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Background: To compare the efficacies of univariate and radiomics analyses of amide
proton transfer weighted (APTW) imaging in predicting isocitrate dehydrogenase 1 (IDH1)
mutation of grade II/III gliomas.

Methods: Fifty-nine grade II/III glioma patients with known IDH1 mutation status
were prospectively included (IDH1 wild type, 16; IDH1 mutation, 43). A total of 1044
quantitative radiomics features were extracted from APTW images. The efficacies of
univariate and radiomics analyses in predicting IDH1 mutation were compared. Feature
values were compared between two groups with independent t-test and receiver
operating characteristic (ROC) analysis was applied to evaluate the predicting efficacy
of each feature. Cases were randomly assigned to either the training (n = 49) or test
cohort (n = 10) for the radiomics analysis. Support vector machine with recursive feature
elimination (SVM-RFE) was adopted to select the optimal feature subset. The adverse
impact of the imbalance dataset in the training cohort was solved by synthetic minority
oversampling technique (SMOTE). Subsequently, the performance of SVM model was
assessed on both training and test cohort.

Results: As for univariate analysis, 18 features were significantly different between IDH1
wild-type and mutant groups (P < 0.05). Among these parameters, High Gray Level
Run Emphasis All Direction offset 8 SD achieved the biggest area under the curve
(AUC) (0.769) with the accuracy of 0.799. As for radiomics analysis, SVM model was
established using 19 features selected with SVM-RFE. The AUC and accuracy for IDH1
mutation on training set were 0.892 and 0.952, while on the testing set were 0.7 and
0.84, respectively.

Conclusion: Radiomics strategy based on APT image features is potentially useful for
preoperative estimating IDH1 mutation status.

Keywords: glioma, radiomics, isocitrate dehydrogenase 1 mutation, support vector machine, magnetic resonance
imaging
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INTRODUCTION

World Health Organization (WHO) grade II/III gliomas include
a heterogeneous group of infiltrative neoplasms with astrocytic
and oligodendroglia morphology (Louis et al., 2016). Much
interest has been focused on histologic class over the past several
decades (Daumas-Duport et al., 1988; Fuller and Scheithauer,
2007). However, highly variable clinical behaviors are not
adequately predicted based on the histologic phenotype (van
den Bent, 2010; Reuss et al., 2015). Therefore, revealing the
specific molecular hallmarks has the potential to reduce bias
and improve diagnosis as well as prognosis. Notably, in the
2016 WHO classification of central nervous system (CNS)
tumors, grade II/III astrocytomas are molecularly divided into
IDH mutant, IDH wild-type, and not otherwise specified
categories, emphasizing the diagnostic and prognostic value of
IDH mutation status in glioma (Louis et al., 2016).

IDHs are critical enzymes that catalyze the oxidative
decarboxylation of isocitrate to α-ketoglutarate (α-KG) (Yan
et al., 2009). IDH mutations occur in up to 75% of WHO grade
II/III gliomas, but are rarely found in primary glioblastomas
(Hartmann et al., 2009; Yang et al., 2012). Patients with IDH
mutation were more sensitive to chemoradiation therapy and
survived longer than IDH wild-type ones (Sanson et al., 2009;
van den Bent et al., 2010). Moreover, IDH mutation would
help stratify grade II/III gliomas into subgroups with distinct
prognostic characteristics, therapeutic response, and clinical
management (Rohle et al., 2013; Olar et al., 2015; Reuss et al.,
2015; Jiang T. et al., 2016).

Currently, IDH mutation is determined by
immunohistochemical staining and DNA sequencing, both
are invasive methods with major limitations associated with
inherent sampling bias or inability to predict the patient
prognosis before surgical resection (Agarwal et al., 2013). As a
non-invasive diagnostic tool, magnetic resonance imaging (MRI)
technique plays an important role in determining IDH mutation.
Although promising, the results of most previous experimental
studies are conflicting (Arita et al., 2018; Suh et al., 2018),
which has hampered consistent clinical application. Notably,
identification of 2-hydroxyglutarate (2HG), the metabolite of
mutated IDH, with MR spectroscopy (MRS) is suggested to be
an optimal strategy in identifying IDH mutation (Andronesi
et al., 2012; Choi et al., 2012; Pope et al., 2012). However, this
technique requires a large tumor volume (de la Fuente et al.,
2016) and is time-consuming, which limits its application. In
addition, partial volume effects between different tumor regions
may obscure the identification of 2-HG in smaller regions.

Because widespread disturbances of cellular metabolism
occur after IDH mutation, including alteration of amino acid
concentrations and enzymatic activity (Reitman et al., 2011),
and global downregulation of protein expression (Doll et al.,
2017). Therefore, more specific imaging modalities are urgently
needed to identify IDH mutation. Amide proton transfer
weighted (APTW) imaging is a promising molecular MR imaging
technique developed to non-invasively quantify endogenous
proteins and peptides (Zhou et al., 2003). For gliomas, APTW
imaging was consistently demonstrating potential for grading

(Togao et al., 2014), differential diagnosis (Jiang S. et al., 2016; Yu
et al., 2017), and treatment response assessment (Sagiyama et al.,
2014). Although APTW imaging has been used in a study (Jiang
et al., 2017) to predict IDH mutation and encouraging results has
been obtained, only univariate analysis was focused on histogram
and conventional parameters such as the mean, minimal, or
maximal values extracted from manually drawn region of interest
(ROI). Higher-dimensional quantitative features from APTW
images were not fully utilized.

Recently, radiomics analysis has drawn attention (Gillies et al.,
2016; Kotrotsou et al., 2016). A large amount of quantitative
high-dimensional features can be extracted, processed and
analyzed to discover their associations with underlying pathology
and genomics. Currently, radiomics approach based on other
advanced MRI techniques are promising in predicting glioma
genotype (Li et al., 2018; Shofty et al., 2018) and patient
survival (Prasanna et al., 2017). However, radiomics analysis
based on APTW images in predicting IDH mutation has not
been reported yet.

Based on these observations, the purpose of this study was
to explore whether radiomics analysis of APTW images could
acquire a higher efficacy than commonly used univariate analysis
in predicting IDH mutation of grade II/III gliomas.

MATERIALS AND METHODS

Patient Population
This prospective single institution study has been approved by
the Ethics Committee of Tangdu Hospital (TDLL-20151013) and
was also registered to ClinicalTrials.gov (NCT03102112).1 From
June 2016 to October 2017, a total of 429 consecutive patients
with suspected gliomas underwent the MRI scanning.

Inclusion criteria were: (1) receiving no corticosteroid, surgery
or any conservative treatment before MRI scan; (2) pathologically
confirmed grade II/III gliomas based on the 2016 WHO
classification; (3) underwent near total or gross total resection.
Eighty-one patients were enrolled in this study. Among them,
22 patients were excluded for the following reasons: (1) without
APTW image (n = 8); (2) the image quality was unsatisfying
with susceptibility or motion artifacts (n = 10); (3) without IDH
information (n = 4). Finally, 59 patients were enrolled. The
process flow diagram is shown in Figure 1.

Imaging Data Acquisition
The whole brain MRI examinations were performed on a
3T MRI system (Discovery MR750, General Electric Medical
System, Milwaukee, WI, United States) with an eight-channel
head coil (GE Medical System). Conventional MRI, contrast-
enhanced MRI, and APTW imaging were implemented during
the examination.

Conventional MRI scanning included four sequences. (1)
axial T1-weighted spin-echo image (T1WI): repetition time/echo
time (TR/TE), 1750 ms/24 ms; matrix size, 256 × 256; field
of view (FOV), 24 cm × 24 cm; number of excitation, 1; slice

1https://www.clinicaltrials.gov/
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FIGURE 1 | Flow diagram for patient selection.

thickness, 5 mm; gap, 1.5 mm. (2) T2-weighted spin-echo image
(T2WI): TR/TE, 4247 ms/93 ms; matrix size, 512 × 512; FOV,
24 cm × 24 cm; number of excitation, 1; slice thickness, 5 mm;
gap, 1.5 mm. (3) sagittal T2WI: TR/TE, 4338 ms/96 ms; matrix
size, 384 × 384; FOV, 24 cm × 24 cm; number of excitation,
2; slice thickness, 5 mm; gap, 1.0 mm. (4) axial fluid-attenuated
inversion recovery (FLAIR): TR/TE, 8000 ms/165 ms; matrix size,
256 × 256; FOV, 24 cm × 24 cm; number of excitation, 1; slice
thickness, 5 mm; gap, 1.5 mm.

Amide proton transfer weighted imaging was performed prior
to the injection of contrast agents. Single-section transverse
APTW image at the maximum area of the tumor was obtained
with a single-shot echo planar imaging (EPI) sequence using
the following parameters: TR/TE, 3000 ms/22.6 ms; matrix size,
128 × 128; FOV, 24 cm × 24 cm; section thickness, 8 mm.
Saturation scheme included a total of 4 saturation pulses placed
before the EPI readout. The parameters for saturation scheme
were as the follows: Fermi-shape saturation pulse width is
500 ms, pulse amplitude 2.0 µT, saturation frequencies include
49 frequency points as well as 3 S0 (without saturation pulses).
The frequency points were 0,±25,±50,±75,±100,±125,±150,
±175, ±200, ±225, ±250, ±275, ±300, ±325, ±350, ±375,
±400,±425,±450,±475,±500,±525,±550,±575,±600 Hz. B0
filed map demonstrating the local field shift in Hz was generated
from APTw images at the frequency between 275 and−275 Hz.

Finally, contrast-enhanced T1WI sequence was acquired in
the transverse, sagittal, and coronal planes after intravenous
administration of 0.1 mmol/kg gadodiamide (Omniscan; GE
Healthcare, Co., Cork, Ireland).

After MRI acquisition, all raw data of APTW images were
transferred to the workstation (Advantage Workstation 4.6; GE
Medical Systems) to generate the B0 map and B0 corrected
magnetization transfer ratio asymmetry (MTRasym) at 3.5 ppm

parametric maps (Part 1 of Figure 2). The APT effect was
quantified using MTRasym at 3.5 ppm with respect to the water
resonance using the following formula:

MTRasym = [S (−3.5 ppm)− S (+3.5 ppm)]

/S with pixel-by-pixel B0 correction

Tumor Segmentation
All images were anonymized and stored in DICOM format.
Two experienced neuroradiologists (L-FY and GX who have
7 and 5 years of experience, respectively, in neuro-oncology
imaging) reviewed the conventional plain and contrast-enhanced
MR images carefully to determine the margin of tumor. The APT
raw data were imported into the ITK-SNAP software (version
3.6.0)2 and the S0 map of APT raw data were identified. The
contour line of the ROI was drawn manually based on S0 map
while attempting to maintain an approximate distance of 2–3 mm
from the tumor margin to minimize the partial volume effect.
As shown in Figure 3, two-dimensional ROI including tumor,
possible edema, cystic degeneration and necrosis was acquired
for each patient.

Feature Extraction and Robustness
Analysis
As depicted in Part 2 of Figure 2, using a non-commercial
Analysis-Kit software (GE Healthcare, China), the method of
quantitative feature extraction was conducted on MTRasym
(3.5 ppm) parametric maps. Forty-two first-order histogram,
983 s-order texture [432 gray level co-occurrence matrix
(GLCM), 540 gray level run length matrix (GLRLM), and

2http://itk-snap.org
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FIGURE 2 | Study flow chart. First, APTasym map was generated from APT raw data and ROI segmentation was done. Second, six types of texture features within
ROIs were extracted by using Analysis-Kinetics software, including the histogram, form, GLCM, GLRLM, GLSZM, and Haralick features. At last, automatic glioma
IDH1 mutation classification using RBF-SVM combined with SVM-RFE feature selection and 10-fold cross-validation were carried out. Finally, model was tested by
the pre-reserved test data.

11 gray level size zone matrix (GLSZM)], 9 form and 10
Haralick features were extracted from MTRasym (3.5 ppm)
parametric maps. Thus, a total of 1044 quantitative features
were obtained from the original images. Details regarding the
quantitative features extracted in this study are presented in
Supplementary Appendix S1.

As all the extracted data depend on the ROIs delineated by
radiologists, the robustness of all the features was evaluated by
both test-retest analysis and inter-rater analysis. For test-retest
analysis, ROIs for each patient were segmented twice by one rater
based on 20 randomly selected patients. Another 20 randomly
selected patients were independently segmented by two raters for
interrater analysis. The features extracted from these ROIs were
assessed using the intraclass correlation coefficient (ICC).

Machine Learning Classification
As shown in Part 3 of Figure 2, the classification procedure
included data grouping, data augmentation, feature selection,

model building and model testing. First, the majority of patients’
data from each group were randomly selected to train the model,
i.e., 11 IDH1 wild type and 38 IDH1 mutation. To solve the
potential impact of the imbalance dataset in the training cohort,
a synthetic minority oversampling technique (SMOTE) was
applied to solve this issue and its merit has also been confirmed in
our previous study (Zhang et al., 2017). In this study, the number
of IDH1 wild-type patients in training data were augmented to
that of IDH1 mutation, i.e., 0.38. The synthetic cases would have
features with values similar to the existing cases and were not
merely replications, thus improving the representation of the
minority group in the dataset. The data of five patients in each
group were left out for testing without applying SMOTE.

Highly correlated or less effective features may lead to the
overfitting issue as well as increase the computing burden. Thus,
SVM-based recursive feature elimination (SVM-RFE) algorithm
was applied to select the most effective features in the training
set to prevent overfitting and improve model generalization. It is
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FIGURE 3 | Representative cases. (A–D): a 36-year-old woman with WHO grade II diffuse astrocytoma with IDH1 mutation in the right frontal lobe. ROI selection is
based on S0 map of APT raw data (A). The lesion shows hyperintensity on axial T2WI (B) and no enhancement on postcontrast T1WI (C). The APTW image (D)
exhibits increased signal intensity in the lesion. E–H: a 31-year-old woman with WHO grade II diffuse astrocytoma with IDH1 wild type in the right frontal lobe. ROI
selection is based on S0 map of APT raw data (E). The lesion shows heterogeneous hyperintensity on axial T2WI (F) and no enhancement on postcontrast T1WI (G).
The APTW image (H) exhibits increased signal intensity in the lesion. I–L: a 31-year-old woman with anaplastic astrocytoma with IDH1 mutation in the right frontal
lobe. ROI selection is based on S0 map of APT raw data (I). The tumor and peritumoral edema shows hyperintensity on axial T2WI (J) and heterogeneous
enhancement of tumor on postcontrast T1WI (K). The APTw image (L) exhibits increased signal intensity in the tumor and peritumoral edema. (M–P): a 45-year-old
man with anaplastic oligodendroglioma with IDH1 wild type in the left parietal lobe. ROI selection is based on S0 map of APT raw data (M). The tumor shows
heterogeneous hyperintensity on axial T2WI (N) and ring-like and strip-like enhancement within tumor on postcontrast T1WI (O). The APTw image (P) exhibits
increased signal intensity in the tumor.

able to rank the features according to their weight during N times
iterations (N is the total number of extracted features). At each
iteration, the feature with the minimal weight was eliminated,

leading the feature ranking from the most to the least important
one. Then, N feature subsets were established by selecting the first
n features from the ranked sequence (1≤ n≤N). To compare the
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performance of different feature subsets, each subset was input
into SVM with radial basis function (RBF) kernel and tested with
10-fold cross-validation.

All the classifications were performed using Waikato
Environment for Knowledge Analysis (WEKA, version 3.8.2).
SVM constructs a hyperplane that provides the optimal
separation boundary to maximize the separation of the objects
in a high-dimensional space, and this approach is widely used
because of its stability and favorable performance. In this feature
space, a decision surface is created with different subspaces. Each
subspace corresponds to one class of training data. Once the
training is completed, the test data are mapped to the feature
space. A class is then assigned to those data depending on which
subspace they are mapped to. Before that, each feature was
normalized into the range from 0 to 1. A RBF kernel maps the
original data with the kernel function as K (x) = exp(gx− t2),
where x and t are two feature vectors, and gamma (g) controls
the shape of the decision hyperplane. Loss function assesses
the degree of inconsistency between the predicted and real
values. The parameter g in the kernel function and epsilon in
loss function were set to 1/3 (default value, 1/max_index) and
0.1, respectively. Probability estimation and shrinking heuristics
were applied. The optimal feature subset would be got according
to the classification performance. Then, the test data were put
into the model built by using the optimal feature subset to test
the performance of the final model.

The classification accuracy and AUC were measured in both
training and test cohorts to evaluate the predictive efficiency of
the radiomics model.

Histopathological Evaluation
Resected tumor tissues were processed using standard
clinical techniques. IDH1 R132H analysis was confirmed by
immunohistochemistry and DNA sequencing as previously
described (Yip et al., 2012; Agarwal et al., 2013). Paraffin sections
of the intracranial tumor specimens were stained with IDH1
R132H mutation-specific antibodies (1:50; H09 clone, Dianova).
The IDH forward primer (5′-ACC AAA TGG CAC CAT ACG
A-3′) and reverse primer (5′-GCA AAATCA CAT TAT TGC
CAA C-3′) were designed to amplify exon 4 (codon R132) of the
IDH gene.

Statistical Analysis
All statistical analyses were performed by using SPSS 20.0
software (IBM Corp, Chicago, IL, United States), WEKA software
(WEKA version 3.8.2), and R software (version 3.3.2). All the
extracted features in our study were assessed using ICC for both
test-retest and inter-rater analyses. According to a previous study
(Gevaert et al., 2014), features with ICC ≥ 0.6 were considered
as robust against intra- and inter-rater uncertainties. The normal
distribution of data was investigated with Kolmogorov-Smirnov
(K-S) test. The between-group comparisons of quantitative data
(age and quantitative features), categorical data (gender, cortical
involvement, midline cross and location) were analyzed using
independent sample t-test and chi-square test. Receiver operating
characteristic (ROC) curve analysis was performed to determine
the performance of single feature or radiomics model, and

accuracy and area under the curve (AUC) were obtained. P < 0.05
indicated a significant difference.

RESULTS

Patients Characteristics and Feature
Robustness
Among 59 patients enrolled in this study, 16 were IDH1 wild-type
(male, 11; female, 5; age range, 3–76 years), and the remained
43 were IDH1 mutant (male, 25; female, 18; age range, 17–
67 years). Age and radiomics features were normally distributed.
Statistical results were summarized in Table 1. There were no
significant differences in age, gender, midline cross and multi-
lobe involvement between the two groups (P > 0.05), whereas
IDH1 mutant gliomas were mostly located in the frontal lobe and
involving the cortex (P < 0.05).

Among 1044 radiomics features, the ICCs of 1038 features for
both test-retest analysis (0.823-1) and interrater analysis (0.712-
1) were greater than 0.6, thus were robust for further analysis.

Univariate Analyses for IDH1 Mutation
Prediction
Significant differences were observed in 18 out of 1038 extracted
quantitative features between the IDH1 wild-type and mutant
groups, including 8 first-order histograms, 6 GLCM and 4
GLRLM. The accuracies and AUC of these features were shown
in Table 2. Among 18 features, High Gray Level Run Emphasis
All Direction offset 8 SD achieved the highest AUC [0.769, 95%
confidence interval (CI) 0.641–0.869] with the accuracy of 0.799.

TABLE 1 | Baseline demographics and clinical characteristics of patients.

IDH-mutant IDH wild-type P-value

Patients (N/%) 72.9% (43/59) 27.1% (16/59) NA

Age (mean ± SD) 44.32 ± 10.68 40.18 ± 19.17 0.298

Gender (N/%) 0.333

Male 58.1% (25/43) 68.8% (11/16)

Female 41.9% (18/43) 31.2% (5/16)

Cortical
involvement (N/%)

93.0% (40/43) 56.2% (9/16) 0.002

Cross the midline (N/%) 16.3% (7/43) 0 (0/16) 0.173

More than two lobes
involved (N/%)

37.2% (16/43) 56.2% (9/16) 0.241

Location (N/%)

Frontal lobe 76.7% (33/43) 43.8% (7/16) 0.027

Parietal lobe 4.7% (2/43) 12.5% (2/16) 0.295

Temporal lobe 9.3% (4/43) 18.7% (3/16) 0.375

Other locations 9.3% (4/43) 25% (4/16) 0.194

Histologic subtype (N/%) Diffuse astrocytoma Anaplastic
astrocytoma

54% (20/37) 63.6% (14/22)

Oligodendroglioma Anaplastic
oligodendroglioma

NA

46% (17/37) 36.4% (8/22)
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TABLE 2 | Diagnostic performance of univariate analyses in predicting IDH1
mutation.

Parameter Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC (95% CI) P-value

Histogram

H1 74.5 76.7 68.7 0.702 (0.569−0.814) 0.015

H2 74.6 76.8 68.8 0.702 (0.586−0.827) 0.019

H3 74.6 74.4 75.0 0.734 (0.603−0.841) 0.003

H4 74.6 76.7 68.8 0.719 (0.587−0.829) 0.007

H5 74.6 72.1 81.2 0.734 (0.603−0.841) 0.004

H6 76.2 76.7 75.0 0.725 (0.594−0.833) 0.006

H7 74.5 76.7 68.7 0.711 (0.578−0.821) 0.011

H8 71.2 69.8 75.0 0.695 (0.561–0.808) 0.003

GLCM

G1 59.3 51.2 81.3 0.696 (0.563−0.809) 0.012

G2 62.7 55.8 81.3 0.664 (0.529−0.782) 0.034

G3 69.1 69.1 68.8 0.710 (0.576−0.822) 0.006

G4 77.6 90.2 43.8 0.691 (0.555−0.807) 0.018

G5 71.3 72.5 54.6 0.687 (0.567−0.789) 0.043

G6 69.0 69.1 68.8 0.710 (0.576−0.822) 0.006

GLRLM

R1 66.1 60.5 81.2 0.670 (0.535−0.787) 0.033

R2 66.1 65.1 68.7 0.667 (0.532−0.784) 0.033

R3 67.8 67.4 68.7 0.712 (0.580−0.823) 0.005

R4 79.9 88.7 56.3 0.769 (0.641−0.869) <0.001

H1, RMS; H2, percentile 70; H3, percentile 75; H4, percentile 80; H5, percentile
85; H6, percentile 90; H7, percentile 95; H8, quantile 0.975; G1, correlation all
direction offset 2 SD; G2, correlation angle 45 offset 4; G3, cluster shade angle 45
offset 7; G4, cluster prominence angle 45 offset 7; G5, cluster shade all direction
offset 8 SD; G6, inverse difference moment angle 135 offset 6; R1, long run high
gray level emphasis angle 135 offset 1; R2, short run emphasis all direction offset6;
R3, long run emphasis all direction offset 6; R4, high gray level run emphasis all
direction offset 8 SD.

Machine-Learning for Predicting IDH1
Mutation
Based on the IDH1 mutation status, 1038 robust features
extracted from APTW images were employed to construct the
machine-learning model. Nineteen features were selected to be
the optimal feature subset for IDH1 mutation prediction using
SVM-RFE. Figure 4 illustrates the feature selection process. With
the participation of new twenty ranked features sequentially, the
overall tendencies of classification accuracy first declined and
gradually increased. The peak of curve was achieved by using
the top-20 feature subset. For the top-20 features, classification
accuracy was evaluated again with inclusion of each ranked
feature one by one. The best performance was achieved by
using the top-19 feature subset, which was determined as the
optimal feature subset.

Afterward, the independent test data were used to test the
final solution in order to confirm the actual classification power.
The test accuracy and AUC of the model were 0.70 and
0.84, respectively.

Optimal Feature Subset Analysis
As described above, 19 out of the 1038 features were selected to be
the optimal feature subset to establish IDH1 mutation prediction

model. It can be observed that GLCM features (n = 13) accounted
for a high proportion, and the rest (n = 6) were GLRLM features.
Detailed descriptions of the 19 features are listed in Table 3.
The ROC and the heat maps of feature correlations before and
after feature selection were shown in Figure 5. The machine-
learning model achieved better discriminative ability to predict
IDH1 mutation, with the ACC and AUC of 0.892 and 0.952,
respectively (Figure 5A). As further demonstrated in Figure 5B,
before feature selection, there was mass redundant information
among the 1038 features, which appeared as the high correlation
coefficients ranging from −1 (blue) to 1 (red). After feature
selection, 19 optimal features had a relatively low correlation and
high effectiveness, as shown in Figure 5C.

The contributing weight and correlation coefficient between
each feature and the classification class of the optimal feature
subset were shown in Figure 6. It is obvious that the
corresponding trend of the blue and orange bars of each feature
does not match, which indicates that the performance of an
individual feature does not determine its contribution to the
optimal feature subset. That is to say the feature subset does
not necessarily require that each feature to be very powerful,
but the complementarity between features can help the subset
achieve the best results. Therefore, to simply combine several
individual parameters with higher classification performance
may not achieve enough good results.

DISCUSSION

In this study, the histogram and high-order features were
extracted from APTW images. Both univariate and radiomics
analyses were performed to compare the efficacies in predicting
IDH1 mutation. Our SVM model achieved an AUC of 0.952
and 0.84 in the training set and test set, respectively. Notably,
the efficacy achieved by SVM model was superior to that of
univariate analysis.

Jiang et al. (2017) first confirmed the ability of APTW images
in identifying the IDH1 mutation status. Based on their study,
IDH wild-type gliomas were associated with relatively high
APTW signal intensities as compared with IDH-mutant ones.
Similarly, our univariate analysis revealed that 8 out of 18
determinant variables were histogram features. Among these
histogram features, the higher AUCs (0.734) were achieved by
using the 75th and 85th percentile APTW values. However,
different from their study, the best diagnostic performance was
achieved by using High Gray Level Run Emphasis All Direction
offset 8 SD with AUC of 0.769. Furthermore, the highest AUC
of 0.952 was achieved by using radiomics model. The following
factors may contribute to the differences: (1) different study
population; only WHO grade II gliomas with relatively small
sample size were enrolled in their study. In light of the 2016
WHO classification, the anaplasia and mitotic activity in WHO
grade II from III gliomas may result in inter-observer variability.
Furthermore, clinical outcome differences of grade II/III gliomas
rely far more on molecular subtypes than on grading, suggesting
that molecular parameters may in fact be a better tool in
identifying subgroups with distinct prognosis. Consequently, in
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FIGURE 4 | The tendency of classification AUC and ACC value during optimal attribute determination of machine-learning model. The horizontal axis is the attribute
number and the vertical axis is the AUC/ACC value. The local classification performance at peak point is magnified to view on the top right corner.

accordance with cancer genome archive (TCGA), we merged
WHO grade II/III gliomas as “lower grade glioma”; (2) different
ROI strategy; in their study, both whole tumor histogram-based
and multi-ROI-based analyses were adopted. The best AUC of
0.89 was achieved by multi-ROI-based maximal APTw value.
Though suitable for application in clinical practice, the hot-spot
ROI analysis might limit the reproducibility of the results. (3)
different order feature and statistical methodology; conventional
univariate analysis based on first-order features (maximum,
minimum and other histogram features) were used in their study.
In our study, apart from histogram features, higher order features
were extracted. Moreover, radiomics analyses were performed for
feature selection and classifier modeling.

Our study expands the current scarce but promising
evidence on the diagnostic ability of APTW images to predict
IDH1 mutation. Both univariate and radiomics analyses were
performed. The efficacy achieved by radiomics analysis was
superior to that with univariate analysis. The promising results
may be partially attributed to two reasons: (1) Compared to
first-order texture features based on histograms of the original
image, higher order features provided spatial information among
pixels and may better reflect the tumor heterogeneity (Hu et al.,
2015); (2) Machine learning method enabled the integration of
quantitative textural image features to build a model to predict
IDH1 mutation. Especially, the SVM classifier is considered to
be a robust and effective machine-learning approach that has
been predominately used in the fields of neuroimaging and
molecular biology.

TABLE 3 | The optimal radiomic features selected by the SVM-RFE method.

Gray level co-occurrence matrix
(GLCM) (n = 13)

Gray level run-length matrix
(GLRLM) (n = 6)

Correlation all direction offset4 SD; GLCM
Entropy angle45 offset2; Inertia all
direction offset3; Haralick Correlation
angle45 offset1; Inverse difference
moment angle0 offset5; Inertia angle0
offset2; Cluster prominence all direction
offset1 SD; Inverse difference moment
angle135 offset1; GLCM Energy
angle135 offset3; Correlation angle0
offset1; Inverse difference moment
angle135 offset9; Inverse difference
moment all direction offset7 SD;
Correlation angle135 offset5; Cluster
prominence angle135 offset2

Run length non-uniformity angle0
offset1; Low gray level run
emphasis angle90 offset3; Long
run low gray level emphasis
angle45 offset6; Long run low gray
level emphasis all direction offset5;
Run length non-uniformity all
direction offset5; High gray level run
emphasis angle0 offset8

In addition, the promising prediction performance partly
benefited from the feature selection procedure (to decrease
the redundancy between features and the risk of model
overfitting) by identifying a set of the most contributing
features. Here, in the optimal feature subset for IDH1 mutation
prediction, most of the selected features were GLCM and
GLRLM, which partly benefited from their high proportion
in raw feature sets. However, it is worth noting that selected
GLCM and GLRLM represent voxel-based change of grayscale
and could reflect the complexity and heterogeneity of the
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FIGURE 5 | Feature selection and analysis. ROC curve of machine-learning model (A); Heat maps of feature correlation analysis before (B) and after (C) feature
selection.

FIGURE 6 | Analysis of the optimal feature subset of machine-learning model. The blue bars represent the contribution weights of the optimal feature subset of
machine-learning model. The orange bars represent the correlation coefficient for features and the classification class.

tumor. Although the underlying biological mechanism for how
these features relate to IDH1 mutation status is presently
unclear, our findings is in accordance with previous studies
(Choi et al., 2016; Liu et al., 2018; Zhang et al., 2018).
Besides, the results suggested that the feature subset does not
necessarily require that each feature be very powerful, but the
complementarity between features can help the subset achieve
the best results.

There are several limitations in this study. First, our sample
size was relatively small, especially for the IDH1 wild-type
group due to the inherent IDH1 mutation distribution ratio
in the general population. The results presented here require
confirmation in a larger study. Second, only two-dimensional
ROIs at each representative slice were delineated for feature

extraction. Third, we did not thoroughly reveal the biological
process behind the selected texture feature. Lastly, multi-model
MRI data should be integrated into our model to improve
efficiency of IDH1 mutation prediction.

CONCLUSION

In conclusion, the current study revealed that radiomic features
derived from APTW images are associated with IDH1 mutation
status in grade II/III gliomas. Using texture analysis and SVM, a
machine learning model was established and the IDH1 mutation
status was predicted effectively. Our findings indicate that
quantitative radiomics analysis based on APTW images can
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potentially provide a non-invasive methodology for mutation
status detection.
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