 2010), global
deletion causes defective angiogenesis especially in the
head region, and also lethality in embryonic mice (Wang
et al., 1998).

Knockout mice showed excessive bleeding, hypoplasia of
vascular smooth muscle cells in larger vessel, and lack of
pericytes in microvasculature (Hellstrom et al., 1999)
Knockout mice showed loss of Cav-2 expression,
endocytosis defect, hyper-proliferation and abnormal
vascular development (Razani et al., 2001)
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BBB-on-a-Chip

The organ-on-a-chip offers a possibility to create a model closer
to the human body than animal models and conventional
cell culture models. One of the primary applications for
BBBoC is the drug-testing field, to observe cytotoxicity and
pharmacodynamics. It is also useful to study physiological
interactions and responses from multiple organs (Ahadian et al.,
2017). With relatively simple steps, and also time- and money-
saving aspects, the organ-on-a-chip is the future model for
experimentation and study models in the field of life science
(Streets and Huang, 2013). Elucidation regarding transcytosis
factors on the BBB will support establishment of BBBoC. For
instance, a fruitful approach was taken by Koo et al. (2018),
where a three-dimensional (3D) tetra-culture was made using
combined construct of gel-cell matrix, phase guide, and perfusion
of medium. The usage of phase guide which composed of
capillary pressure barriers enable the separation of gel and fluid
phases. Thus, the construction of membrane-free substrate for
endothelial cell attachment was made possible, initiated by gel-
cell polymerization which contained mix culture of microglia,
astrocytes, and neuroblastoma combined to extracellular matrix
that comprised of collagen. Cell seeding of ECs with perfused
medium was done to mimics the shear stress and blood flow,
which resulted in the development of neurovascular unit by ECs
and gel-cell matrix (Figure 5). The permeability and integrity
of BBBoC was tested by using AChE activity, viability, and
residual organo phosphates (OPs) assay, which were known to
be toxic and came across the brain through the BBB in vivo.
Positive points of this model are the utilization of four types of
cell which present in vivo, relatively normal permeability, and
closely mimics the neurovascular unit (Koo et al., 2018). Some
consideration that should be made is regarding the inability to
measure TEER because of the difficulty to insert the electrodes,
and another thing is the extracellular matrix which only
comprised of collagen, whereas the in vivo extracellular matrix
also comprised of fibronectin and gelatin. In conclusion, the field
of BBBoC still has many possibilities for future development and
integration to the body-on-a-chip system. BBBoC is a promising
construct that may answer and serves as the future study model
in many fields of life science.
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