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Brain structural plasticity is an extraordinary tool that allows the mature brain to adapt
to environmental changes, to learn, to repair itself after lesions or disease, and to slow
aging. A long history of neuroscience research led to fascinating discoveries of different
types of plasticity, involving changes in the genetically determined structure of nervous
tissue, up to the ultimate dream of neuronal replacement: a stem cell-driven “adult
neurogenesis” (AN). Yet, this road does not seem a straight one, since mutable dogmas,
conflicting results and conflicting interpretations continue to warm the field. As a result,
after more than 10,000 papers published on AN, we still do not know its time course,
rate or features with respect to other kinds of structural plasticity in our brain. The
solution does not appear to be behind the next curve, as differences among mammals
reveal a very complex landscape that cannot be easily understood from rodents models
alone. By considering evolutionary aspects, some pitfalls in the interpretation of cell
markers, and a novel population of undifferentiated cells that are not newly generated
[immature neurons (INs)], we address some conflicting results and controversies in order
to find the right road forward. We suggest that considering plasticity in a comparative
framework might help assemble the evolutionary, anatomical and functional pieces of a
very complex biological process with extraordinary translational potential.
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BRIEF HISTORICAL PERSPECTIVE: REVISITING A
NEVER-ENDING STORY

Most neuronal plasticity in mammals relies on changes of synaptic contacts between pre-existing
cells (synaptic strengthening, formation, elimination; Forrest et al., 2018). By considering the
number of synapses in the brain (estimated in the trillions: 1015/mm3 in humans; Chklovskii et al.,
2004), this can be considered the main potential for structural modification in the mammalian
central nervous system (CNS). Nevertheless, this kind of plasticity does not add or replace neurons.
Unlike non-mammalian vertebrates, which show remarkable neuronal cell renewal in their CNS
(Ganz and Brand, 2016), the mammalian brain is far less capable of forming new neurons (Rakic,
1985; Weil et al., 2008; Bonfanti, 2011). The exception is a process called “adult neurogenesis”
(AN), conferred by active stem cell niches that produce new neurons throughout life in restricted
regions of the paleocortex (olfactory bulb) and archicortex (hippocampus) (Kempermann et al.,
2015; Lim and Alvarez-Buylla, 2016). Yet, after 60 years of intense research and more than 10,000
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GRAPHICAL ABSTRACT | Neurogenesis (present both in the embryonic and adult brain) is a multistep biological process spanning from the division of
stem/progenitor cells to the functional integration of new neurons in neural circuits. “Immaturity” is a phase in this process, also occurring in cells that are generated
before birth but retain molecular features of “youth” during adulthood. These immature neurons (INs) share markers with newly born neurons. All these cells express
doublecortin (DCX), which therefore cannot be considered a unique marker for neurogenic processes. Present knowledge suggests that, despite the common
cellular/molecular features shared among mammals, more complex processes, such as some forms of brain plasticity, may differ remarkably, with a general trend of
reduced adult neurogenesis (AN) from rodents to large-brained species, and possible inverse tendency for INs.

peer-reviewed publications, we still do not know if our brain
maintains such capability (Duque and Spector, 2019; Petrik and
Encinas, 2019; Snyder, 2019). Although we have learned a lot
about neural stem cell (NSC) biology and the molecular/cellular
mechanisms that sustain neurogenesis in rodents (Bond et al.,
2015; Kempermann et al., 2015; Lim and Alvarez-Buylla, 2016),
direct analysis of human brain has produced many conflicting
results (discussed in Arellano et al., 2018; Kempermann et al.,
2018; Paredes et al., 2018; Parolisi et al., 2018; Petrik and
Encinas, 2019). Here, we try to address such controversy
by highlighting some biases and questionable interpretations,
recurrent in the field, and by introducing the new concept of
“immature neurons” (INs).

The intense research following the “re-discovery” of AN
in mammals (starting from the seminal work of Lois and
Alvarez-Buylla (1994), but adding to the pioneering studies
of Joseph Altman and Fernando Nottebohm) were carried
out almost exclusively using mice and rats. These studies

were aimed to exploit endogenous and exogenous sources of
stem/progenitor cells for therapeutic purposes (Bao and Song,
2018); however, the reparative capacity of mammalian AN was
not sufficient, even in rodents (Bonfanti and Peretto, 2011;
Lois and Kelsch, 2014). Further studies began to reveal that
the main significance of the newborn neurons is linked to
physiological roles, related to learning and adaptation to a
changing environment (Kempermann, 2019). What appeared
interesting is the discovery that AN is highly modulated by
the internal/external environment and, ultimately, by lifestyle
(Vivar and van Praag, 2017; Kempermann, 2019), which opened
the road to prevention of age-related problems. These results
also began to highlight the importance of evolutionary aspects
(and constraints) revealed by the remarkable differences that
exist among mammals (Barker et al., 2011; Amrein, 2015;
Feliciano et al., 2015). As stated by Faykoo-Martinez et al.
(2017): “Species-specific adaptations in brain and behavior are
paramount to survival and reproduction in diverse ecological
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niches and it is naive to think AN escaped these evolutionary
pressures” (see also Amrein, 2015; Lipp and Bonfanti, 2016).
Subsequently, several studies addressed the issue of AN in a
wider range of species, including wild-living and large-brained
mammals that displayed a varied repertoire of anatomical
and behavioral features, quite different from those of mice
(reviewed in Barker et al., 2011; Amrein, 2015; Lipp and
Bonfanti, 2016; Paredes et al., 2016; Parolisi et al., 2018).
Though still too fragmentary to support exhaustive conclusions
about phylogeny (much less function), this landscape of
heterogeneity directs us to re-evaluate, discuss and better
contextualize the observations obtained in rodents, especially
in the perspective of translation to humans (analyzed in
Lipp and Bonfanti, 2016; Paredes et al., 2016; Parolisi et al.,
2018; Duque and Spector, 2019; Snyder, 2019). Comparative
approaches strongly indicate that there is a decrease in the
remarkable plastic events that lead to whole cell changes
(i.e., AN) with increasing brain size. In an evolutionary
framework, the absence/reduction of neurogenesis should not
be viewed as a limit, rather as a requirement linked to
increased computational capabilities. Unfortunately, this same
fact turns into a “necessary evil” when brain repair is needed:
a requirement for stability and a high rate of cell renewal,
apparently, cannot coexist (Rakic, 1985; Arellano et al., 2018).
Why then do some reports claim the existence of AN in
humans? Several scientists in the field warn of high profile
papers published on human AN that were technically flawed,
their interpretations going well beyond what the data could
support; some have never been reproduced (these aspects
are thoroughly reviewed in Oppenheim, 2018; Duque and
Spector, 2019). Apart from the soundness of data, a strong
species bias exists in the neurogenesis literature, due to an
overestimation of the universality of laboratory rodents as animal
models (Amrein, 2015; Lipp and Bonfanti, 2016; Bolker, 2017;
Faykoo-Martinez et al., 2017; Oppenheim, 2019). There is also
a common misunderstanding that the putative existence of
AN in primates suggests or provides evolutionary proof that
the same process exists in humans. In fact, the few existing
reports are on non-human primates (common marmosets and
macaca), endowed with smaller, less gyrencephalic brains and
lower computational capacity, compared to apes (Roth and
Dicke, 2005). Systematic, quantitative studies in apes (family
Hominidae) are still lacking and most studies carried out
in monkeys suggest that very low levels of hippocampal
neurogenesis persist during adulthood. In Callithrix jacchus,
proliferating doublecortin (DCX)+ neuroblasts were virtually
absent in adults and markers of cell proliferation and immaturity
declined with age (Amrein et al., 2015). In another study
involving Macaca mulatta and Macaca fascicularis, the estimated
rate of hippocampal neurogenesis was approximately 10 times
lower than in adult rodents (Kornack and Rakic, 1999). These
data, along with evidence that AN is virtually absent in cetaceans
(Patzke et al., 2015; Parolisi et al., 2017), do provide strong
support for declining rates of AN in large-brained mammals
(Paredes et al., 2016).

The reasons for some of these misunderstandings are analyzed
in the next paragraph.

NEUROGENIC PROCESSES:
WELL-DEFINED ORIGIN, ILL-DEFINED
MARKERS, UNEVEN OUTCOME

Origin
The birth of neurons from NSC/radial glia cells has been well
demonstrated both in embryonic and AN (Lim and Alvarez-
Buylla, 2014; Berg et al., 2019). The germinal layers in the embryo
and the neurogenic sites in the adult brain (subventricular
zone, V-SVZ; subgranular zone, SGZ; hypothalamus) are
microenvironments in which the NSCs are regulated so that new
neurons can be formed. Hence, an adult neurogenic process,
as we now understand it, must be sustained by an active NSC
niche (Figure 1A). If we accept this definition, then the biological
limits of mammalian AN are clear: it is highly restricted to
small neurogenic zones, most cells proliferating outside these
regions are glial cells, it is related to physiological needs and
species-specific adaptations/behaviors, and it is strictly linked
to the different animal species, developmental stages and ages
(Bonfanti, 2016; Paredes et al., 2016).

Also, in the case of well-established NSC niches (V-SVZ and
SGZ), the mainstream view that considers AN at the same level
of other stem cell-derived regenerative processes is misleading.
Even in mice, the rate of neurogenesis drops exponentially during
life due to stem cell depletion (Ben Abdallah et al., 2010; Encinas
et al., 2011; Smith et al., 2019), a condition that is very different
from adult cell renewal processes in the body, which proceed at a
steady rate throughout life (Semënov, 2019). The cells produced
by hippocampal AN are not destined to fully and continuously
replace old granular cells (as in blood or epidermis), but rather
to provide a supply of new elements to complete the functional
development of the dentate gyrus (Semënov, 2019). Whether
quiescent progenitors can provide slow genesis of new neurons
outside the neurogenic sites and in the absence of a niche remains
to be demonstrated (Feliciano et al., 2015).

Markers
The issue of detecting (and interpreting) structural plasticity
in different mammalian brains is complicated by a substantial
lack of highly specific markers. Biological events involving
developmental stages (i.e., embryonic and AN) are dynamic,
multistep processes characterized by transient gradients of
molecular expression (Figures 1A,B). Most cellular markers
available for this kind of research are necessarily ill-defined,
since they are associated with developmental/maturational stages
of the cells (dynamic changes of molecular gradients) that are
not exactly the same in different cell populations, brain regions
and/or animal species. For instance, markers of stem cells (Sox2,
nestin) or newborn neurons (DCX, PSA-NCAM) are abundant
in these cell categories but not exclusively associated with them,
being detectable also in other contexts. The cytoskeletal protein
DCX is also abundant in cells that are born prenatally, and then
remain undifferentiated for long times by continuing to express
immaturity molecules (INs, Gómez-Climent et al., 2008; Bonfanti
and Nacher, 2012; König et al., 2016; Piumatti et al., 2018;
Rotheneichner et al., 2018; Figures 1B–D). Considering DCX as

Frontiers in Neuroscience | www.frontiersin.org 3 February 2020 | Volume 14 | Article 75

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00075 February 1, 2020 Time: 12:20 # 4

La Rosa et al. From Adult Neurogenesis to Immature Neurons

FIGURE 1 | Shared aspects and differences in neurogenic and non-neurogenic processes. (A) Neurogenic events (both in embryo and adult) are multistep
processes starting from stem cell division and coming out with the functional integration of mature neurons into the neural circuits. Immature neurons (INs; detectable
with molecular markers of “immaturity” transiently expressed during the maturation process) represent only a phase in such a process. Gray rectangles on the right:
different situations/developmental stages sharing a phase of neuronal immaturity. Color code: green, stem/progenitor cells, proliferative events and newly generated
neurons; red, state of immaturity (shared by newly generated and non-newly generated neurons); dark gray, maturity (black dots, synaptic contacts); brown,
doublecortin-immunoreactive (DCX+) cells. (B,C) The occurrence of DCX in the adult mammalian brain is no more an unequivocal proof that cells are newly
generated since DCX is also expressed by populations of (non-newly generated) INs located in different brain regions (cerebral cortex, amygdala, claustrum and
white matter, B). (C) At least two categories of DCX+ cells have been identified: newly generated (continuously produced within active neural stem cell niches) and
non-newly generated INs. (D) Non-newly generated INs prevail in some large-brained, gyrencephalic mammals, which tend to show lower rates of adult
neurogenesis and longer times of maturation for the newly generated neurons, what might explain the finding of many INs associated with a few proliferative events
in the human hippocampus (pink area: current gap of knowledge). AM, amygdala; CL, claustrum; NC, neocortex; PC, paleocortex; OB, olfactory bulb.
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a proxy for AN (as nestin was in the past for NSCs) or PSA-
NCAM and DCX as markers for cell migration, are among the
most common biases. A population of these cells, called cortical
immature neurons (cINs), is resident in layer II of the adult
cerebral cortex: the cINs are neither newborn nor migrating cells,
though they heavily express DCX and co-express PSA-NCAM
(Bonfanti and Nacher, 2012).

Before 2008, these features of “retained immaturity” where
not known and we ignored that INs can also be found
in extra-cortical regions (Luzzati et al., 2009; Bonfanti and
Nacher, 2012; König et al., 2016; Piumatti et al., 2018). At
that time, it was common to read statements like “DCX could
be developed into a suitable marker for AN and may provide
an alternative to BrdU labeling” (Brown et al., 2003), which
is now questionable. The picture has changed and “time” has
emerged as an important variable: the duration of “transient”
marker expression in the cells, making more difficult to interpret
cell maturation. The highly variable periods necessary for cell
maturation/integration of neurons in different contexts (see
below), along with their different origins (pre- or postnatal),
introduce new nuances and further difficulties in determining
which kind of plasticity is actually involved in different species,
ages, and brain regions.

Outcome
The final outcome of neurogenic processes (not intended as the
phenotypic fate of the cells, but their survival over time) can be
heterogeneous concerning both the single cells and the whole
process. Apart from V-SVZ and SGZ, in which the ultimate
functional integration into the olfactory bulb and hippocampus
is well established, for other potential sources of new neurons the
destiny of the progeny is far from clear. A third neurogenic site in
the hypothalamus hosts an NSC-like niche that produces neurons
with unclear fate, in terms of their final integration (Bonfanti and
Peretto, 2011). Similarly, in ectopic examples of “parenchymal”
neurogenesis (e.g., rabbit striatum and cerebellum; reviewed in
Feliciano et al., 2015) the genesis of new neurons seems to be
followed by their disappearance, suggesting a transient existence
(Gould et al., 2001; Luzzati et al., 2014).

By considering the whole neurogenic process across time,
its rate is progressively reduced with age, and the reduction
is greater and faster in large-brained mammals (Paredes et al.,
2016; Parolisi et al., 2018). Hence, a different outcome of AN
can depend on the animal species. More generally, structural
plasticity could be viewed as a progressive postnatal maturation
of single brain regions/cell populations differing by location
and time course, aimed at providing dynamic modulation
based on life experiences. According to this view, AN in
large-brained mammals would fall in the general rule of
critical periods: temporal windows in which it is allowed,
followed by the complete development of neural circuits
(Semënov, 2019). It has been shown recently that mouse cINs
can mature and be integrated into circuits at different ages
(Benedetti et al., 2019), likely achieving a sort of “delayed
neurogenesis.” A recent report showing an abundance of
INs in the sheep brain (Piumatti et al., 2018) supports the
hypothesis that these cells might represent an evolutionary choice

in large-brained mammals, as an alternative/parallel form of
plasticity (Palazzo et al., 2018).

By putting together origin, markers and timing of the
maturation of different types of young neurons existing in the
adult brain, the differences/similarities between AN and INs
come into light: some markers are shared (DCX, PSA-NCAM),
whereas the time of their expression and the origin of the cells
(prenatal or postnatal) can be quite different (Figures 1A,B).

CURRENT STATE OF THE ART: ADULT
NEUROGENESIS OR IMMATURE
NEURONS FOR THE HUMAN BRAIN?

After some reports described a dramatic postnatal drop of
neurogenesis in the human brain, occurring in the V-SVZ around
the second year of life (Sanai et al., 2011) and in the hippocampal
SGZ between age 5 and 13 years (Cipriani et al., 2018; Sorrells
et al., 2018), other studies reported that neurogenesis was
maintained in the human hippocampus (Boldrini et al., 2018;
Moreno-Jimenéz et al., 2019; Tobin et al., 2019). However, in
these latter studies, expression of molecular markers associated
with stages of neuronal maturation (nestin, Sox2, DCX, and PSA-
NCAM), was found mainly in large, ramified cells resembling
INs, rather than the small, bipolar morphology typical of recently
generated neuroblasts. Virtually all the studies (supporting or
refuting existence of AN) failed to identify substantial rates of cell
proliferation or a recognizable niche-like histological structure.

Tissue quality in non-perfused specimens (postmortem
interval and fixation) is certainly important in detecting some
markers: more DCX+ neurons were detected in human brain
hippocampus by Moreno-Jimenéz et al. (2019) with respect to
Sorrells et al. (2018). Yet, in non-perfused tissues, an internal
positive control is required (Figures 2A,B). Sorrells et al. (2018)
performed a complete histologic analysis using whole sections of
hippocampus examined through pre-, postnatal and adult ages,
thus providing an internal control for cell marker expression and
its progressive drop over time (Figure 2B). In contexts providing
the above mentioned internal controls, Ki-67 antigen staining
for cell proliferation did work well in brain tissues extracted 18–
40 h prior fixation, and then left in formalin for years (Parolisi
et al., 2017; Figures 2A,A’). Aside from the number of cells
detected, the DCX+ elements described in this way, without
substantial proliferative activity, typical neuroblast morphology,
or histological demonstration of a stem cell niche, cannot be
considered an indication of “AN,” but rather of putative INs.

The origin and identity of the DCX+ cells in the human
hippocampus remains to be determined: they look like young
neurons in the absence of a proliferative niche, though located
within a previously active neurogenic site. Something similar
has been described in the human amygdala, wherein robust
neurogenesis in the perinatal period is followed by an early drop
of cell proliferation and persistence of DCX+ cells (Sorrells et al.,
2019). This discrepancy is the current gap of knowledge: no sharp
limits seem have been discovered between AN and INs in the
human brain. On the basis of the currently available technical
tools it is quite difficult to establish if some quiescent/slowly
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FIGURE 2 | (A,B) Internal controls are needed for confirming the occurrence/absence of low/absent neurogenesis. Since most neurogenic processes substantially
decrease with age, the detection of their markers at different time points (especially those related with cell proliferation), from early pre-postnatal stages to
adulthood/aging, provides proof for their detectability in a given tissue. (A) Detection of very low rates of cell division (Ki-67 antigen) in the SVZ-like region of the
neonatal dolphin, indicating that the periventricular germinal layer is already vestigial at birth. By contrast, a still highly proliferative external granule layer (EGL) is
detectable in the cerebellum of the same animals (A’). (B) Dramatic reduction of cell proliferation (green) in the dentate gyrus of the human hippocampus at different
pre-, post-natal, and adult ages. Modified from Parolisi et al. (2017) (A,A’) and Sorrells et al. (2018) (B); reproduced with permission from Springer Nature. (C) Beside
common features shared at the cellular and molecular level, some complex biological processes, such as brain plasticity, can remarkably differ as a consequence of
evolutionary differences among mammalian species. Left, mammals consist of around 30 orders of animals including more than 5.000 species highly differing for
anatomy, physiology, behavior, habitat; right, the heterogeneity affects distinct neuroanatomy, brain size and computational capacities. Color code: red and green
coherent with Figure 1; red and green square sizes indicate the importance of different types of plasticity in different species on the basis of the current literature
(approximate estimation in the absence of systematic, comparable studies); pink area, current gap of knowledge concerning primates.
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proliferating progenitors can be the source of these DCX+

neurons (also because similar processes are lacking in rodents).
Reports in mammals living longer than mice indicate that the
cells generated in their hippocampi mature across longer time
courses (3 months in sheep, 6 months in monkeys, with respect
to 3–4 weeks in rodents; Kornack and Rakic, 1999; Kohler
et al., 2011; Brus et al., 2013; Figure 1D), thus suggesting that a
slow, delayed maturation of neurons might replace neurogenic
processes at certain ages. This hypothesis is coherent with the
“preference” of INs in the relatively large sheep brain (Piumatti
et al., 2018) and points to the possibility of a “reservoir of young
neurons” in the mature brain of large-brained species (Palazzo
et al., 2018; Rotheneichner et al., 2018; La Rosa et al., 2019).

CURRENT RESEARCH GAPS AND
FUTURE DIRECTIONS

Despite a huge amount of data on brain structural plasticity,
many gaps of knowledge still remain unresolved, mainly
concerning differences between rodents and humans, and the
identity of the “young” neurons. We lack highly specific markers
and the experience to interpret them in some contexts (e.g.,
the capability to discriminate among different types of plasticity
involving different degrees of immaturity). We lack systematic
and comparable studies encompassing very different animal
species or different developmental stages/brain regions within a
single species, carried out with standard protocols for fixation,
tissue processing and cell counting methods. Particularly in
humans, there is an urgent need to reproduce and confirm results.
To fill these gaps, experimental approaches/tools are needed
to study cell proliferation/survival processes that are slow and
scattered (in space and time) in large brains.

KEY CONCEPTS

Clarifying which types of plasticity can persist in the adult
human brain is important for obvious translational purposes.

Mice and humans share striking biological similarities, mainly
regarding basic molecular mechanisms, yet important differences
also emerge when complex biological processes are concerned
(Figure 2C). There are substantial differences in the rate of
AN and existence of INs among mammals: we are starting to
learn that evolution might have sculpted multifaceted nuances
instead of sharply defined processes. Since working directly on
the human brain implies obvious ethical and technical limits,
large-brained animal models are required. Dominant models
may bias research directions or omit important context (Bolker,
2017); on the other hand, large animals are not easy to handle,
and working on them is ethically disputable, time consuming
and costly. The solution might consist of a mix of purposes,
including: (i) rigorous adherence to the definition of AN to
distinguish it from INs; (ii) development of new markers for
better assessment of different phases of neuronal maturation; (iii)
understanding of phylogenetic/evolutionary aspects of structural
plasticity and their ramifications/adaptations in mammals; (iv)
awareness that AN “function” remains substantially unsolved and
that AN may not be a function, but rather a “tool” that the brains
uses to perform/improve different functions based on different
adaptations. Hence, the functions revealed in rodents can be
specific to their ecological niche/behavior/needs (Amrein, 2015),
and not fully transferable to humans. We must remember that
there are no ends in science but only new, unexpected twists in
the road driven by new technologies.
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