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The underlying genetic and molecular mechanisms that drive amyotrophic lateral
sclerosis (ALS) remain poorly understood. Structural variants within the genome can
play a significant role in neurodegenerative disease risk, such as the repeat expansion
in C9orf72 and the tri-nucleotide repeat in ATXN2, both of which are associated with
familial and sporadic ALS. Many such structural variants reside in uncharacterized
regions of the human genome, and have been under studied. Therefore, characterization
of structural variants located in and around genes associated with ALS could provide
insight into disease pathogenesis, and lead to the discovery of highly informative genetic
tools for stratification in clinical trials. Such genomic variants may provide a deeper
understanding of how gene expression can affect disease etiology, disease severity and
trajectory, patient response to treatment, and may hold the key to understanding the
genetics of sporadic ALS. This article outlines the current understanding of amyotrophic
lateral sclerosis genetics and how structural variations may underpin some of the
missing heritability of this disease.

Keywords: amyotrophic lateral sclerosis, structural variant, genetic marker, missing heritability, clinical trial
stratification

AMYOTROPHIC LATERAL SCLEROSIS; CLINICAL
PHENOTYPES AND HERITABILITY

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder
characterized by the loss of lower and upper motor neurons, resulting in paralysis of the limb, bulbar
and respiratory muscles, and is typically fatal within 3–5 years from disease onset (Robberecht and
Philips, 2013). The disease incidence is ∼2 per 100,000 population and it is projected that rates
of ALS will increase from ∼222,000 worldwide in 2015 to ∼376,000 in 2040 (Arthur et al., 2016).
In addition to the growing financial burden of this disease, there is a significant burden on the
patients’ families and carers. As such, it is critical to improve our understanding of how genetic
mechanisms may contribute to the pathogenesis of this devastating disease. Investigation of short
structural variations (SVs) in known ALS genes has multiple potential objectives, and may help to
uncover some of the missing heritability in sporadic ALS. Characterization of short SVs may inform
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the discovery of novel disease mechanisms and therapeutic
targets, and be useful for stratification of patient subgroups in
clinical trials.

ALS is a heterogeneous disease, with variable clinical
presentation between patients, and is characterized by
progressive motor deficits that evolve over weeks or months,
eventually affecting most voluntary muscles in the body (Talman
et al., 2016). The heterogeneity of clinical presentation and
diverse rates of progression make the disease challenging to
diagnose, and there is currently no definitive diagnostic test. As
a result, it is usually characterized on the basis of the site and
pattern of onset, and the degree of involvement of upper and
lower motor neurons, and can be classified into the following
categories: (i) progressive bulbar palsy (difficulty swallowing
and speech disturbances); (ii) limb-onset ALS; (iii) progressive
muscular atrophy (involving only lower motor neurons); and
(iv) upper motor neuron predominant ALS (Kinsley and
Siddique, 2015). Most commonly, individuals will present with
asymmetrical focal weakness of the extremities (poor hand
grip, foot drop, stumbling) or bulbar characteristics (dysarthria
and dysphagia). Other typical symptoms include muscle
fasciculation, cramps and hyperreflexia in regions of atrophy,
without accompanying sensory disturbances (Kinsley and
Siddique, 2015). Importantly, the different clinical phenotypes
exhibit differing rates of progression, with the bulbar-onset
form having the most rapid progression and shortest survival
time (Okamoto et al., 1993). In addition, there is considerable
variability between cases within the same diagnostic category.
Given the degree of heterogeneity, it remains to be determined
whether the different clinical phenotypes all represent variations
of the same disease, or whether there is also heterogeneity in
the underlying genetic and molecular disease determinants. At
present, there is a lack of specific genetic or other biomarkers for
the different disease subtypes, or indicators of disease trajectory
in well-documented patient cohorts.

Approximately 10% of ALS cases are classed as familial (fALS),
while the remainder, with no prior family involvement, are
classified as having the sporadic form of the disease (sALS)
(Renton et al., 2014). Since the landmark discovery of the
first mutation in the superoxide dismutase 1 gene (SOD1) in
fALS in the early 1990s (Rosen et al., 1993), there has since
been significant progress in understanding of the genetics of
the familial disease, with approximately 70% of the genetic
mutations that contribute to fALS having been identified (Cook
and Petrucelli, 2019). However the genetic underpinnings of
sporadic ALS (sALS) remain a formidable challenge (Al-Chalabi
et al., 2012; Renton et al., 2014). Comparatively, few mutations
have been described for sALS, despite the application of high
throughput genetic analysis methods (Nguyen et al., 2018).
These methodologies have failed to identify disease-associated
genetic variations in the majority of sALS patients, highlighting
the complexity and genetic heterogeneity contributing to this
disease phenotype. Approximately 10% of sALS cases can be
explained by mutations in 25 known ALS-linked genes, with the
remaining 90% of cases as yet having an undetermined genetic
contributor (Andersen and Al-Chalabi, 2011; Renton et al., 2014;
Dharmadasa et al., 2017). At a glance these data may imply that

the genetic contributions to sALS are minor, however, heritability
estimates and twin studies suggest a genetic contribution of up to
65% (Al-Chalabi et al., 2010; Al-Chalabi and Visscher, 2014). It is
therefore likely that additional genetic contributors to sALS risk
remain to be identified. The situation may be analogous to that
for Alzheimer’s disease where the APOE ε4 (Apolipoprotein E)
risk allele has a frequency of only 14% and does not fully explain
the Alzheimer’s disease age-of-onset risk (Corder et al., 1993;
Roses et al., 2016). However, after discovery of the structural
variant (rs10524523) in the neighboring TOMM40 (Translocase
of outer mitochondrial membrane 40) gene, age of onset risk
could now be assessed for >90% of the at risk population
(Roses et al., 2010).

Currently there are only two therapeutics available for the
treatment of ALS, Riluzole (approved in Australia, United States,
and Europe) and Edaravone (approved in Japan, South Korea,
and United States) (Rothstein, 2017) that impact excitotoxicity
(Doble, 1996) or anti-oxidant pathways (Rothstein, 2017),
respectively and may slow disease progression for a relatively
short period of time. However, these drugs are only effective
in some patients and there is currently no way to determine
those most likely to respond to the drugs. For the patients that
do show a response, life is only prolonged by approximately
3 months. Further understanding of ALS pathogenesis should
inform the development of more effective therapies and help
identify patients likely to respond to specific treatments.

GENETIC CHARACTERIZATION AND
GENOME-WIDE ASSOCIATION STUDIES

Genome wide association studies analysing single nucleotide
polymorphisms (SNP) and whole exome sequencing studies have
provided a wealth of information relating to common variants
associated with a range of diseases. Despite this, such approaches
have generally identified genes that are either inherited in
fALS, those that are weakly associated with sALS, or mutations
associated with rare forms of the disease (Renton et al., 2014).
Some of the ALS genes identified by these techniques include
UNC13A, C9orf72, DPP6, ELP3, KIFAP3, TBK1, CHCHD10,
TUBA4A, CCNF, MATR3, NEK1, C21orf2, ANXA11, and TIA1
(see Table 1; Andersen and Al-Chalabi, 2011; Nguyen et al.,
2018). A major issue with utilizing these technologies is that
by testing thousands of SNPs across the genome, low effect
size associations are generated for numerous gene regions,
inevitably leading to very high thresholds of significance for
potentially weak genetic effects (Roses, 2016). This can lead to
false positive associations or a lack of reproducibility between
different populations that have rarely translated into tools for
clinical trial patient stratifications, with the exception of UNC13A
(see below). The amount of information these techniques can
provide regarding complex disease and the functional outcomes
of SNPs are limited. Particularly, these methods have not been
able to account for the variation in age-of-onset and progression
in ALS patients (Al-Chalabi and Hardiman, 2013), and fail
to explain the missing heritability of the disease (Al-Chalabi
et al., 2017; Mejzini et al., 2019). Whole genome sequencing can
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TABLE 1 | This table lists published genes that have been associated with ALS and highlights the discovery method for each gene as well as the gene function.

ALS genes Discovery method Gene function References Number of predicted short SVs

C9orf72 GWAS RNA metabolism Morita et al., 2006 31

TARDP Candidate gene linkage RNA metabolism Gitcho et al., 2008 63

FUS Candidate gene linkage RNA metabolism Vance et al., 2009 45

MATR3 WES RNA metabolism Johnson et al., 2014 60

TIA1 WES RNA metabolism Cirulli et al., 2015 83

HNRNPA1 Linkage WES RNA metabolism Kim et al., 2013 23

HNRNPA2/B1 Linkage WES RNA metabolism Kim et al., 2013 24

EWSR1 Candidate gene RNA metabolism Couthouis et al., 2012 66

TAF15 Candidate gene RNA metabolism Ticozzi et al., 2011 35

ANG Candidate gene RNA metabolism Greenway et al., 2006 25

SMN1 Candidate gene Interaction with RNA binding proteins Corcia et al., 2002 68

ELP3 GWAS Transcript elongation Simpson et al., 2008 62

SETX Linkage DNA/RNA processing Chen et al., 2004 101

SPG11 Linkage DNA damage Orlacchio et al., 2010 110

APEX1 Candidate gene Endonuclease Greenway et al., 2004 13

UBQLN2 Candidate gene linkage Protein quality control Deng et al., 2011 9

VCP Candidate gene Protein quality control Johnson et al., 2010 37

OPTN Homozygosity mapping Protein quality control Maruyama et al., 2010 54

VAPB Linkage Protein quality control Nishimura et al., 2004 64

TBK1 WES Protein quality control Freischmidt et al., 2015 59

SQSTM1 Candidate gene Protein quality control Fecto et al., 2011 38

CCNF Genome wide linkage Protein quality control Williams et al., 2016 48

PFN1 Linkage WES Cytoskeletal and trafficking Wu et al., 2012 21

TUBA4A WES Cytoskeletal and trafficking Smith et al., 2014 24

KIF5A GWAS Cytoskeletal and trafficking Nicolas et al., 2018 52

ANXA11 WES Cytoskeletal and trafficking Smith et al., 2017 41

NEFH Candidate gene Cytoskeletal and trafficking Figlewicz et al., 1993 43

DCTN1 Candidate gene Cytoskeletal and trafficking Münch et al., 2004 18

PRPH Candidate gene Cytoskeletal protein Leung et al., 2004 50

FIG4 Candidate gene Cytoskeletal organization and vesicle
trafficking

Chow et al., 2009 66

CFAP410 GWAS Cytoskeletal and DNA damage response Van Rheenen et al., 2016 15

KIFAP3 GWAS Kinesin associated protein Landers et al., 2009 55

ALS2 Linkage Endosomal dynamics Hadano et al., 2001 69

SIGMAR1 Homozygosity mapping Endoplasmic reticulum chaperone Al-Saif et al., 2011 21

SOD1 Linkage Mitochondrial dysfunction and
oxidative stress

Rosen et al., 1993 30

CHCHD10 Candidate gene Mitochondrial dysfunction
and oxidative stress

Bannwarth et al., 2014 32

NEK1 WES Mitochondrial dysfunction and
oxidative stress

Kenna et al., 2016 99

ATXN2 Candidate gene Endocytosis, cell survival Elden et al., 2010 186

GRN Candidate gene Cell growth regulator Schymick et al., 2007 34

UNC13A GWAS Neurotransmitter release Van Es et al., 2009 103

PLCD1 GWAS Signal transduction Staats et al., 2013 21

CHMP2B Candidate gene Recycling of cell receptors Parkinson et al., 2006 22

ITPR2 GWAS Receptor Van Es et al., 2007 204

ARHGEF28 Candidate gene Nucleotide exchange factor Droppelmann et al., 2013 138

DAO Candidate gene Potential detoxifying agent Mitchell et al., 2010 52

DPP6 GWAS Modifies calcium gated channels Van Es et al., 2008 235

VEGFA Candidate gene Angiogenesis, migration of endothelial cells Lambrechts et al., 2003 15

HFE Candidate gene Iron absorption Wang et al., 2004 31

PON1 Candidate gene Organophosphate hydrolysis Slowik et al., 2006 24

Using the method described by Saul et al. (2016) we have predicted the number of short structural variants in each gene that may warrant further investigation. This
does not include insertion/deletions or SNPs.
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examine the entirety of the genome to better capture larger scale
variations, as opposed to single nucleotide changes, however,
these methods come with their own technical limitations; high
throughput short-read sequencing technologies are unable to
accurately capture these regions due to amplification stutter, and
misaligning of the short-read sequences, often misrepresenting
their true variability (Cameron et al., 2019). Recently, it was
demonstrated that variable areas of the genome can camouflage
each other, particularly where short-read DNA sequences map
equally well to different loci, resulting in poor SV characterization
(Ebbert et al., 2019). To date, these techniques have only
accounted for the genetic cause of approximately 10% of sALS
cases (Cook and Petrucelli, 2019). Therefore, it is essential to
rethink the approach and acknowledge the limitations of these
technologies when interrogating the genome. Specifically, there
are vast regions of genetic variability yet to be uncovered in non-
coding regions, which might have significant implications in the
context of complex disease.

STRUCTURAL VARIANTS

Structural variants (SVs) are defined as insertions, deletions,
inversions and microsatellites that can be repeated hundreds
of times. SVs predominantly occur in non-coding regions of
the genome and often do not change the composition of the
mature protein (Roses et al., 2016). Despite this, changes in the
size and composition of SVs can have a significant impact on
the regulatory elements that modulate gene expression (Chiang
et al., 2017). Therefore, SVs can potentially provide a deeper
understanding of how gene expression in complex genetic disease
can affect disease etiology, duration, progression and patient
outcomes (Feuk et al., 2006). SVs have been implicated in
many complex diseases including retinitis pigmentosa (MSR1)
(Rose et al., 2016), Alzheimer’s (TOMM40) (Lyall et al., 2013),
frontotemporal dementia (C9orf72) (DeJesus-Hernandez et al.,
2011; Renton et al., 2011), and other neurodegenerative diseases
(Beck et al., 2013).

The ability of SVs to alter gene expression is likely dependent
on their location within and around the gene or intergenic region,
with their effects occurring via several mechanisms including,
influencing the binding of regulatory elements that determine
transcription, mRNA splicing and processing, genome folding
and higher order structure, and translation (Roses et al., 2016).
This may differentiate mechanisms of disease pathogenesis,
including risk of disease, risk for a specific phenotype, symptom
presentation, disease course and response to treatment, between
individuals (Figure 1A). Due to the variable nature, as well as
the repeat structure of SVs, many remain poorly characterized by
analysis platforms such as next generation sequencing (Cameron
et al., 2019; Ebbert et al., 2019).

Historically, research on SVs has focused on genomic elements
that are larger in size (>1 kb) and much easier to capture by
high throughput techniques, such as copy number variations,
transposable elements, larger insertion/deletions, translocations,
and duplications (Sebat et al., 2004; Feuk et al., 2006; Huang
et al., 2010; Alkan et al., 2011; Sudmant et al., 2015); yet other

small variable regions of the genome remain under characterized
and are more difficult to capture with short-read sequencing
techniques (Figure 1B; Chaisson et al., 2019; Ebbert et al., 2019).
Recently, a comprehensive review highlighted the strengths and
weakness of various sequencing methods and bioinformatics
tools used for SV calling, and the difficulties in capturing smaller
novel variations (Mahmoud et al., 2019). In addition, comparing
the accuracy of SV characterization between methodologies
when different in silico data sets are often utilized remains
a challenge (Mahmoud et al., 2019). Furthermore, how these
methods translate and generalize to patient samples is unclear,
making it critical to establish standard procedures and bench-
marks for the interpretation of SV data. There is a growing
need to utilize SV information in the clinical setting to inform
variation in patient phenotypes. Therefore we and others believe,
important genes that may be critical to understanding the
variation between patients that cannot be fully explained by
SNPs or other mutations, should be reinvestigated for short SVs.
Unrecognized or under characterized SVs could influence the
expression of these genes, thereby contributing to the risk of ALS.

Recent studies investigating the transcriptome of the spinal
cord anterior horn have identified significantly different RNA
profiles between ALS patients and controls, for a multitude of
gene pathways (D’Erchia et al., 2017). Since SVs can exhibit
a range of regulatory effects that can impact levels of gene
expression and potentially the phenotype, it is essential that
these regions are also properly characterized. For example,
a microsatellite repeat element in the promotor region of
PRPF31 (precursor mRNA-processing factor 31) results in some
mutation carriers developing retinitis pigmentosa, whilst others
remain asymptomatic (Rose et al., 2016). The length of this
SV was shown to impact the penetrance of the mutation by
suppressing transcription of this region by 50–115-fold, resulting
in haploinsufficiency (Rose et al., 2016). Such disease mechanisms
also warrant investigation in ALS.

STRUCTURAL VARIANTS IN ALS:
C9orf72 AND ATXN2 VARIATION
An example of an SV that results in ALS pathogenesis is the
repeat expansion in the C9orf72 gene. The protein encoded by
this gene is thought to play a role in endosomal membrane
trafficking and autophagy (Farg et al., 2014). The SV region
of C9orf72 is a hexanucleotide repeat located in intron 1,
GGGGCC that is usually repeated up to 30 times in healthy
individuals. Expansion of this repeat to hundreds or thousands of
repeated segments is a recognized cause of fALS, frontotemporal
dementia, and occasionally also sALS (Mis et al., 2017). The DNA
encoding this repeat is transcribed bi-directionally, resulting
in nuclear RNA inclusions, and is thought to promote gain
of function toxicity (Ly and Miller, 2018; Staats et al., 2019).
Other potential mechanisms include C9orf72 loss of function
(Shi et al., 2018; Staats et al., 2019), or proteotoxicity (Gitler
and Tsuiji, 2016). In particular, patients with expanded repeats
have a more severe phenotype, are predominantly bulbar
onset, exhibit an earlier age of disease onset, cognitive and
behavioral impairment and reduced survival (Byrne et al., 2012;
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FIGURE 1 | (A) Schematic representing potential regulation of gene expression by structural variants and possible effects on disease characteristics. (B) Example of
an under-characterized gene from the NCBI database GRch38.p13 primary assembly, a region that has been repeatedly mapped but lacks consensus around the
nature of this repeat sequence and its true variability. The reference sequence is located at the top of the image, the purple bars depict a sequencing entry with
variable size and its associated rs number and red bars represent a SNP entry (Gene [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for
Biotechnology Information; 2004 – [cited 2019 September 24]. Available from: https://www.ncbi.nlm.nih.gov/gene/).

Cooper-Knock et al., 2014). In addition, microsatellite repeats
are subjected to an unconventional mechanism called repeat
associated non-ATG (RAN) translation (Zu et al., 2011), whereby
proteins can be coded by the additional two reading frames
(GCA and AGC) resulting in up to six dipeptide proteins (Cleary
and Ranum, 2014, 2017). The accumulation of these dipeptide
proteins is seen in the central nervous system of individuals
with ALS and contributes to a multitude of mechanisms that
can induce protein-mediated toxicity (Balendra and Isaacs, 2018).
One of the current strategies employed in the development of
therapeutics for C9orf72 is to target the SV region with antisense
oligonucleotides to induce transcript degradation by RNase H
enzymatic cleavage, preventing the build-up of toxic C9orf72
transcript and protein. Other strategies focus on modulating
the expression of transcription factors specifically involved in
transcribing expanded repeats (Ly and Miller, 2018). Recently,
it was shown that small ribosomal subunit protein (RPS25)
plays a direct role in RAN translation, and decreasing its

levels through RNA interface mediated reduction prolonged
the lifespan of Drosophila with the expanded repeat (Yamada
et al., 2019). In addition, antisense oligonucleotide targeting of
RPS25 enhanced the survival of C9orf72 derived motor neurons
reducing poly-GR and poly-PR foci (Yamada et al., 2019). The
recent identification of a RAN translation regulator is a big
step forward in demonstrating the functional implications of
SV repeats in disease, and indicates antisense oligonucleotide or
small molecules could be a viable therapeutic option for targeting
RPS25 for patients with C9orf72 (Hutten and Dormann, 2019).
However, further research is needed to understand the regulation
of expanded repeats and determine the relative contribution of
repeat RNA and dipeptide repeat proteins to patient phenotype
and cellular toxicity that promotes neurodegeneration in ALS.

Another SV contributing to ALS pathogenesis occurs in the
gene encoding ataxin-2 (ATXN2). ATXN2 contains a CAG repeat,
initially found to be associated with a class of neuromuscular
and neurological disorders, known as polyglutamine disorders,
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caused by the expansion of the microsatellite repeat within
the coding sequence (Al-Chalabi et al., 2012; Lattante et al.,
2014). The ATXN2 protein is involved in endocytosis and
modulates mTOR signals, critical to maintaining cell growth
and survival, thereby modifying translation and mitochondrial
function (Carmo-Silva et al., 2017). The N-terminal of this
protein contains a polyglutamine tract that generally consists of
14–31 residues that when expanded, can carry up to 200 residues
in the pathogenic state (Sproviero et al., 2017). Long expanded
repeats were initially found to cause spinocerebellar ataxia 2
and subsequently, intermediate length repeats were shown to
increase the risk of developing ALS (Daoud et al., 2011; Van
Damme et al., 2011), with one study demonstrating that ALS
risk increases exponentially with repeat length until the cut-
off for developing spinocerebellar ataxia is reached (Sproviero
et al., 2017). The polyglutamine disease causing mechanism
differs between conditions and may include a loss of function
resulting from hyper-methylation (Jin and Warren, 2000), a toxic
gain of function through RAN translation (Scoles et al., 2015),
protein misfolding and aggregation (Kayatekin et al., 2014), and
in ALS, increasing TDP-43 toxicity (Elden et al., 2010). Longer
repeats were expected to result in increased toxic TDP-43 build-
up, resulting in increased risk of disease, an earlier age of onset
and faster progression, however, this is not necessarily seen in
patients (Al-Chalabi and Hardiman, 2013). The possibility of
oligogenic inheritance is the likely explanation, where multiple
risk factors from polymorphic structural variants are required to
act together over time, with environmental stressors, to cause
the development of ALS (Al-Chalabi et al., 2014), accounting
for the particular variability seen in age-of-onset and disease
progression. A better understanding of these variable regions of
the genome and how they might work together to cumulatively
increase disease risk, resulting in motor neuron dysfunction and
susceptibility to neuronal degeneration, is imperative.

THERAPEUTIC DEVELOPMENT
CHALLENGES

Over the past 20 years, more than 50 controlled trials of
putative ALS therapeutics, testing 60 molecules have failed to
demonstrate clinical efficacy (Petrov et al., 2017). Transgenic
SOD1 mice have been used for the majority of ALS pre-
clinical drug development studies; however, these models do
not translate well to human disease (Mitsumoto et al., 2014).
Alternative approaches need to be used to evaluate the potential
efficacy of compounds. Identification and utilization of genetic
markers, such as SVs informative for ALS, could be incorporated
into clinical trial design to reduce the participant heterogeneity
(Van Eijk et al., 2019).

Poor understanding of the pathogenic mechanisms of ALS
neuro-degeneration remains a barrier to the development
of novel therapeutic approaches. Moreover, there are few
biomarkers that allow patient stratification according to disease
mechanism (Agah et al., 2018; Khalil et al., 2018; Mitsumoto
and Saito, 2018; Vejux et al., 2018). As a result, efficacy can
only be evaluated by clinical measures during clinical trials

(Mitsumoto et al., 2014; Mitsumoto and Saito, 2018). Clearly,
there is a critical unmet need to establish well-characterized
molecular biomarkers that can be used as therapeutic targets, or
to inform on the validity of certain treatment approaches. As ALS
is a complex, heterogenous disorder with a varied age of onset and
expression, it is likely that no single therapeutic will be effective
for all patients. Therefore, we must develop strategies to identify
patient subgroups and develop compounds to address the specific
molecular defect.

Establishing molecular targets and markers for ALS could
lead to improved patient stratification for clinical trials, to
enable treatment effects to be identified within specific patient
sub-groups. An example of the success of this approach is
provided by clinical research with lithium carbonate in ALS
patients. After a pilot study demonstrated attenuation of disease
progression in a small number of ALS patients treated with
lithium carbonate (Fornai et al., 2008), a number of follow up
clinical studies have failed to replicate the finding (Aggarwal
et al., 2010; Chiò et al., 2010; Miller et al., 2011; Verstraete
et al., 2012; UKMND-LiCALS Study Group, 2013). In a meta-
analysis of three trials that failed to show a significant effect of
lithium treatment in ALS, Van Eijk et al. (2017) retrospectively
demonstrated that lithium-treated patients who carried the
UNC13A (C/C) genotype had a slower disease trajectory and
showed a 70% improvement in 12 month survival, whilst carriers
of the same genotype receiving no treatment had significantly
reduced survival trajectories (Van Eijk et al., 2017). This survival
benefit was only evident once the patients were stratified by their
genotype, as the heterogeneous trial cohort originally masked the
identification of any therapeutic benefit for a subgroup. In a more
recent report Van Eijk et al. (2019) demonstrated that different
genotypes including the repeat expansion C9orf72 can interact
with both primary and secondary endpoints of clinical trials.
Interestingly, in this report C9orf72 carriers did not have reduced
survival, however, they did exhibit an accelerated monthly
decline measured by ALSFRS compared to non-carriers. No
pharmacogenetic interactions were demonstrated in the valproic
acid trial, however, there was a pharmacognetic interaction
between creatine treatment and the A allele of MOBP, whilst
a dose response was observed for the C allele of UNC13A
improving survival outcomes (Van Eijk et al., 2019). This
highlights the importance of taking genetic information into
account in clinical trials to enrich trial populations for potential
responders. Identifying new genetic variations that may explain
changes in gene expression in sALS patients will therefore be
extremely useful to help inform both primary and secondary
end points in clinical trial, and may improve the likelihood of
clinical trial success.

CONCLUDING REMARKS

The methodologies currently used to elucidate ALS pathogenesis
and inform drug development have not delivered effective
therapeutic strategies to date. In our view, continuing to perform
further genome wide association studies is unlikely to provide
the breakthroughs that are urgently needed. Genome wide
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studies can sometimes identify biochemical pathways involved
in disease and indicate genes associated with fALS and sALS,
however, in-depth characterization of these implicated regions
may identify SVs that influence ALS susceptibility. Limitations of
GWAS and even whole genome sequencing in identifying ALS
risk must be recognized, since allele frequencies of variants or
SNPs may not differ between patient cohorts and controls in
these complex diseases. With increasing likelihood that SVs do
indeed contribute to ALS risk, future investigations will need
to incorporate SVs into genetic studies. It is possible that a
combination of variants occurring frequently throughout healthy
populations will collectively contribute to the vulnerability of
motor neurons, and that this could be further exacerbated
by both physiological and environmental insults. Particular
SVs may better account for the variability in phenotypes
and progression across ALS patient cohorts, and could be
critical targets that can inform drug development. As our
current molecular understanding of ALS has proven largely
ineffective in easing the burden of ALS, clinical trials are likely
to continue to fail if analyses are restricted to conventional
strategies and platforms.

In silico investigations by our laboratory group reveal that
there are a number of under-characterized genomic regions
in ALS genes. Genetic data-bases including National Center
for Biotechnology Information1, Ensembl genome browser 972

and University of California Santa Cruz genome browser3

have multiple sequence entries logged for genomic loci under
different RS numbers. Sequencing technologies, whilst sometimes
precise, have limited accuracy (Roses, 2016), as they only
provide the location but not the specifics of each variant in
individual patients. These poorly characterized regions of the
genome could therefore contribute to the missing heritability
of ALS. In most cases, the variation in allele length and
allele frequency remains unclear, ultimately leading to the
question, “how significant a role do SVs play in complex
diseases, such as ALS?” We have focused on the development
of accurate assays to genotype SVs. For example, investigation
of the SOD1 region has led to the characterization of SV1, a
variant located within the 3′ untranslated region of SCAF4, a
downstream gene that was previously overlooked. The function

1 https://www.ncbi.nlm.nih.gov/gene/
2 http://asia.ensembl.org/index.html
3 https://genome.ucsc.edu/cgi-bin/hgGateway

of SCAF4 has recently been elucidated, with the protein being
necessary for accurate termination of transcription by ensuring
correct polyadenylation site selection (Gregersen et al., 2019).
This SV appears to influence SOD1 expression, possibly through
a toxic gain of function, and could more broadly influence ALS
pathogenesis (Roses Allen, 2019). Continued investigations into
the function of SV1 are presently underway in our laboratory.
In addition, other variants appear to stratify sALS patients on
the basis of survival and may in fact act as modifiers of gene
expression (unpublished data). If this data is confirmed, it will
not only indicate novel mechanisms contributing to ALS, but
also allow patient stratification for enrichment of ALS clinical
trials. Although SVs may not always be a viable drug target,
they may indicate pathways that can be targeted to inform drug
development. It is our belief that we need to re-assess these
regions of the genome in order to identify some of the missing
heritability of ALS and explain the phenotypic variability seen
across this disease.
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