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Background: Attention-deficit/hyperactivity disorder (ADHD) is a neuropsychiatric
condition that may be related to an imbalance of neural transmitters. The gut microbiota
is the largest ecosystem in the human body, and the brain-gut axis theory proposes that
the gut microbiome can affect brain function in multiple ways. The purpose of this study
was to explore the gut microbiota in children with ADHD and assess the possible role of
the gut microbiota in disease pathogenesis to open new avenues for ADHD treatment.

Methods: A case-control design was used. We enrolled 17 children aged 6–12 years
with ADHD who were treated in the Pediatric Outpatient Department of the First Medical
Center of the Chinese PLA General Hospital from January to June, 2019. Seventeen
children aged 6–12 years were selected as the healthy control (HC) group. Fecal
samples of cases and controls were analyzed by shotgun metagenomics sequencing.
Alpha diversity and the differences in the relative abundances of bacteria were compared
between the two groups. Functional annotations were performed for the microbiota
genes and metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes
and Genomes (KEGG).

Results: There was no significant difference in the alpha diversity of gut microbiota
between the ADHD and HC groups. Compared with HCs, Faecalibacterium and
Veillonellaceae were significantly reduced in children with ADHD (P < 0.05), Odoribacter
and Enterococcus were significantly increased [linear discriminant analysis (LDA) > 2].
At the species level, Faecalibacterium prausnitzii, Lachnospiraceae bacterium, and
Ruminococcus gnavus were significantly reduced in the ADHD group (P < 0.05),
while Bacteroides caccae, Odoribacter splanchnicus, Paraprevotella xylaniphila, and
Veillonella parvula were increased (P < 0.05). Metabolic pathway analysis revealed
significant between-group differences in the metabolic pathways of neurotransmitters
(e.g., serotonin and dopamine) (P < 0.05).
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Conclusion: Composition differences of gut microbiota in subjects with ADHD may
contribute to brain-gut axis alterations and affect neurotransmitter levels, which could
contribute to ADHD symptoms.

Keywords: attention deficit hyperactivity disorder, child, gastrointestinal microbiome, shotgun metagenomics
sequencing, neurotransmitter

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a
neuropsychiatric disorder that occurs most frequently in
school-age children and is characterized as inattention with or
without excessive impulsivity and hyperactivity (Abramov et al.,
2019). Previous studies have reported that ADHD pathogenesis
may be associated with dysregulation of neurotransmitters
such as dopamine, serotonin (5-hydroxytryptamine, 5-HT),
and norepinephrine (Magula et al., 2019; Stewart et al., 2019;
Suzuki et al., 2019). Others have shown that the incidence of
ADHD may have a certain degree of heritability, and genes
related to dopamine, norepinephrine, and 5-HT transmission
have been found to be abnormally expressed in children with
ADHD (Banerjee and Nandagopal, 2015; Karmakar et al.,
2017; Kim et al., 2018). Although various theories have been
proposed, the pathogenetic mechanisms underlying ADHD
have not been fully clarified, which limits the development
of new treatments.

Gut microbiota alterations may be associated with
neurological conditions including Alzheimer’s disease, epilepsy,
and autism (Fan et al., 2019; Rude et al., 2019). Many researchers
have proposed the existence of bidirectional regulation of
the brain-gut axis, which involves gut microbiota metabolites
that affect neurotransmitter levels, thereby influencing brain
function (Melli et al., 2016; Khalil et al., 2019; Lacorte et al.,
2019). In addition, nervous system activity can also impact
gut microbiota composition. This bidirectional regulation
is accomplished via complex neuroendocrine pathways
(Khalil et al., 2019). The gut microbiota can adjust these
pathways by regulating the levels of neurotransmitters and
inflammatory factors and affecting the hypothalamic-pituitary-
adrenal axis (Bermúdez-Humarán et al., 2019). Therefore,
abnormal intestinal flora composition may lead to abnormal
neurotransmitter secretion, which may promote the development
of neuropsychiatric diseases.

We conducted a case-control study to analyze differences in
intestinal flora composition between children with ADHD and
healthy control (HC) children, explore ADHD pathogenesis, and
investigate potential new treatments for ADHD.

MATERIALS AND METHODS

Study Subjects
Seventeen children aged 6–12 (median 8 years) with ADHD
were selected from the Pediatric Outpatient Department of the
First Medical Center of the PLA General Hospital between
January and June, 2019. The inclusion criteria were: (1) The

Kiddie Schedule for Affective Disorders and Schizophrenia
(K-SADS, Present and Lifetime Version scales) was used to
diagnosis ADHD, and subjects met the diagnostic criteria for
ADHD in the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5) (Ng et al., 2019) based on
the opinion of an experienced child psychiatrist (GY or LW);
(2) no history of respiratory or digestive tract infection within
1 month; (3) no use of probiotics within 1 month; (4) no
history of digestive diseases or other chronic diseases; (5) body
mass index (BMI) < 20 kg/m2 (because obesity could cause gut
microbiota abnormalities) (Salah et al., 2019); and (6) no allergic
diseases such as allergic rhinitis or asthma. Seventeen children
from different families aged 6–12 years (median 8 years) were
selected as the HC group in the same period. The inclusion
criteria were the same except that there was no diagnosis
of ADHD based on DSM-5 criteria by K-SADS. All of the
participating children were born full-term with normal deliveries.
Subjects were excluded if they were on a special diet (e.g.,
vegetarian). All parents of the participating children completed
the Conners Parent Rating Scales (CPRS) to assess ADHD
symptom severity and exclude subjects with depressive or anxiety
symptoms. Participants maintained their regular dietary patterns
for a week, and a food diary was recorded for participants
from both groups during this period in order to exclude the
potential influence of any changes in diet on the intestinal
flora. Stool samples were collected at 8:00 am in the Pediatric
Outpatient Department and stored in a sterile plastic cup at
−80◦C prior to testing.

The study was approved by the PLA General Hospital
Ethics Committee (no. 2018-278). All subjects’ guardians
were informed about the intentions of this study, and gave
written informed consent was obtained in accordance with the
Declaration of Helsinki.

Sequencing and Analysis
DNA Sequencing
A total of 34 stool samples were collected from 17 ADHD patients
and 17 age-matched HCs. We applied shotgun metagenomic
sequencing to the whole genome of the microorganisms
for each specimen. Bead beating was performed to rupture
the bacteria, DNA was extracted with HiPure Stool DNA
kits (Angen Biotech Co., Ltd., Guangzhou, China), and
Qubit 4.0 software (Thermo Fisher Scientific, Waltham,
MA, United States) was used for quality assessment. The
library was prepared with a KAPA Hyper Prep Kit (KAPA
Biosystems, Wilmington, MA, United States) and paired-end
sequencing was performed on an Illumina NovaSeq platform
(Illumina, San Diego, CA, United States) with a reading length
of 150 bp (PE150).
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Species Abundance and Gene Function
Annotations
All genome sequencing data were preprocessed by KneadData1

to screen out low-quality short frame sequences and chimeric
sequences among the structural primer sequences (Bolger et al.,
2014). Bowtie2 (Langmead and Salzberg, 2012) was then used
to align the reads with the human genome for host sequence
contamination removal. This was carried out with human
reference genome hg19)2.

HUMAnN2 (version v0.11.2) was used to analyze the species
abundance, gene function, and metabolic pathways related to the
processed sequencing data (Franzosa et al., 2018). HUMAnN2
first used MetaPhlAn2 (version 2.7.7, Li et al., 2014) to match
the sequence with the established core genes to quickly locate
the species included in the microbiota. Sequences were then
compared with the pan-genome of the identified species and
mapped to corresponding phylogenetic levels. The abundance of
genes or gene families, and metabolic pathways were analyzed at
different phylogenetic levels of interest.

To determine the gene functional annotations, we employed
the Bowtie2 (version 2.3.4.3) to map the sequences after removing
low-quality sequences and host sequences, to Integrated Gene
Catalog databases and Kyoto Encyclopedia of Genes and
Genomes (KEGG).On this basis, gene abundance and alpha
diversity indexes were calculated, which involves using the
Shannon, Chao1, and Simpson indexes to calculate the entropy
values of gene abundance. Euclidean distance was also computed
as the measurement of beta diversity, followed by principal
component analysis (PCA) and permutational multivariate
analysis of variance (PERMANOVA). PCA was performed using
ade4 package and PERMANOVA was carried out using vegan
package (R version 3.5.3)3.

Bioinformatics Analysis
Chi-square tests were performed by SPSS 21.0 to compare
sex differences between the ADHD and HC groups, and
independent-sample t-tests were used to compare age, BMI, and
CPRS scores. Wilcoxon tests were used by SPSS 21.0 to assess
differences in species abundance and gene function between the
ADHD and HC groups. The LDA effect size (LEfSe) method was
used to determine the most differentially abundant taxa at the
genus and species levels between the two groups.

RESULTS

Comparison of Clinical Data Between
the ADHD and HC Groups
A total of 17 ADHD children were included in this study,
including 14 (82.3%) males and 3 (17.7%) females with a median
age of 8 (25th and 75th percentiles: 7, 10) and a mean BMI of
16.1 ± 1.2 kg/m2. The 17 HCs included 13 (76.5%) males and
4 (23.5%) females with a median age of 8 (7, 9.5) and a mean

1https://bitbucket.org/biobakery/kneaddata
2http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz
3https://www.r-project.org/

BMI of 15.9 ± 1.1 kg/m2. There was no significant difference
in the distributions of sex, age, or BMI between the two groups
(P > 0.05). More children in the ADHD group (12, 70.5%)
developed symptoms of constipation than in the HC group (2,
11.7%).The total CPRS scores were significantly different between
the ADHD and HC groups (10.3± 4.2 vs. 2.2± 0.63, respectively;
P < 0.05). There were no significant differences in the subscores
for psychosomatic symptoms (0.56 ± 0.34 vs. 0.53 ± 0.41) or
anxiety (0.42± 0.32 vs. 0.51± 0.35) (P > 0.05, Table 1).

Analysis of Intestinal Flora Diversity
The Shannon (9.67 ± 0.42 vs. 9.52 ± 0.25), Chao1 (61.5 ± 11.6
vs. 57.5± 9.8), and Simpson (0.89± 0.07 vs. 0.88± 0.06) indexes
were calculated to assess the alpha diversity of fecal microbiota in
the ADHD and HC groups. There were no significant differences
in index values between the two groups (Figure 1A). At the genus
level and the species level, PERMANOVA could not discriminate
the ADHD from the HC group due to significant individual
variation (Figures 1B,C).

Analyses of Fecal Bacterial Community
Abundance
At the genus level, Wilcoxon tests showed that Faecalibacterium
and Veillonellaceae were significantly reduced in the
ADHD group, while Odoribacter was significantly higher
(P < 0.05, Figure 2A). The LEfSe results also indicated that
Enterococcus was significantly increased in the ADHD group
(LDA > 2, Figure 2B).

At the species level, Wilcoxon tests showed that
Faecalibacterium prausnitzii, Lachnospiraceae bacterium,
and Ruminococcus gnavus were significantly decreased in
the ADHD group, while Bacteroides caccae, Odoribacter
splanchnicus, Paraprevotella xylaniphila, and Veillonella
parvula were significantly increased (P < 0.05, Figure 2C).
The results of LEfSe showed that Odoribacteraceae and

TABLE 1 | Descriptive data of the ADHD and HC groups.

ADHD (n = 17) HC (n = 17) P

Sex, n (%) 0.671

Male 14 (82.3%) 13 (76.5%)

Female 3 (15%) 4 (23.5%)

Age, years; median (25th
and 75th percentiles)

8 (7, 10) 8 (7, 9.5) 0.701

BMI, mean (SD) 16.1 (1.2) 15.9 (1.1) 0.652

Constipation, n(%) 12 (70.5%) 2 (11.7%) <0.05

ADHD symptom severity, mean (SD)

Total CPRS score 10.3 (4.2) 2.2 (0.63) <0.05

Conduct problems 3.1 (1.46) 0.16 (0.27) <0.05

Impulsive–hyperactivity 1.5 (0.59) 0.16 (0.22) <0.05

Hyperactivity 3.4 (0.65) 0.05 (0.21) <0.05

Learning problems 1.9 (0.57) 0.21 (0.34) <0.05

Psychosomatic 0.56 (0.34) 0.53 (0.41) 0.452

Anxiety 0.42 (0.32) 0.51 (0.35) 0.523

ADHD, attention-deficit/hyperactivity disorder; BMI, body mass index; CPRS,
Conners Parent Rating Scales; HC, healthy control.
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FIGURE 1 | (A) Comparison of alpha diversity indexes between the ADHD and HC groups. (B) Permutational multivariate analysis of variance (PERMANOVA) of
microbial communities of the participants at the genus level. (C) PERMANOVA of microbial communities of the participants at the species level.

FIGURE 2 | Comparison of different bacteria at the genus and species level between the ADHD and HC groups. (A) Wilcoxon test result at the genus level
(P < 0.05). (B) LEfSe result at the genus level (LDA > 2). (C) Wilcoxon test result at the species level (P < 0.05). (D) LEfSe result at the species level (LDA > 2).

Enterococcaceae were significantly increased in the ADHD
group, while Ruminococcaceae was significantly decreased
(LDA > 2, Figure 2D).

KEGG Analysis of Metabolism
A total of 6294 KEGG Orthology (KO) terms were used
to annotate the genes. Wilcoxon tests showed 91 KOs that
were significantly different between the two groups (P < 0.01,
Figure 3). These included terms related to the neurotransmitter
dopamine; the genes encoding the catalytic subunit of protein
phosphatase-1 (PP1), threonine synthase, and 6-pyruvoyl-
5,6,7,8-tetrahydropterin were significantly upregulated in the
ADHD group, while the gene encoding 4-hydroxy threonine-
4-phosphate dehydrogenase was significantly downregulated
(P < 0.05, Figure 4).

DISCUSSION

The mammalian intestinal tract contains more than 100 trillion
microorganisms; as the largest ecosystem in the body, it
influences host physiological functions (Agus et al., 2018). The
brain-gut axis theory proposes that there is a bidirectional
regulatory mechanism between the intestinal flora and
the brain. Children with ADHD may have abnormal
neurotransmission, and the intestinal flora may regulate
the level of neurotransmitters via complex neuroendocrine
pathways (Richarte et al., 2018). A systematic review revealed
two studies that assessed the correlation between ADHD and
intestinal flora (Lacorte et al., 2019). Both employed 16S rRNA-
sequencing technology and only analyzed the difference in gut
microflora (Jiang et al., 2018; Prehn-Kristensen et al., 2018).

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 127

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00127 February 15, 2020 Time: 17:4 # 5

Wan et al. Gut Microbiota Role in ADHD

FIGURE 3 | Comparison of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations between the ADHD and HC groups.

We also applied shotgun metagenomic sequencing to the whole
genomes of microorganisms for each specimen, and KEGG was
used to analyze the metabolic pathways and identify possible
pathogenetic mechanisms.

Similar to earlier reports (Jiang et al., 2018; Prehn-Kristensen
et al., 2018), we found obvious differences in the gut microbiota
of the ADHD and HC groups. Contrary to one study (Prehn-
Kristensen et al., 2018), we found the alpha diversity of
intestinal flora was not significantly different between groups,
but subjects with ADHD had significantly lower levels of
Faecalibacterium. However, unlike a previous report (Jiang
et al., 2018), we also found that the ADHD group had
significant decreases in Veillonellaceae, while Enterococcus and
Odoribacter were significantly increased. At the species level,
F. prausnitzii, L. bacterium, and R. gnavus were significantly
reduced in the ADHD group, while B. caccae, O. splanchnicus,
P. xylaniphila, and V. parvula were significantly increased.
Additionally, we found that children with ADHD were more
prone to constipation; consistent with our finding, previous
studies have reported that the imbalance of intestinal flora is
closely related to the occurrence of constipation (Huang et al.,
2018; Wen et al., 2018; Wang L. et al., 2019).

The pathogenesis of ADHD remains unclear. One research
group reported that abnormal levels of neurotransmitters are
involved in the disease process (Kovács et al., 2019). Based
on this theory, central nervous system (CNS) stimulants such
as methylphenidate hydrochloride are widely used as first-line
treatments for ADHD. The mechanism may involve inhibition
of presynaptic reuptake of noradrenaline and dopamine; higher
synaptic levels of these neurotransmitters may help to control
symptoms, but clinical treatment effects vary among patients
(Wigal et al., 2017).

Previous studies have shown that the gut microbiota could
affect the brain-gut axis and contribute to the pathogenesis

of neurological diseases including Parkinson’s, epilepsy, autism
spectrum disorders, and tic disorders (Zhao et al., 2017;
Kovács et al., 2019; Rude et al., 2019). Early intestinal flora
establishment can affect nervous system development, resulting
in anxiety behaviors and other mental health problems after
maturity, and treatment of pregnant female rats with low-
dose antibiotics has been shown to lead to an imbalance of
intestinal flora, with subsequent alterations in the behavior of
offspring (Borre et al., 2014; Leclercq et al., 2017; Zhao et al.,
2017). In another study where gut bacteria from patients with
schizophrenia were transplanted into germ-free mice, the mice
developed psychotic symptoms due to altered regulation of
the glutamine-glutamate-gamma-aminobutyric acid pathway by
the transplanted gut bacteria (Zheng et al., 2019). Similarly,
transplantation of intestinal flora from patients with Parkinson’s
disease into a germ-free Parkinson’s disease mouse model
significantly increased motor symptoms of the mice, which were
ameliorated by antibiotic treatment (Sampson et al., 2016).

According to the results of our experiment, we speculated
that the abnormality of intestinal flora might be one of the
bases of the onset of ADHD, combined with previous studies,
we proposed the following conjecture about its mechanism
of action. In this study, children with ADHD exhibited a
reduction of Faecalibacterium. This has been observed in both
animal and human studies and has been implicated in various
allergic diseases such as asthma, eczema, and allergic rhinitis
(Penders et al., 2007; Arrieta et al., 2015; Melli et al., 2016).
In clinical practice, atopic children have a 30–50% increased
risk of ADHD (Schans et al., 2017). We therefore speculate
that the reduction of this bacterial genus may generate allergies
via the brain-gut axis by affecting neurotransmitter release
and inducing the pathogenesis of ADHD. One study reported
that ADHD was more likely to be induced by diets high in
fat, protein, and sugar, which also decrease Faecalibacterium
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FIGURE 4 | Abnormal metabolic pathways of neurotransmitters in the ADHD
group.

levels (Howard et al., 2011). Faecalibacterium may exert anti-
inflammatory effects, and the abnormal levels may lead to
higher expression of inflammatory factors (Qiu et al., 2013;
Quévrain et al., 2016). Notably, children with ADHD have
significantly higher levels of inflammatory cytokines than normal
children (Mitchell and Goldstein, 2014). Inflammatory cytokines
can cross the blood–brain barrier (BBB) and affect nervous
system development and brain function (Wong et al., 2016). We
therefore hypothesized that Faecalibacterium dysregulation may

cause changes in inflammatory cytokine levels and participate in
ADHD pathogenesis.

We also found that the proportion of Enterococcus was
significantly increased in the ADHD group, and Enterococcus
has been reported to be closely related to neurotransmitter
release. One study demonstrated that Enterococcus abundance
is significantly increased in mice lacking the 5-HT transporter
(Singhal et al., 2019); deficiency of this transporter can lead to
decreased 5-HT levels, which is related to ADHD onset (Wang
et al., 2018). Interestingly, a study showed Enterococcus could
lead to excessive intestinal conversion of levodopa (the first-line
treatment for Parkinson’s disease) into dopamine, however,
peripheral dopamine cannot penetrate the BBB to enter the CNS,
thus reducing the effectiveness of levodopa (Maini Rekdal et al.,
2019). Furthermore, the abnormal increase in Enterococcus could
also cause excessive activation of tyrosine decarboxylase, which
increases the decarboxylation of tyrosine and phenylalanine in
the gastrointestinal tract, leading to decreased levels in the CNS
and subsequent low levels of levodopa (the drug precursor of
dopamine) (Maini Rekdal et al., 2019). Both of these pathways
can affect the concentration of dopamine in the CNS, which
may aggravate Parkinson’s symptoms (Maini Rekdal et al.,
2019). Previous studies have shown that ADHD onset is related
to decreased CNS levels of dopamine (Roncero and Álvarez,
2014; Ledonne and Mercuri, 2017). As above, we speculate that
the observed increase in Enterococcus may lower intracranial
dopamine and contribute to the development of ADHD. In
addition, our observation of a higher proportion of Odoribacter
in subjects with ADHD is similar to the results of a previous
study that found higher Odoribacter levels in individuals with
pediatric acute-onset neuropsychiatric syndrome (PAN) and
pediatric autoimmune neuropsychiatric disorders associated
with streptococcal infections (PANDAS) (Quagliariello et al.,
2018). Additionally, Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt) analysis
of this study showed that the dopamine metabolic pathway
was significantly reduced in PAN and PANDAS (Quagliariello
et al., 2018). Odoribacter may cause abnormalities in dopamine
metabolism that contribute to ADHD. Previous studies
(Quagliariello et al., 2018; Maini Rekdal et al., 2019) found that
abnormal Enterococcus and Odoribacter levels were associated
with dysregulated neurotransmitter production. Abnormal levels
of these bacteria were also found in our study, suggesting a role
in the development of ADHD.

Finally, we performed KEGG analysis to determine the gene
functional annotations and abnormalities in metabolic pathways,
to verify the speculation of the role of gut microbiota in
the pathogenesis of ADHD. Reduced dopamine levels in the
CNS may contribute to ADHD pathogenesis. We identified
differences in the dopaminergic synaptic pathways between
the ADHD and HC groups; the gene encoding PP1 catalytic
subunit was significantly upregulated, which was considered
to increase synaptic sodium ion flux. Dopamine receptors are
transmembrane sodium/chloride-dependent transporters that
belong to the family of transporters of norepinephrine, 5-
HT, and dopamine, and are referred to as neurotransmitter:
sodium symporters (NSS) (Navratna and Gouaux, 2019).
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Prolonged sodium-related signal transduction results in the
excessive activation of NSS. Metabolic pathway alterations may
cause abnormal neurotransmitter transport and reduce their
concentrations in the CNS, which could contribute to ADHD.
Numerous studies have reported that vitamin B6 plays a key
role in nervous system development and neurotransmitter
production. A randomized controlled trial of 216 children with
ADHD and 216 healthy children found lower vitamin B6 levels
in children with ADHD (Wang L.J. et al., 2019). In line with this
finding, KEGG analysis indicated abnormalities in the metabolic
pathway of vitamin B6 in the ADHD group. The genes encoding
4-hydroxy threonine-4-phosphate dehydrogenase and threonine
synthase were significantly downregulated and upregulated,
respectively, which could lead to abnormal levels of pyridoxal
5′-phosphate, which is an important coenzyme of aromatic
amino acid decarboxylase (AADC) (Montioli et al., 2019).
AADC is a key enzyme of dopamine metabolism that converts
levodopa into dopamine in the CNS (Baek et al., 2018).
A decrease in its activity could lead to the reduction of
dopamine concentrations, which could contribute to ADHD
onset. In the folate metabolic pathway, a significant upregulation
of the gene encoding 6-pyruvoyl-5,6,7,8-tetrahydropterin could
promote the generation of tetrahydrobiopterin (BH4). However,
tryptophan hydroxylase is a rate-limiting enzyme that catalyzes
5-HT synthesis, with oxygen and BH4 as substrates (Opladen
et al., 2016; Scotton et al., 2019). Upregulation of the
gene encoding 6-pyruvoyl-5,6,7,8-tetrahydropterin may lead
to the conversion of excessive tryptophan into 5-HT in the
intestinal tract, and 5-HT has difficulty crossing the BBB,
resulting in decreased CNS 5-HT concentrations, which may
contribute to ADHD.

There are several limitations to this study. First, our
sample size was relatively small. Second, we did not perform
transplantation of intestinal flora to confirm that gut microbiota
composition affects ADHD symptoms.

CONCLUSION

In summary, our results demonstrate that gut microbiota
alterations occur in children with ADHD, which may contribute
to abnormal metabolism of neurotransmitters. We cautiously
speculated that the abnormal intestinal flora might be one of
contributing factors of ADHD, the underlying mechanism may
be related to changes in microbial functions that affect the

function of the neuroendocrine system, leading to reduced levels
of 5-HT and dopamine in the CNS, and ultimately to ADHD.
Further studies should be carried out to investigate the CNS
levels of dopamine and 5-HT, and animal studies are needed for
functional verification.
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