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Objective: Previous studies have shown that combing with color properties may be
used as part of the display presented to BCI users in order to improve performance.
Build on this, we explored the effects of combinations of face stimuli with three
primary colors (RGB) on BCI performance which is assessed by classification accuracy
and information transfer rate (ITR). Furthermore, we analyzed the waveforms of
three patterns.

Methods: We compared three patterns in which semitransparent face is overlaid three
primary colors as stimuli: red semitransparent face (RSF), green semitransparent face
(GSF), and blue semitransparent face (BSF). Bayesian linear discriminant analysis (BLDA)
was used to construct the individual classifier model. In addition, a Repeated-measures
ANOVA (RM-ANOVA) and Bonferroni correction were chosen for statistical analysis.

Results: The results indicated that the RSF pattern achieved the highest online
averaged accuracy with 93.89%, followed by the GSF pattern with 87.78%, while the
lowest performance was caused by the BSF pattern with an accuracy of 81.39%.
Furthermore, significant differences in classification accuracy and ITR were found
between RSF and GSF (p < 0.05) and between RSF and BSF patterns (p < 0.05).

Conclusion: The semitransparent faces colored red (RSF) pattern yielded the best
performance of the three patterns. The proposed patterns based on ERP-BCI system
have a clinically significant impact by increasing communication speed and accuracy of
the P300-speller for patients with severe motor impairment.

Keywords: brain-computer interface, ERP, chromatic stimuli, semitransparent face, visual stimuli

INTRODUCTION

Brain-computer interface (BCI) systems enable their users to achieve direct communication with
others or the outside environment by brain activity alone, independent of muscle control. There are
many potential user groups for BCI systems, including, but not limited to, individuals living with
amyotrophic lateral sclerosis (ALS) who are in the locked-in state (LIS).
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The brain activity used to control a BCI can be measured
using different signal acquisition approaches such as
electroencephalogram (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI),
electrocorticogram (ECoG), or near infrared spectroscopy
(NIRS) (Vidal, 1973, 1977; Wolpaw et al., 2002). Since EEG
signals are recorded via non-invasive electrodes placed on the
surface of the scalp, EEG-based BCI systems are very commonly
used. Three key signal components of the EEG are frequently
used for BCI control: event-related potentials (ERPs), steady-
state visual evoked potentials (SSVEP), and motor imagery (MI)
(Sutton et al., 1965; Coles and Rugg, 1995). The focus of the
present study is the ERP-based BCI.

The P300 speller, is a visual ERP-based BCI system, that can
elicit a P300 ERP component using an Oddball paradigm. The
P300 potential is the largest positive deflection with a latency
around 300 ms after the oddball stimulus onset, and is associated
with various cognitive processes such as attention, working
memory, and executive function (Van Dinteren et al., 2014). In
addition, P300-based BCI systems can evoke P100, N200, and
N400 components. The P300 speller was originally described
by Farwell and Donchin (1988). In this study, participants were
requested to watch a screen displaying a 6 × 6 matrix containing
26 letters and 10 digits. They were asked to focus on the rare target
stimuli and ignore the common non-target stimuli. Stimuli were
flashed (highlighted) in a row-column pattern (RCP). However,
the RCP results in the adjacency-distraction and double-flash
problems, which can cause false positive P300 ERPs during
flashes of non-target stimuli that are adjacent to the target.
Thus, some researchers investigated ways to avoid this issue, and
strengthen the performance of the P300 BCI system.

For example, Takano et al. identified that the color of the
stimuli could influence P300-speller system performance. They
replaced the white/gray flicker matrix with a green/blue flicker
matrix and found that the chromatic stimulus improved the
performance of the P300-speller system (Takano et al., 2009). Jin
et al. (2012) proposed a set of stimuli patterns that made use of
images of the face with different emotional content and degrees
of movement, including neutral faces, smiling faces, shaking
neutral faces, and shaking smiling faces. The results revealed that
BCIs that make use of face-based stimuli paradigms are superior
to the traditional RCP. Kaufmann et al. (2011) attempted to
overlay characters used in a P300 speller with semitransparent
images of familiar faces. This resulted in a higher classification
accuracy by evoking N170 and N400 ERPs. The N170 is a negative
voltage deflection occurring approximately 200 ms after stimulus
onset, which is generally related to motion of the stimuli (Jin
et al., 2015), speech processing (Niznikiewicz and Squires, 1996),
and vocabulary selection (Kutas and Hillyard, 1980). The N400
component occurs at 300-500 ms post-stimulus, and is connected
with face recognition (Kaufmann et al., 2011) and language
understanding (Johnson and Hamm, 2000). The influences
produced by stimuli have also been reflected in other factors,
such as, but not limited to, the inter-stimulus intervals (Sellers
et al., 2006), stimulus intensity (Cass and Polich, 1997), and
stimulus motion (Sutton et al., 1965; Martens et al., 2009). A large
number of works have attempted to design optimal paradigms

based on face stimuli to improve the performance of BCI systems.
For example, Li et al. (2015) observed that compared with a
paradigm that only used semitransparent famous faces, the green
semitransparent famous face paradigm could lead to improved
classification performance. Based on this, we further explore the
performance differences between red semitransparent face (RSF),
green semitransparent face (GSF), and blue semitransparent face
(BSF) patterns. In addition, Guo et al. (2019) investigated how
red, green, and blue (RGB) colors may be used as stimuli in a new
layout of flash patterns based on single character presentation.
They reported that the red stimuli paradigm yielded the best
performance. Thus, we hypothesize that faces, that are colored
red, can produce a higher classification accuracy compared to
patterns that combine red, green, and blue colors with faces.

Although a large number of works have attempted to
design optimal paradigms to improve the performance of BCI
systems, there are scarce studies on the pattern of chromatic
difference and face combination. In our new patterns, the
flashing row or column in the BCI display grid is overlaid with
semitransparent faces that are colored red, green, or blue and
we compare the effect of these three new spelling patterns on
BCI performance. In addition, we investigate the ERP waveforms
induced by the proposed “red semitransparent face” (RSF),
“green semitransparent face” (GSF), and “blue semitransparent
face” (BSF) patterns and evaluate the classification performance
among the three patterns.

MATERIALS AND METHODS

Participants
Twelve healthy participants (S1–S12, five females and seven
males, aged 22–25 years, mean 24 years old) with normal or
corrected to normal vision volunteered for the current study. All
participants’ native language is Mandarin Chinese, and they are
familiar with the Western characters used in the display. They
are all right-handed and had normal color vision. Before the
experiment began, all participants provided informed consent
via a process which the local ethics committee approved. Two
participants’ data was abandoned because the accuracy of three
patterns were all lower than 60%. According to Kubler et al.
(2004), these two participants may be described as “BCI-
illiterate.” Four of the ten participants (S1, S3, S6, and S7) had
participated in a BCI experiment previously. All participants were
informed of the whole experimental process in advance.

Experimental Design
A 20-inch LCD monitor (Lenovo LS2023WC) with standard
RGB gamut and 1600 × 900 resolution was used for stimuli
presentation. Its maximum luminance was set to 200cd/m2.
In the experiment, we instructed participants sit approximately
105 cm in front of the display, which was 30 cm tall (visual
angle: 16.3◦) and 48 cm wide (visual angle: 25.7◦) in a quiet
laboratory which was relatively dim with the optic intensity of
the environment approximately 40lx. Participants were asked to
relax themselves and avoid unnecessary movement throughout
the experiment. The graphical interface of the BCI was developed
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using “Qt Designer 4.8” software. The semitransparent images
of faces, painted with three primary colors, red (255,0,0), green
(0,255,0), and blue (0,0,255), were selected as stimuli, as shown
in the Figure 1, and the transparency was set to 50%. The
stimulus onset asynchrony (SOA) was set to 250 ms, and
the stimulus interval was set to 100 ms throughout all stages
of the experiment.

Figure 1A shows the interface of the 6 × 6 spelling matrix
before the experiment began; it contains 26 letters and 10 digits.
The parameters of the three patterns including background color,
the appearance and distance of characters and the stimuli style
remain the same throughout the experiment. In Figure 1B,
the pattern showed a semitransparent face colored red as the
stimulus covered the characters. For the sake of convenience,
we refer to this as the RSF pattern. Figure 1C shows the
semitransparent face colored green as the stimulus covered the

characters. This is referred to as the GSF pattern. Figure 1D
shows the semitransparent face colored blue as the stimulus
covered the characters. This is called the BSF pattern. In addition,
Figures 1B–D presented the fifth flash.

In the current study, three patterns were presented to
participants in sequence. During the experiment, participants
were requested to silently count the number of times target
characters flashed. The stimulus presentation pattern is based on
binomial coefficients (Jin et al., 2010, 2014a). The formulation
is C

(
n, k

)
= n!/k!

(
n− k

)
!, 0 ≤ k ≤ n, where n refers to the

number of flashes per trial and k refers to the number of
flashes per trial for an element in the matrix. In this study,
the combination of C (12, 2) was used to represent the 12-flash
pattern. Table 1 describes the coding of the stimulus sequence
in the 12-flash pattern with 36 flash pattern pairs. The locations
in Table 1 correspond to the locations of the 36 characters in

FIGURE 1 | The experimental pattern. (A) Character matrix; (B) Red semitransparent face (RSF) pattern; (C) Green semitransparent face (GSF) pattern; (D) Blue
semitransparent face (BSF) pattern; (E) the legend of the three stimuli. Note that in order to avoid copyright infringement, faces are portrayed with censor boxes.
(During the experiment censor boxes were not presented). In addition, (B–D) presented the fifth flash.
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TABLE 1 | The coding of stimulus sequence of the 12-flash pattern.

(1,4) (1,5) (1,6) (1,7) (1,8) (1,9)

(2,10) (2,5) (2,6) (2,7) (2,8) (2,9)

(3,10) (3,11) (3,6) (3,7) (3,8) (3,9)

(4,10) (4,11) (4,12) (4,7) (4,8) (4,9)

(5,10) (5,11) (5,12) (1,10) (5,8) (5,9)

(6,10) (6,11) (6,12) (3,12) (2,11) (6,9)

Figure 1A. Specifically, the first pair (1,4) in Table 1 means
the first and the fourth flash will cover character “A”. During
the offline and online block – for each of the three patterns –
the presentation sequences for each stimulus are consistent
with Table 1.

The flow diagram of the experiment is shown in Figure 2.
Each pattern was presented during both offline and online blocks.
The offline block included three runs. In each run participants
were asked to attempt to spell five targets without any break.
After each offline run, participants had 3–5 min rest. Moreover,
each target needed to be presented in 16 trials before it can be
identified, and each trial consisted of 12 stimuli flashes. In the
offline block, no feedback was displayed to the participants. The
online block contained one run, which included a spelling task
with 36 targets, each of which contained n trials, where n was
decided by online adaptive strategy (Jin et al., 2011) for each
target. Before each run began, the prompt box over the character
indicated the target character.

Given the order that the three patterns were tested in
could affect the performance, we kept split the participants
into three, uniformly sized, groups. Each group was presented
the three patterns in a different order. Table 2 lists the order
of presentation of the three patterns for all 12 participants.
Specifically, participants S1, S4, S5, and S8 attempted to use the
RSF pattern, followed by the GSF pattern, and then the BSF
pattern. Participants S2, S3, S6, and S11 used the GSF pattern,
BSF pattern, and then the RSF pattern, Finally, participants S7,
S9, S10, and S12 used the BSF pattern, RSF pattern, and then the
GSF pattern (see Table 2).

Stimulus Consistency
We prepared the interface composed of a black background
and white characters, which was used to show a traditional
P300 speller interface (Farwell and Donchin, 1988). In order
to ensure the consistency of the color lightness and saturation
across the three stimuli, we referred to G. Saravanan’s study
(Saravanan et al., 2016) which transformed RGB values to
the Hue, Saturation, and Luminance (HLS) color scale. The
conversion formula is expressed in the following equation.

R′ = R/255; G′ = G/255; B′ = B/255 (1)

Cmax = MAX
(
R′,G′,B′

)
(2)

Cmin = MIN
(
R′,G′,B′

)
(3)

1 = Cmax − Cmin (4)

The HSL values can be calculated by the following formula.

H =



0◦, 1 = 0
60◦ ×

(
G′−B′

1 + 0
)

, Cmax = R′

60◦ ×
(
B′−R′

1 + 2
)

, Cmax = G′

60◦ ×
(
R′−G′

1 + 4
)

, Cmax = B′

(5)

S =

{
0, 1 = 0
1

1−|2L−1| , other (6)

L = (Cmax + Cmin)
/

2 (7)

In this work, we calculated the corresponding values of hue,
saturation, and luminance of the three stimuli. The three stimuli
refer to the red (255,0,0), green (0,255,0), and blue (0,0,255)
colors. It is noteworthy that the background of the interface was
black with white characters and the three stimuli were consistent
in saturation and luminance while differing in hue. This is shown
in Table 3.

Electroencephalogram Acquisition
These EEG signals were recorded with g.USBamp and g.EEGcap
systems (Guger Technologies, Graz, Austria). The sample rate of
the amplifier was set as 256 Hz, the sensitivity value was100µV ,
and a third-order Butterworth band-pass filter was applied from
0.1 to 30 Hz (Munssinger et al., 2010; Halder et al., 2016). In this
paper, we chose 16 electrode positions, based on the international
10–20 system (Jin et al., 2014a), which were positioned over areas
of the brain associated with vision. These electrodes were Fz, F3,
F4, FC1, FC2, C3, Cz, C4, P3, Pz, P4, P7, P8, O1, Oz, and O2. The
ground electrode was placed at position FPz, while the reference
electrode was placed on the right mastoid (R) (Jin et al., 2010,
2012, 2015). According to Petten and Kutas (1988), the use of the
right mastoid reference leads to conclusions which are somewhat
similar to those with the average of left and right mastoids. The
electrode impedance was kept below 5 k� in the experiment
(Munssinger et al., 2010). Figure 3 shows the configuration of the
selected electrode positions.

Feature Extraction and Classification
After completing the offline block, feature extraction is used to
reduce dimensionality and hence computation time. Extracted
features were used to construct the individual classifier model,
which was applied during the online block. A band pass filter
was applied to filter the EEG between 1 and 30 Hz to reduce
high frequency noise. The filtering algorithm we applied was a
third-order Butterworth filter. In order to eliminate the impact of
electrical noise, the IIR notch filter of 50 Hz was also applied. In
order to decrease dimensionality of the data and complexity of
the classification model, the filtered EEG data was down-sampled
from 256 to 36.6 Hz by taking every 7th sample.

The first 800 ms of EEG after stimulus presentation was
extracted from each channel. This resulted in a feature vector of
size 16 × 29, where 16 is the number of channels we used and
29 is the number of sample points recorded on each channel after
down-sampling. Moreover, we used winsorizing to remove ocular
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FIGURE 2 | The flow diagram of the whole experiment.

TABLE 2 | The order of patterns for 12 participants.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

RSF 1 3 3 1 1 3 2 1 2 2 3 2

GSF 2 1 1 2 2 1 3 2 3 3 1 3

BSF 3 2 2 3 3 2 1 3 1 1 2 1

Note that “1” refers to the first pattern presented to the participant, and “2” refers
to the second pattern and “3” denotes the last.

TABLE 3 | The corresponding HSL value of the three stimuli.

R (red) G (green) B (blue) H (hue) S (saturation) L (luminance)

RSF 255 0 0 0 100 50

GSF 0 255 0 120 100 50

BSF 0 0 255 240 100 50

artifacts by filtering amplitudes which were less than or greater
than 10 and 90% of the amplitude distribution across the feature
set (Jin et al., 2014b).

In this study, we applied Bayesian linear discriminant analysis
(BLDA) to construct the individual classifier model which was
used during the online block. Due to its regularization, it can
avoid the problem of overfitting of high-dimensional data or
noise interference. Hoffmann et al. (2008) first proposed BLDA
and applied it to the P300-based BCI system effectively. In
addition, after constructing the model, the score per flash was
obtained. Within one trial, that is twelve flashes, the target flash
should achieve the highest mark.

In accordance with widely used standardized metrics for
assessing BCI performance, the classification accuracy and
information transfer rate (ITR) are applied to assess the
performance of our BCI. The ITR is defined as:

B = log2N + Acc ∗ log2Acc+ (1− Acc) ∗ log2
1− Acc
N − 1

(8)

ITR = B ∗
60
T

(9)

where N represents the total number of targets, Acc denotes
the classification accuracy, and T represents the time
performing each trial.

Online Adaptive System Setting
In order to improve system performance, an adaptive strategy
was used with the online spelling system (Jin et al., 2011).
In the online spelling system, the number of trials used to
select each character is related to the classifier output after
each trial. Specifically, when the classifier recognized the same
character on two successive trials, no new flashes are needed
and the recognized character is presented on the screen as
feedback to the BCI user. If the number of trials needed
to recognize a character reaches 16 without any pair of

FIGURE 3 | The configuration of the selected electrode positions from the
10–20 system.
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consecutive trials recognizing the same character, the classifier
will automatically choose the target recognized in the final trial.
For example, suppose that “A” is the target character which
the classifier recognized in the first trial. If the character “A”
was recognized again in the second trial, the final output will
be “A”. We can describe this process via cha (n) = cha (n− 1)
(1 < n ≤ 16).

Statistical Analysis
The One-Sample Ryan-Joiner test based on the correction
of Shapiro-Wilk was used to analyze whether the samples
were normally distributed. A Repeated-measures ANOVA (RM-
ANOVA) was chosen to evaluate the effect of stimuli pattern.
Mauchly’s test of sphericity was first used to check the data
meets the assumptions of the RM-ANOVA. If the assumption was
broken, Greenhouse-Geisser correction was performed to adjust
the degrees of freedom. Finally, we applied Bonferroni multiple
comparisons correction in post hoc tests (Kathner et al., 2015).
The alpha level was set to 0.05 after Bonferroni correction.

RESULTS

ERP Analysis
Figure 4 illustrates the grand averaged ERP amplitudes in
response to the target stimuli for ten participants over 16
electrodes across the three patterns, after applying baseline
correction with a 100 ms pre-stimulus baseline. In Figure 4, the
three colors of the curves in each channel illustrate the three
different kinds of patterns respectively. Four color blocks lie
around the peak point, which represents four types of potentials
including the vertex positive potential (VPP), the N200, P300,
and N400 potentials. We selected the latency of the potentials
as the peak point with the range (min −10 ms, max + 10 ms).
As we can see in Figure 4, the VPP components exist in
frontal and central sites while the N200 and P300 components
are centered over parietal and occipital areas. In addition, the
peak amplitude of BSF curve performed lower than RSF and
GSF curves (see Figure 4). According to studies of W. D.
Wright (Gregory, 1973) and Fuortes (Fuortes et al., 1973), the
human eye is composed of three color-sensitive cone-cell types
(red, green, and blue). These three cone types have different
responses for different stimulus wavelengths. Red cones are
more sensitive to red color, green cones are more sensitive
to green color. Among the three cone types, the red-cone
presents the best response followed closely by the green-cone,
with the blue cones having the lowest response, which may
cause the difference. Furthermore, according to a RM-ANOVA,
the P300 amplitude evoked by the RSF pattern is significantly
larger than the other two patterns (p < 0.05) on parietal and
occipital sites, corresponding to electrode P3, P7, Pz, P8, O1,
Oz, and O2.

Figure 5 shows the signed R-squared value maps from 0 to
800 ms for ten participants over 16 electrodes for each of the
three patterns, which reflects the difference between the target
and non-target stimuli over 16 channels. In order to show the
difference among R-square map for RSF, GSF, and BSF patterns,

the additional three R-square maps for the differences between
RSF and GSF pattern, between RSF and BSF pattern and between
GSF and BSF have also shown in Figure 5. The R-squared values
of the ERPs evaluate the separation between target and non-target
signals. The formula is given as:

r2
=

( √
N1N2

N1 + N2
·
mean (X1)−mean(X2)

std(X1 ∪ X2)

)2

(10)

where X1 and X2 refer to the features of class 1 and
class 2 respectively, and N1 and N2 are the number of
corresponding samples. In Figure 5, the darker the color, the
more distinct the features.

Classification Accuracy and Bit Rate
Figure 6 illustrates the classification accuracy and raw bit rates for
each of the three patterns, which were overlapped and averaged
from all trials for the ten participants based on the offline data.
This valued were acquired from 15-fold cross-validation. As
shown in Figure 6, the RSF pattern achieved the best offline
accuracy and bit rate by averaging 16 trials. This pattern also
used required the fewest the least trials to attain an accuracy
of 100%. Figure 7 depicts the classification accuracy based on
offline single trials, which shows no significant differences across
the three patterns.

In order to observe the differences between the N200, VPP,
P300, and N400 ERP components between the three patterns,
we chose channel P8 for measuring the N200, Cz for measuring
the VPP, Pz for measuring the P300 and Cz for measuring the
N400 (Farwell and Donchin, 1988; Jeffreys and Tukmachi, 1992;
Duncan et al., 2009). The selected channels generally cover the
highest ERP amplitude of the corresponding component.

Table 4 describes the averaged amplitudes of the VPP on
channel Cz, N200 on channel P8, P300 on channel Pz and
N400 on channel Cz from the peak point ± 10 ms for the ten
participants. The averaged values of VPP, P300, and N400 are
largest when the RSF pattern is used, and the stability of the
P300 during presentation of the RSF pattern is better than that
the other patterns.

Figure 8 presents the averaged contributions of the N200,
P300, and N400 components to the offline classification accuracy
for the ten participants. The N200 had a latency of 150–300 ms
after stimulation, the P300 had a latency of 300–450 ms, and
the N400 had a latency of 350–600 ms (Zhou et al., 2016). The
result of the three patterns all delineated N200 and P300 played a
pivotal role in offline classification. Moreover, the N400 potential
has positive effect on the offline classification accuracy.

Online Analysis
Table 5 shows the online accuracies, bit rates, and the averaged
numbers of trials for participants S1–S10 for each of the three
patterns. The calculated p-values indicate the significance of the
difference between each pair of accuracies. Our one-way RM-
ANOVA shows a significant effect of the factor “color” on the
online accuracy

(
F (1.30, 11.65) = 8.87, p < 0.05, eta2

= 0.50
)

and bit rate (F (1.11, 10.02) = 9.25.p < 0.05, eta2
= 0.51). The

online accuracy of the RSF pattern was significantly higher than
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FIGURE 4 | The grand averaged ERP amplitudes of targets for 10 participants over 16 electrodes among the three patterns.

FIGURE 5 | The signed R-squared value maps from 0 to 800 ms for 10 participants over 16 electrodes for each of the three patterns and for the differences of the
three patterns.
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FIGURE 6 | Classification accuracy and raw bit rate based on the offline data.

FIGURE 7 | The classification accuracy based on offline single trial classification.

that of the GSF pattern (t = 3.24, p < 0.05, df = 9) and the
BSF pattern (t = 4.39, p < 0.05, df = 9). In addition, the bit rate
of the RSF pattern was significantly higher than that of the
GSF pattern (t = 5.77, p < 0.05, df = 9) and the BSF pattern
(t = 3.93, p < 0.05, df = 9). However, there are no significant
differences in the number of average trials needed for the
classification across the three patterns. A boxplot of online
accuracies is illustrated in Figure 9.

Participants’ Feedback
At the end of the whole experiment, every participant was asked
to grade their perception of the tiredness and difficulty of each
pattern. Tiredness and difficulty were each given a rating between
1 and 3. A score of 1 corresponded to a little, a score of 2 medium,
and a score of 3 quite a lot of tiredness or difficulty. The questions

were asked in Mandarin Chinese. For the sake of distinguishing
the differences among three patterns, a non-parametric Friedman
test was applied to reveal the differences in feedback. Table 6
delineates the feedback of all participants among three patterns.

TABLE 4 | The averaged amplitudes from each ERP peak point ± 10 ms of all
participant.

RSF (µV) GSF (µV) BSF (µV)

Potential Channel Amplitude STD Amplitude STD Amplitude STD

VPP Cz 5.40 1.99 5.38 2.31 3.35 1.49

N200 P8 −3.67 2.10 −4.25 1.90 −1.28 1.01

P300 Pz 3.46 0.99 3.12 1.47 2.84 1.02

N400 Cz −4.33 1.53 −4.16 1.68 −3.97 1.52
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FIGURE 8 | The contributions on N200, P300, and N400 time windows on the classification accuracy.

TABLE 5 | Online accuracies, bit rates, and average trials analysis results.

Accuracy (%) Bit rate (bit/min) AVT

RSF GSF BSF RSF GSF BSF RSF GSF BSF

S1 100.00 94.44 91.67 31.59 27.45 27.81 2.44 2.50 2.28

S2 97.22 86.11 88.89 29.60 24.66 26.32 2.44 2.31 2.28

S3 94.44 94.44 94.44 29.11 28.39 27.45 2.31 2.39 2.50

S4 100.00 94.44 91.67 33.75 31.09 28.83 2.23 2.11 2.17

S5 91.67 77.78 75.00 24.93 18.38 17.03 2.64 2.72 2.78

S6 100.00 97.22 86.11 35.74 32.26 25.40 2.06 2.17 2.22

S7 83.33 77.78 69.44 21.47 17.31 15.28 2.58 2.94 2.72

S8 88.89 88.89 72.22 24.80 22.49 16.81 2.47 2.81 2.61

S9 100.00 100.00 66.67 35.13 34.20 14.19 2.11 2.19 2.75

S10 83.33 66.67 77.78 20.63 14.64 17.93 2.72 2.64 2.81

AVG 93.89 87.78 81.39 28.68 25.09 21.70 2.40 2.48 2.51

STD 6.78 10.65 10.32 5.50 6.74 5.90 0.22 0.29 0.24

p RSF vs. GSF GSF vs. BSF RSF vs. BSF RSF vs. GSF GSF vs. BSF RSF vs. BSF RSF vs. GSF GSF vs. BSF RSF vs. BSF

0.031 0.392 0.005 0.001 0.417 0.010 0.535 1.000 0.464

Note that AVT refers to the average number of trials used in online spelling. The p-value is obtained by applying Bonferroni correction. The bold values refer to the highest
online accuracy, bit rate, and the smallest number of trials among three patterns. In the row of “value,” the bold item indicates which item is significant.

No significant difference (χ2
= 5.034 , p > 0.05) was found

between the patterns in terms of difficulty or tiredness (χ2
=

0.636, p > 0.05).

DISCUSSION

ERP-based BCI systems have been widely investigated over
many years and some researchers have designed novel stimulus
paradigms to optimize system performance. Previous work has
indicated that familiar faces, colored green, may be used as a
part of the ERP-based BCI display pattern to achieve higher
performance than other display patterns, such as the familiar
face pattern based in P300-speller BCI system (Li et al., 2015).
Therefore, we evaluated how this paradigm was influenced by
other colors (red, green, and blue).

Related studies have indicated that, when familiar faces are
used as stimuli, they may strongly elicit several ERPs, including

the VPP, N200, P300, and N400 components. Cheng et al.
(2017) reported that the semitransparent face pattern can evoke
larger N200 components, which can contribute to improving
classification accuracy. Eimer (2000) revealed that familiar faces
could elicit an N400 in parietal and central cortical areas. In
addition, the VPP component remarkably increase for face-
related stimuli over frontal and central sites (Zhang et al., 2012).
Among the three patterns evaluated in this study, we found all
the ERP components, shown in Figure 4. Moreover, we can see
from Figure 8 that the P300, N200, and the N400 all contribute
to the classification accuracy. The results also indicate that the
RSF pattern could elicit larger P300 potentials on parietal and
occipital areas.

Generally, the performance of a BCI can be evaluated by
online accuracy and ITR. The results listed in Table 5 indicate
that the RSF pattern achieved the highest online averaged
accuracy of 93.89%, followed by the GSF pattern with 87.78%,
while the lowest accuracy was achieved with the BSF pattern

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 14 | Article 54

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00054 January 30, 2020 Time: 16:54 # 10

Li et al. Chromatic (RGB) Semitransparent Face Pattern

FIGURE 9 | Boxplot of online classification accuracies, bit rates, and numbers of trials used to construct the averaged ERPs.

TABLE 6 | The feedback of all participants for each of the three patterns.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 AVG ± STD

Tiredness

RSF 2 1 1 1 2 2 3 2 1 2 1.7 ± 0.67

GSF 1 2 1 2 1 1 2 1 1 2 1.4 ± 0.52

BSF 2 2 2 1 3 2 2 3 1 3 2.1 ± 0.74

Difficulty

RSF 1 1 1 2 2 2 2 2 1 1 1.5 ± 0.53

GSF 1 1 1 1 1 2 3 1 2 2 1.5 ± 0.71

BSF 1 2 1 1 3 2 2 2 1 2 1.7 ± 0.67

Note that a score of “1” denotes a few, “2” medium, and “3” many. AVG denotes
the average and STD denotes the standard deviation.

(81.39%). Four of the participants using the RSF pattern obtained
100% online accuracy. Furthermore, the online accuracy achieved
with the RSF is significantly higher than that achieved with
the GSF pattern (p < 0.05) and the BSF pattern (p < 0.05). In
addition, significant differences in bit rate were found between
the RSF and GSF patterns (p < 0.05) and between RSF and BSF
patterns (p < 0.05). The averaged bit rate of the RSF pattern
was 38.45 bit/min, and the bit rate of the GSF pattern was
33.71 bit/min, while the bit rate of the BSF was 28.76 bit/min. Due
to the averaged presentation order of the three patterns for all
participants, the effect caused by the order of pattern presentation
can be ignored. Consequently, we may conclude that the RSF
pattern yielded the best performance of the three patterns.

In order to further explain the findings, it is necessary
to consider relevant psychological and physiological studies.
Research has shown that long-wavelength colors (e.g., red and
yellow) are more arousing than short-wavelength colors (e.g.,
blue and green) (Wilson, 1966). In our experiment, each face
stimulus was presented for more than half an hour, which
may induce some effects on the emotions of the participants.
Additionally, an association has been reported between colors
and physiological indices of cognition. For instance, the color
red is frequently associated with fire and blood which can lead
to excitement and fear (Kaiser, 1984; Camgöz et al., 2004).
Sorokowski and Szmajke (2011) found that red could improve
performance in a target-hitting task. This result indicated that

participants attempting to hit a red moving objects can achieve
better performance than participants attempting to hit blue
or black targets.

In previous studies, the green/blue chromatic flicker as a
visual stimulus yielded an 80.6% online accuracy (Takano et al.,
2009). Li et al. (2015) proposed that a translucent green familiar
face spelling paradigm could achieve an 86.1% averaged online
accuracy. This SSVEP-based BCI system used LEDs of four
different colors (red, green, blue, and yellow) flickering at
four distinct frequencies (8, 11, 13, and 15 Hz) (Mouli et al.,
2013). It was observed that the red color obtained the highest
accuracy and bit rate in most frequencies. Therefore, a novel
spelling pattern that combines chromatic difference (RGB) with
semitransparent faces resulted in consistency and efficiency in
online BCI performance and offline ERP waveform detection.

CONCLUSION

In the present work, we combined chromatic difference (RGB)
with semitransparent face stimuli to explore the performance of
different colored stimuli patterns in an ERP based BCI system.
The results demonstrated that the RSF pattern yielded the best
averaged online accuracy and ITR. In future work, we will
attempt to train offline models using neural networks to boost
the classification performance. In addition, according to Xu’s
study (Xu et al., 2018), a new BCI speller based on miniature
asymmetric visual evoked potentials (aVEPs) could reduce visual
fatigue for users. This demonstrates the feasibility to implement
an efficient BCI system. We will further explore the effect of color
preference on system performance and take user-friendliness
into account to improve the usability of BCI systems. This may
have a clinically significant impact by increasing communication
speed and accuracy of the P300-speller for patients with severe
motor impairment.
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