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Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two diseases
that form a broad neurodegenerative continuum. Considerable effort has been made
to unravel the genetics of these disorders, and, based on this work, it is now clear
that ALS and FTD have a significant genetic overlap. TARDBP, SQSTM1, VCP, FUS,
TBK1, CHCHD10, and most importantly C9orf72, are the critical genetic players in
these neurological disorders. Discoveries of these genes have implicated autophagy,
RNA regulation, and vesicle and inclusion formation as the central pathways involved
in neurodegeneration. Here we provide a summary of the significant genes identified in
these two intrinsically linked neurodegenerative diseases and highlight the genetic and
pathological overlaps.

Keywords: amyotrophic lateral sclerosis, frontotemporal dementia, neurological disorders, neurodegeneration,
overlapping genetics

INTRODUCTION

Amyotrophic lateral sclerosis (ALS, OMIM #105400) is a fatal neurological disorder affecting motor
neurons located in the frontal cortex, brainstem, and spinal cord (Cleveland and Rothstein, 2001).
The disease typically begins as muscle weakness in a limb, or occasionally with changes in voice or
difficulty swallowing, which progresses to generalized weakness and paralysis of respiratory muscles
leading to death due to respiratory failure. Approximately 10% of all ALS cases have a family history
of the disease, while the remaining 90% are sporadic. The incidence of ALS is estimated to be 2.1
new cases per 100,000 population per year (Chio et al., 2013), and approximately 6,000 people are
newly diagnosed with ALS each year in the United States alone. The number of ALS cases around
the world is increasing due to the aging of the global population (Arthur et al., 2016). There are
currently no effective treatments for ALS, except for edaravone, which reduces the decline in daily
functioning, and riluzole, which prolongs patients’ survival by a few months (Miller et al., 2012;
Rothstein, 2017).

Frontotemporal degeneration (FTD) is one of the most common types of dementia in people
under 65. FTD may be divided into three primary subtypes, namely behavioral variant, semantic
dementia, and progressive non-fluent aphasia. Among these subtypes, behavioral variant FTD is
the most commonly observed type of dementia associated with motor neuron disorders (Bird et al.,
1999). The incidence of FTD is approximately 4.0 new cases per 100,000 population per year, with
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40% of cases being familial (Ratnavalli et al., 2002). Similar to ALS
and other neurological disorders, there is no effective treatment
for FTD (Tsai and Boxer, 2014).

It is now recognized that ALS and FTD are two diseases that
form a broad neurodegenerative continuum. One of the earliest
hints of this overlap came from the clinical observation that both
disorders can be present within the same family or even within
the same individual. Cross-sectional studies performed over the
last decade estimate that up to 50% of ALS patients develop
cognitive impairment associated with FTD. Similarly, up to 30%
of FTD patients develop motor dysfunction (Burrell et al., 2011).

Considerable progress has been made in unraveling the
genetics of ALS and FTD, and it is now clear that the genetics
of these two neurodegenerative conditions overlap significantly.
TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most
importantly C9orf72, are the critical genetic players, and their
discoveries have implicated autophagy, RNA processing, and
vesicle and inclusion formation as the central pathways involved
in these forms of neurodegeneration.

Here we provide a summary of the significant genes identified
in these two intrinsically linked neurodegenerative diseases and
highlight where cross-talk exists. We describe the genes in the
order of their relevance to ALS/FTD overlap, ranging from
genes that have been demonstrated to cause both clinically and
neuropathologically confirmed ALS and FTD to genes where the
cognitive or motor symptoms are reported in the literature but
pathological confirmation in not yet available.

The genes described in this review, clinical phenotypes and
pathways associated with them are summarized in Table 1.

CHROMOSOME 9 OPEN READING
FRAME 72 (C9ORF72)

In 2011, a hexanucleotide repeat expansion within the C9orf72
gene located on chromosome 9p21 was identified as a
significant genetic cause of both ALS and FTD (DeJesus-
Hernandez et al., 2011; Renton et al., 2011). This repeat
expansion is the most common genetic cause of ALS, FTD,
and ALS/FTD responsible for ∼11% of all ALS and ∼13%
of all FTD cases. This discovery demonstrated that there
is a more considerable genetic overlap between ALS and
FTD than had been previously estimated. The majority of
C9orf72-related FTD cases manifest behavioral symptoms
with a much smaller percentage presenting with semantic
dementia or with progressive non-fluent aphasia. C9orf72
repeat expansions have also been implicated as rare causes of
other neurodegenerative diseases, including Alzheimer’s disease,
Parkinson’s disease, progressive supranuclear palsy, ataxia,
corticobasal syndrome, Huntington disease-like syndrome, and
Creutzfeldt–Jakob disease (Beck et al., 2013; Hensman Moss et al.,
2014; Devenney et al., 2018).

Several mechanisms have been proposed to explain how
C9orf72 expansion causes neurological disease. These include
(Cleveland and Rothstein, 2001) haploinsufficiency of C9orf72
protein (DeJesus-Hernandez et al., 2011; Renton et al., 2011; Chio
et al., 2013; Shi et al., 2018; Shao et al., 2019) RNA toxicity due

to accumulation of RNA containing the GGGGCC repeat in the
brain and spinal cord (DeJesus-Hernandez et al., 2011; Renton
et al., 2011; Arthur et al., 2016; Arzberger et al., 2018) dipeptide
repeat (DPR) protein toxicity arising from repeat-associated non-
AUG translation occurring off the expansion (Miller et al., 2012;
May et al., 2014; Freibaum and Taylor, 2017) disruption of the
nucleocytoplasmic transport (Freibaum et al., 2015; Jovicic et al.,
2015; Zhang et al., 2015). Although the data for each of these
mechanisms are compelling, it is not yet clear which of them
plays the dominant role in determining neurodegeneration. The
possibility of multiple mechanisms, operating in either unison or
sequentially to bring about neuronal death, cannot be discounted.

Various mouse models have been created to elucidate the
pathogenic mechanism underlying C9orf72 neurodegeneration.
Though informative, these models have failed to resolve the
exact mechanism, as the available information bolsters all
four modes of neurodegeneration. For example, mice lacking
C9orf72 in neurons and glial cells did not display motor neuron
degeneration or defects in motor function associated with ALS
(Koppers et al., 2015). BAC transgenic mice with expanded
human C9orf72 hexanucleotide repeat that ranged between 100
and 1000 repeats developed RNA foci and dipeptide repeat
proteins throughout the nervous system. However, there was no
evidence of neurodegeneration or functional deficits (O’Rourke
et al., 2015; Peters et al., 2015). Mice with more than 450
GGGGCC repeats have mild hippocampal neuronal loss and
display signs of age-dependent anxiety and impaired cognitive
functioning (Jiang et al., 2016).

More recent mouse models showed that that loss of C9orf72 in
a gain-of-function C9ALS/FTD mouse model aggravates motor
behavior deficits in a dose-dependent manner (Shao et al., 2019).
Transgenic GFP-PR28 mice expressing arginine-rich poly(PR),
the most toxic type of DPRs in neurons, did partially develop
neuropathological features of C9FTD/ALS (Hao et al., 2019). Two
other transgenic C9FTD/ALS mouse models demonstrated that
poly(GR) affects translation and stress granule dynamics (Zhang
et al., 2018) and compromises mitochondrial function by binding
Atp5a1 (Choi et al., 2019).

TAR DNA-BINDING PROTEIN 43
(TARDBP)

Mutations in the TAR DNA-binding protein 43 (the gene that
encodes the TDP-43 protein) were linked to ALS in 2008
(Sreedharan et al., 2008). Before that, it was recognized that TDP-
43 cytoplasmic and nuclear inclusions are characteristic of both
ALS and FTD. In ALS, the cytoplasmic accumulation of TDP-
43 is found in neurons and glia of the primary motor cortex,
brainstem motor nuclei, and spinal cord (Bodansky et al., 2010;
Mackenzie et al., 2010). In FTD, the inclusions are observed
in the neocortex and dentate granule cells of the hippocampus
(Neumann et al., 2006; Davidson et al., 2007). TDP-43 mutations
are the cause of∼ 1% of all ALS cases. In contrast, an even smaller
number of FTD cases arising from mutations in this gene have
been described, despite the widespread presence of TDP-43 in
FTD brains (Tan et al., 2017).
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TABLE 1 | Key genes identified in ALS and FTD.

Gene Locus Neurological phenotypes Pathway Main localization

FUS 16p11.2 ALS, FTD, ALS (juvenile with BIs) ET, MND (lower), bvFTD?, PD? Nucleocytoplasmic
transport/splicing

Nucleus

TDP-43 1p36.22 ALS, FTD, ALS (flail arm variant), SNGP and chorea, MND Nucleocytoplasmic
transport/splicing

Nucleus

CHCHD10 22q11.23 ALS, ALS/FTD, Mitochondrial myopathy (autosomal dominant) Mitochondrial dysfunction/
Synaptic integrity

Mitochondrion, nucleus

C9orf72 9p21.2 AD, ALS, FTD, ALS/FTD, BD, PD, Schizophrenia Nucleocytoplasmic
transport/splicing

Extracellular, nucleus, endosome, lysosome

UBQLN2 Xp11.21 ALS, FTD, Neurodegeneration, X-linked Autophagy/Proteasome Cytosol, plasma membrane, nucleus

TBK1 12q14.1 ALS, ALS/FTD, AD Autophagy/inflammation Nucleus, cytosol, endosome, mitochondrion

VCP 9p13.3 IBMPFD, ALS, IBMPFD and ALS, CMT2, HSP DMRV,
Scapuloperoneal muscular dystrophy and dropped head fibers,
AD?, Autism?

Autophagy/Mitochondrial
function

Nucleus, endoplasmic reticulum, cytosol,
extracellular, lysosome

SQSTM1 5q35 PDB, ALS, FTD, AD, early onset ALS/FTD, NADGP Autophagy Nucleus, cytosol, lysosome, endoplasmic
reticulum, endosome

IBMPFD, inclusion body myopathy with Paget disease and frontotemporal dementia; AD, Alzheimer disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal
dementia; HSP, hereditary spastic paraplegia; CMT2, charcot-marie-tooth disease, type 2; PDB, paget’s disease of bone; PD, Parkinson disease; BD, bipolar disorder;
MND, motor neuron disease; ET, essential tremor; Bis, basophilic inclusions; DMRV-Myopathy, rimmed vacuolar; NADGP, neurodegeneration, childhood onset with ataxia,
dystonia and gaze palsy; SNGP, supranuclear gaze palsy.

TDP-43 is a DNA and RNA binding protein involved in
many aspects of RNA metabolism, including splicing, microRNA
biogenesis, transcription, and stabilization of messenger RNA
(Buratti et al., 2001; Strong et al., 2007; Buratti and Baralle,
2008; Fiesel et al., 2010; Lagier-Tourenne et al., 2010). Two
contrasting mechanisms have been proposed to explain TDP-
43 related neurodegeneration, namely (Cleveland and Rothstein,
2001) loss of function arising from sequestration of critical TDP-
43 protein within cytoplasmic aggregates leading to nuclear
depletion of TDP-43 (Chio et al., 2013; Mitra et al., 2019;
Roczniak-Ferguson and Ferguson, 2019) gain of function effect
due to some inherent toxic property of the aggregates (Buratti and
Baralle, 2012; Hergesheimer et al., 2019). However, the toxic role
of aggregated TDP-43 in neurodegeneration is still under debate.
Recent research has focused on the role of stress granules in
the pathogenesis of TDP43-related ALS (Khalfallah et al., 2018).
TDP-43 mutations have also been reported to alter liquid drop
formation, though the pathophysiological role of this in vitro
epiphenomena remains unclear (Conicella et al., 2016).

More than fifteen mouse models have been created in the
last 2 years in an attempt to decipher the pathogenic roles
of TDP-43 in autophagy, protein homeostasis, and clearance
pathways involved in ALS and FTD. These rodent models
showed that suppression of conditional TDP-43 transgene
expression differentially affects early cognitive and social
phenotypes in TDP-43 mice (Silva et al., 2019). In a TDP-
43Q331K/Q331K knock-in mouse model of ALS-FTD, TDP-43
gains function due to impaired autoregulation (White et al.,
2018b). In TDP-43M337V and TDP-43G298S knock-in mice,
mutant TDP-43 causes early stage dose-dependent motor neuron
degeneration (Ebstein et al., 2019). Mice with endogenous TDP-
43 mutations exhibit gain of splicing function and characteristics
of motor neuron degeneration (Fratta et al., 2018). Mouse
models have also provided insight into how mutations in this
gene may be underlying frontotemporal dementia. A recent

TDP-43Q331K mouse model manifested cognitive dysfunction
in the absence of motor dysfunction. Pathological examination
showed that normal localization of TDP-43 within the cell,
but there was evidence of perturbed regulation of TDP-43
(White et al., 2018a,b).

SEQUESTOSOME-1 (SQSTM1)

Mutations in Sequestosome-1 (SQSTM1) was initially discovered
in patients with Paget’s disease of bone (Laurin et al., 2002)
and linked to ALS and behavioral FTD in 2011 (Fecto et al.,
2011). SQSTM1 encodes p62, a multifunctional protein involved
in a wide range of cellular functions, including apoptosis (Jung
and Oh, 2019), NFKB1 signaling (Foster et al., 2019), ubiquitin-
mediated autophagy (Zaffagnini et al., 2018; Gao et al., 2019;
Park et al., 2019), and transcription regulation (Rea et al.,
2013). p62 is also a standard component of ubiquitin-containing
inclusions in several neurological disorders, including ALS and
FTD. More than 100 variants have been identified in SQSTM1,
and cumulatively they account for ∼1% of all ALS and up
to 3% of all FTD cases. Defective p62 is prone to forming
aggregates. Individuals with SQSTM1 variants have p62-positive
inclusions in the motor neurons if presenting with ALS, and in
the hippocampus and cerebral neocortex if presenting with FTD
(Arai et al., 2003; Teyssou et al., 2013).

Accumulation of SQSTM1 comes from disturbances in the
selective autophagy pathway (Deng et al., 2019). However,
the pathogenic mechanism that contributes to SQSTM1-related
impaired autophagy and degradation remains poorly understood.
Similar to TDP-43 and FUS, SQSTM1 goes through liquid-liquid
phase separation. Recent research shows that cytoplasmic DAXX
drives SQSTM1/p62 phase condensation, an essential step in
the activation of Nrf2-mediated stress response (Yang et al.,
2019). Polyubiquitin chain-induced p62 phase separation leads
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to the segregation of autophagic cargo (Herhaus and Dikic, 2018;
Sun et al., 2018).

To date, no. p62 mouse model has been created to study
the direct effect of p62 mutations in ALS/FTD. However, many
mouse models exist that demonstrate a relationship between
p62 and other ALS genes. Mitsui et al. (2018) previously
reported that loss of SQSTM1 exacerbates disease phenotypes
in SOD1H46R ALS mice. Following the initial report, the
same authors demonstrated that SQSTM1 overexpression results
in a significant increase in biochemically detectable insoluble
SQSTM1 and poly-ubiquitinated proteins in the spinal cord
of SQSTM1; SOD1H46R mice when compared to SOD1H46R
mice. This observation suggests that overexpression of p62 in
SOD1H46R mice accelerates disease onset by impairing the
protein degradation pathways (Mitsui et al., 2018).

From the FTD perspective, apart from developing mature-
onset obesity due to impaired glucose tolerance and insulin
resistance, p62 knockout mice display significantly reduced
life span and accelerated aging phenotypes. These mice
develop cognitive impairment and anxiety, which are symptoms
characteristic of human Alzheimer’s disease (Kwon et al., 2012).

FUSED IN SARCOMA (FUS)

Fused in sarcoma (FUS) is an RNA-binding protein that was
linked to ALS in 2009 (Kwiatkowski et al., 2009). Similar to
TDP-43, FUS is involved in multiple aspects of RNA metabolism
regulation, including alternative splicing, RNA translation, and
transport (Kwiatkowski et al., 2009; Vance et al., 2009). Mutations
in FUS are responsible for ∼1% of all ALS. They are also
occasionally observed in behavioral FTD cases. In addition to
these phenotypes, abnormal aggregates of FUS, independently of
their mutations, are present in other neurodegenerative diseases
such as hereditary essential tremor, the polyglutamine diseases,
and Parkinson’s disease.

Amyotrophic lateral sclerosis and FTD related mutations are
clustered in highly conserved regions of the gene and affect
the protein nuclear localization signal (NLS). Similar to TDP-
43, mutations in the FUS gene are predominantly found in
ALS patients. A limited number of FUS mutations (p.P106L,
p.Gly174-Gly175 deletion GG, p.M254V) have been described in
FTD patients without concomitant ALS (Van Langenhove et al.,
2010; Huey et al., 2012).

Two mechanisms were proposed to explain FUS-related
neurodegeneration. First of all, there is the toxic gain-of-function
in which nuclear FUS aggregates in cytoplasm and spreads
in a prion-like manner through neuronal tissues (Armstrong,
2017). Second, the depletion of FUS from the nucleus may
impair transcription, alternative splicing, and DNA repair (Shang
and Huang, 2016). A reasonable amount of evidence supports
both mechanisms, and different mechanisms may stand behind
different FUS mutations (Ishigaki and Sobue, 2018; An et al.,
2019). Liquid–liquid phase separation (LLPS) of FUS has
emerged recently as an alternative mechanism for FUS-related
neurodegeneration. It is now established that LLPS is modulated
by universal cellular actors such as ATP and nucleic acids through

enhancement and dissolution (Kang et al., 2019). Other recent
FUS studies expanded on LLPS functions, mechanism, and
transformation (Berry et al., 2018; Kang et al., 2019; Murthy et al.,
2019; Niaki et al., 2019).

Multiple mouse models have been created in an attempt
to identify the pathogenic roles of FUS in neurodegeneration.
FUS knockout mice display behavioral abnormalities such as
hyperactivity and reduced anxiety-related behavior. However,
they do not develop motor neuron impairment, suggesting
that the ablation of the FUS gene alone is insufficient to
cause ALS (Kino et al., 2015). Transgenic mice overexpressing
exogenous FUS with nuclear localization signal deletion
(1NLS-FUS) under Thy1 neuron-specific promoter develop
progressive ALS phenotypes associated with the formation
of ubiquitin/p62-positive FUS aggregates, neuronal loss, and
gliosis. In Fus1NLS/1NLS mice, truncation of the NLS region
leads to mislocalization of FUS protein from the nucleus to
the cytoplasm in spinal motor neurons and cortical neurons
where it leads to apoptosis (Scekic-Zahirovic et al., 2016).
Furthermore, both Fus1NLS/+mice and knock-in mice
carrying another C-terminal frameshift mutation (Fus114/+)
develop progressive motor neuron loss in heterozygosity,
recapitulating the early stages of disease (Scekic-Zahirovic
et al., 2016; Devoy et al., 2017). More recent FUSR514G and
FUSR521C transgenic mice models show that overriding the
FUS autoregulation system triggers gain-of-function toxicity
via an altered autophagy-lysosome pathway and impaired RNA
metabolism (Ho and Ling, 2019; Ling et al., 2019).

VALOSIN CONTAINING PROTEIN (VCP)

Mutations in Valosin containing protein (VCP) was initially
discovered as the cause of a clinical syndrome characterized by
the triad of inclusion body myopathy, Paget’s disease of bone,
and frontotemporal dementia (IBMFTD) in 2004 (Watts et al.,
2004). Mutations in this gene were subsequently identified as
a cause of ALS, representing an early example of how genetic
mutations in a single gene could underlie both ALS and FTD
(Johnson et al., 2010). To date, 72 autosomal dominant mutations
have been discovered in this gene, more than 30 of which
are reported in ALS or FTD cases (including behavioral FTD,
semantic dementia, and progressive non-fluent aphasia) (Al-
Obeidi et al., 2018; Saracino et al., 2018; Bastola et al., 2019). Many
of the reported VCP mutations are located on exon five within
the N-terminal CDC48 domain, which is involved in ubiquitin-
binding, meaning that mutations in this region may negatively
affect the ubiquitin protein degradation pathway (Ganji et al.,
2018; Twomey et al., 2019).

A recent study by Al-Obeidi et al. (2018) showed that VCP
mutations are present in ∼9% of ALS, 4% of Parkinson’s disease,
and 2% of Alzheimer’s disease patients. As of today, no definite
correlation between the mutation type and the incidence of
clinical features associated with VCP has been established (Al-
Obeidi et al., 2018; Plewa et al., 2018).

Valosin Containing Protein encodes a member of the
AAA-ATPase enzyme family with wide-ranging functions in
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cell division (Ogura and Wilkinson, 2001), DNA repair,
ubiquitin-dependent protein degradation, and suppression of
apoptosis (Ogura and Wilkinson, 2001). Ludtmann et al. (2017)
provides evidence that mutations in VCP lead to mitochondrial
uncoupling due to a reduced ADP/ATP translocation by
adenine nucleotide translocase. Such deficiency in mitochondrial
bioenergetics makes neurons especially vulnerable as they require
more energy than other cell types (Ludtmann et al., 2017).

Recent mouse models of VCP showed that activation of
the NLRP3 inflammasome is associated with VCP protein
myopathy. Nalbandian et al. (2017) reported a significant
increase in the expression of NLRP3, Caspase 1, IL-1β,
and IL-18 in the quadriceps of 12 and 24 months old
VCPR155H/+heterozygous mice. Furthermore, a significant
increase of IL-1β(+)F4/80(+)Ly6C(+) macrophages in the
quadriceps and bones of the same mice were also observed and
is positively correlated with high expression levels of TDP-43 and
p62/SQSTM1 markers of VCP pathology and progressive muscle
wasting (Nalbandian et al., 2017).

Another recent discovery showed that VCP plays a vital
role in the maintenance of lysosomal homeostasis and TFEB
activity in differentiated skeletal muscle (Arhzaouy et al., 2019).
Arhzaouy et al. (2019) showed that selective inactivation of
VCP in skeletal muscles of Myl1p-cre-vcp-/-mice, results in a
necrotic myopathy with increased macroautophagic/autophagic
proteins and damaged lysosomes. It was further demonstrated
that the myofiber necrosis was preceded by the upregulation
of LGALS3/Galectin-3, a marker of damaged lysosomes, and
TFEB activation, suggesting early defects in the lysosomal system
(Arhzaouy et al., 2019).

COILED-COIL-HELIX-COILED-COIL-
HELIX DOMAIN CONTAINING 10
(CHCHD10)

Coiled-coil-helix-coiled-coil-helix domain-containing protein 10
(CHCHD10) is a mitochondrial protein associated with ALS and
FTD, including the behavioral and primary progressive aphasia
subtypes of this form of dementia (Ajroud-Driss et al., 2015;
Cozzolino et al., 2015). The protein was discovered in 2014 by
exome sequencing of a large French family affected by autosomal
dominant FTD with or without ALS, cerebellar ataxia, and
mitochondrial myopathy (Chaussenot et al., 2014). At least 30
variants have since been reported, and they are concentrated on
exon two of the gene encoding the non-structured N-terminal
(Taylor et al., 2016; Perrone et al., 2017; Zhou et al., 2017).

Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing
10 is a multifunctional protein involved in the regulation
of mitochondrial metabolism, synthesis of respiratory chain
components, and modulation of cell apoptosis (Zhou et al.,
2017). Perhaps not surprisingly, mutations in CHCHD10
lead to disassembly of the mitochondrial contact site
complex, severe mitochondrial DNA repair deficiency after
oxidative stress, disruption of oxygen consumption and ATP
synthesis in cells, and disturbance of apoptotic mechanisms
(Zhou et al., 2017).

Recent data shows enrichment of CHCHD10 expression
at the postsynaptic membrane of neuromuscular junctions
(Bannwarth et al., 2014; Zhou et al., 2017; Xiao et al., 2019).
Deletion of CHCHD10 in skeletal muscle of HSA-CHCHD10-/-
knockout mice results in motor defects and neurotransmission
impairment, indicating that muscle CHCHD10 is required
for normal neurotransmission between motoneurons and
skeletal muscle fibers (Xiao et al., 2019). Furthermore,
an examination of HSA-CHCHD10-/- mice mitochondria
under an electron microscope revealed a large quantity of
large lysosome-like vesicles, indicating active mitochondria
degradation and suggesting that CHCHD10 is required for
mitochondria structure and ATP production (Burstein et al.,
2018; Xiao et al., 2019).

Two groups independently developed CHCHD10S55L knock-
in mice, representative of human CHCHD10 S59L mutation,
and found that these mice developed progressive motor deficits,
myopathy, cardiomyopathy, and died prematurely (Anderson
et al., 2019; Genin et al., 2019). Histological examination
revealed that CHCHD10, together with its twin CHCHD2 forms
aggregates resulting in abnormal organelle morphology and
function. In contrast, knock out CHCHD10 mice containing
a single adenine nucleotide insertion in exon two that results
in a prematurely terminated protein, did not develop similar
pathology, suggesting that tissue-specific toxic gain-of-function
is the likely mechanism behind CHCHD10 S59L related
neurodegeneration (Anderson et al., 2019).

TANK-BINDING KINASE 1 (TBK1)

TANK-binding kinase 1 (TBK1) gene was discovered in 2015
through the whole-exome sequencing analysis of a large case-
control cohort (Cirulli et al., 2015; Freischmidt et al., 2015).
In 2016, a large genome-wide association study (GWAS) also
identified the TBK1 gene on chromosome 12q14.2 as a risk
locus for ALS, thus confirming the gene’s association with
motor neuron degeneration (van Rheenen et al., 2016). TBK1
is a member of the IkB kinase family involved in autophagy,
mitophagy, and innate immune signaling (Weidberg and Elazar,
2011). The protein is highly expressed in neuronal cells of the
cerebral cortex, hippocampus, and lateral ventricle (Uhlen et al.,
2015). It also interacts with other genes implicated in ALS,
such as OPTN and SQSTM1, to form TBK1 autophagic adaptor
complex (Ryzhakov and Randow, 2007; Morton et al., 2008;
Li et al., 2016).

To date, more than 90 mutations have been discovered on
TBK1. According to a recent meta-analysis study, TBK1 loss of
function and missense mutations account for 1.0 and 1.8% in
ALS/FTD patients, respectively (Lamb et al., 2019). The majority
of TBK1 mutations are loss of function that result in the deletion
of the C-terminal domain responsible for interaction with
adaptor proteins that regulate the cellular distribution of TBK1
and activation of downstream signaling pathways (Ryzhakov and
Randow, 2007). Indeed, mutations appear to lead to a significant
decrease in TBK1 expression at the mRNA and protein levels
(Freischmidt et al., 2015).
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TANK-binding kinase 1 mutations are associated with bulbar
onset ALS and fast progressing behavioral FTD (Freischmidt
et al., 2015). In ALS patients, TBK1 mutations are pathologically
characterized by TDP-43 positive and p62 positive inclusions
in motor neurons, as well as TDP-43 inclusions in the cortex.
Similar to that observed in ALS, FTD patients, harboring
TBK1 mutations is also characterized by TDP-43 inclusions in
numerous brain regions and cytoplasmic p62 and ubiquitin-
positive inclusions in glial cells (Van Mossevelde et al., 2016).

Compelling evidence exists that loss-of-function is the
pathological mechanism behind TBK1-related ALS and FTD (de
Majo et al., 2018; Lamb et al., 2019; Weinreich et al., 2019).
Germline deletion of TBK1 is lethal in embryonic mice suggesting
that the protein plays a critical role in developmental homeostasis
(Bonnard et al., 2000). More recent rodent models demonstrated
that conditional neuron-specific knockout of Tbk1 in Tbk1fl/fl
Nestin-Cre mice leads to the development of cognitive and motor
dysfunction similar to ALS/FTD. Neuron-specific Tbk1 deletion
induces morphological and biochemical alterations in neurons
and glia such as abnormal dendrites, neurofibrillary tangles,
reduced dendritic spine density, as well as cortical synapse
loss. Furthermore, Tbk1 knockout impairs autophagy in motor
neuron-like cells, while Tbk1 over-expression extends survival of
ALS transgenic mice (Duan et al., 2019).

TANK-Binding Kinase 1 is a central regulator of selective
autophagy and inflammatory responses via IFN type I signaling
(Perry et al., 2004; Hu et al., 2018). Heterozygous deletion of
the α-IFN receptor Ifnar1 significantly prolongs the life span
of SOD1G93A ALS mice (Wang et al., 2011). In a 2019 study,
Brenner et al. (2019) further elucidated on the connection
between TBK1 and SOD1 in the mouse models. The group
showed that at the early stage, heterozygous Tbk1 deletion
impairs autophagy in motoneurons and prepones the clinical
onset and muscular denervation in SOD1G93A/Tbk1 ± mice,
while at the late disease stage, it significantly alleviates microglial
neuroinflammation, decelerates disease progression, and extends
mouse survival (Brenner et al., 2019).

Summary
After several decades of research, it is now clear that the same
genes can cause ALS and FTD. Mutations in C9orf72, TARDBP,
FUS, TBK1, VCP, CHCHD10, and SQSTM1 are the most closely
associated with both diseases. Clinically, the ALS phenotype is
most commonly associated with the behavioral variant of FTD,
with other subtypes of FTD involving language occurring less
commonly. The pathophysiology underlying this observation is
poorly understood.

Nevertheless, this overlap is not complete: SOD1, FUS, and
TDP-43 variants are most commonly associated with ALS and
are only rarely found in FTD patients. Similarly, GRN is linked
to FTD, but not to ALS. Clinically, the ALS phenotype is
most commonly associated with the behavioral variant of FTD,
with other subtypes of FTD involving language occurring less
commonly. The pathophysiology underlying this observation is
poorly understood.

It is striking how the same pathways are implicated repeatedly
in ALS and FTD. Both disorders characterized by defects in RNA

processing, protein clearance by autophagy, vesicle trafficking,
mitochondrial dysfunction, and impaired protein homeostasis.
The genes described in this review are the key players in these
pathways. TDP-43 and FUS are responsible for RNA regulation;
SQSTM1, C9orf72, VCP, and TBK1 are involved in autophagy
and vesicle dynamics; TDP-43, FUS, and SQSTM1 are common
components of nuclear and cytoplasmic inclusions (Weishaupt
et al., 2016). Due to such significant genetic overlap between ALS
and FTD, it is reasonable to look in FTD cases for mutations in
ALS genes, and vice-versa.

The C9orf72 repeat expansion gives rise to a diverse
range of inter-familial and intra-familial phenotypes, including
age at disease onset, site of symptom onset, rate and
pattern of progression, levels of cognitive impairment and
motor neuron degeneration, as well as disease duration. This
clinical heterogeneity likely indicates that both genetic and
environmental factors play a significant role in the development
and course of the disease. Environmental factors such as
occupational exposure to heavy metals, toxic compounds,
and extremely low-frequency electromagnetic frequencies have
been previously reported to increase the risk of developing
neurological disorders. Studies on personal habits revealed
an increased risk of ALS among smokers, as well as an
overall worse prognosis after disease onset. In contrast, alcohol
consumption was associated with a reduced risk of ALS.
Literature analysis of head trauma and the development
of neurological disorders were inconclusive. More recently,
advanced genetic analysis of a large genetic dataset implicated
high cholesterol as driving the risk of ALS, as well as
confirming an association with smoking and physical exercise
(Bandres-Ciga et al., 2019).

Research shows that environmental factors can influence
people’s chances of developing ALS or FTD. Nevertheless, the
studies were performed on case cohorts that were not genetically
selected. Different sets of environmental factors may interact
with different genes. Consequently, future genetic epidemiology
efforts should focus on cohorts selected based on their underlying
genetic risk. Studying such population-based cohorts that have
been assiduously collected and phenotyped for clinical features,
genetics, epigenetics, and environmental and lifestyle exposures
will be essential to these efforts.
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