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INTRODUCTION

Metabolism and the circadian rhythms constitute an inseparable couple. Our 24-h internal clock
dictates our sleep-wake patterns, which in turn determines what we eat and when, with a direct
impact on our metabolic cycles. These rhythms are nominally self-sustained but can be adjusted
to the environment by stimuli, such as light or food, called Zeitgebers (the German word for
“time-givers”) (Aschoff, 1965). Like the principal conductor leading a symphonic orchestra, a
tiny pack of suprachiasmatic nucleus (SCN) neurons in the brain residing directly above the
optic chiasm work as a master coordinator of the rest of the circadian clocks of the body.
Changes in light are transmitted directly from the retina to the SCN, which actively synchronize
the geophysical and environmental cycle with its own clock before entraining other organs
(Schibler and Sassone-Corsi, 2002). Although the molecular mechanisms regulating the brain
central clock have been studied extensively, the degree of contribution of individual organs to
“timekeeping” is still unclear.

The transcription factor BMAL1 (ARNTL) has been shown to be essential for rhythmic gene
expression in the mammalian circadian timing system (Haque et al., 2019). BMAL1 forms a
heterodimer with CLOCK, another core circadian transcription factor, to drive the expression of the
Period and Cryptochrome genes, by direct binding to E-box regulatory elements (Takahashi, 2017).
In a classical transcriptional feedback loop, PER and CRY transcription factors form a complex
that translocates to the nucleus to inhibit BMAL1-CLOCK mediated gene expression (Eckel-
Mahan and Sassone-Corsi, 2013), ensuring proper functioning of the 24-h molecular oscillator.
Bmal knockout mice, in addition to loss of circadian rhythms, show characteristics of premature
aging and a number of phenotypes including defective glucose homeostasis, calcification of
joints and corneal degeneration (Kondratov et al., 2006). In back-to-back publications in
Cell (Koronowski et al., 2019; Welz et al., 2019), the authors go one step further in transgenic
engineering and generate a mouse model that reconstitutes Bmal1 expression in one particular
organ, such as the epidermis (Bmal1-RE mouse) or the liver (Liver-RE mouse), with Bmal1 being
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completely absent in any other parts of the mouse body
(Figure 1). This provides them with a valuable tool to dissect
the unique contribution of peripheral tissues and organs to the
master circadian mechanism, as well as to assess their degree
of autonomy.

LIVER CIRCADIAN CLOCK SETS ITS OWN
PACE

One of the main discoveries in these studies takes place at
the hepatic level (Koronowski et al., 2019). In the liver, many
rate-limiting enzymes of key metabolic outputs (including
detoxification, carbohydrate, lipid, and amino acid metabolism)
are under direct circadian control. In contrast to themaster clock,
for which light is the dominant Zeitgeber, the liver clock can be
efficiently entrained by feeding-fasting rhythms to the point of
being fully uncoupled from SCN rhythms (Damiola et al., 2000;
Stokkan et al., 2001; Reinke and Asher, 2016). Transcriptomics
and metabolomics experiments were conducted in the liver-RE
mice mouse model, which exclusively expresses Bmal1 in the
liver and compared to wild type animals. These studies revealed
a series of metabolic pathways and metabolites that are able
to oscillate autonomously from all other clocks, and constitute
around 20% of the hepatic rhythms, including essential processes
such as glycogen turnover and the NAD+ salvage pathway.
Importantly, this autonomous response of the liver clock was

FIGURE 1 | Schematic representation of the main findings from the dual publication (Koronowski et al., 2019; Welz et al., 2019) commented. The mouse model

reconstituting Bmal1 expression exclusively in the epidermis (Bmal1-RE mouse) or the liver (Liver-RE mouse) was generated from a conventional full-body Bmal1

knockout mouse (Bmal1-KO). In mammals, the brain central clock works as a master circadian coordinator of the rest of circadian clocks in the body. The

autonomous responses in Bmal1 reconstituted organs (epidermis or liver) ensured basic homeostasis of the organs (e.g., epidermal turnover, glycogen metabolism)

and were only dependent on inputs of light and darkness. WT, wild type.

independent from food, being only disrupted by a prolonged
exposure to complete darkness.

POSTULATING A BIFID MODEL FOR
SYNCHRONIZATION OF PERIPHERAL
CLOCKS

Some of these findings can be extrapolated to other peripheral
tissues, including non-metabolically active organs, as
demonstrated in the companion publication on the epidermis
(Welz et al., 2019). The skin is the largest organ in the body and a
huge sensory light receptor. Bmal1 deficient mouse models have
shown premature aging: hair graying, loss of subcutaneous fat
layer and delayed tissue healing (Kondratov et al., 2006). Thus,
elucidating circadian oscillations in the epidermis could lead to
a better understanding of the underlying mechanisms of skin
regeneration and optimization of wound healing therapy.

Gene expression profiling in the epidermis from RE mice

(with reconstituted Bmal1 expression in the epidermis) revealed
a set of core genes which ensure basic homeostasis of the
skin independently of Bmal1 expression in other tissues.

Reconstituted epidermis accounted for approximately 15% of

Bmal1 transcriptional activity (Figure 1). These results were very
close to the ones obtained in Liver-RE mice (∼10% oscillating

transcripts). Gene ontology analysis of the epidermal signature
showed enrichment of cell cycle, circadian rhythm, DNA repair
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and metabolic processes. This core clock machinery appeared
to be only dependent on cyclic changes in light to work in a
proper manner. This implies that in the absence of light, the
signals coming from other organs are essential to maintain the
classic 24-h physiological rhythm, with most processes working
on a memory mechanism. The authors, thus, postulate that there
are two branches that differentially regulate peripheral clock
synchronization: an autonomous and immediate response by the
organ to the light, and a non-autonomous memory branch that
allows the organ to keep working in prolonged darkness.

CONCLUSIONS AND PERSPECTIVES

Taken together, these studies demonstrate that peripheral tissues
and organs can detect changes in environmental light and are
capable of maintaining some basic functions, independently from
our brain clock (Figure 1). The liver can autonomously ensure
glucose homeostasis even if there is a glitch in the feedback
system to the central clock (SCN). This could be of critical
importance in environmentally challenging conditions to the
organism. Our body needs to find a fine balance between diving
into adjust its clocks in response to environmental stimuli and
opposing change; otherwise we would live in a constant jet lag
state. These studies provide evidence of the existence of at least
two pathways regulating peripheral circadian clocks to reach

that equilibrium. The first is an “immediate and autonomous”
response that allows organs to adjust to changes in light, without
any input from other circadian clocks. The latter works as a “fail

safe copy” of past light regime that guarantees a certain degree
of resistance and robustness to environmental changes, which is
sustained by signals coming from other organs. Future studies
will need to examine how the autonomous circadian clocks
become deregulated in pathological contexts (obesity, metabolic
disease, diabetes. . . ). Not uncommon these days, the extensive
and untimely use of bright screens and electronic devices, is
leading to improper exposure to artificial light at the “wrong
time.” To what extent this exposure may entail the disruption
of the peripheral clocks, predisposing individuals to premature
aging or cancer as a consequence of “light misuse” needs to be
further addressed.
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