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There are bi-directional interactions between the autonomic nervous system (ANS) and
pain. This is likely underpinned by a substantial overlap between brain areas of the
central autonomic network and areas involved in pain processing and modulation. To
date, however, relatively little is known about the neuronal substrates of the ANS-
pain association. Here, we acquired resting state fMRI scans in 21 healthy subjects
at rest and during tonic noxious cold stimulation. As indicators of autonomic function,
we examined how heart rate variability (HRV) frequency measures were influenced
by tonic noxious stimulation and how these variables related to participants’ pain
perception and to brain functional connectivity in regions known to play a role in both
ANS regulation and pain perception, namely the right dorsal anterior cingulate cortex
(dACC) and periaqueductal gray (PAG). Our findings support a role of the cardiac ANS
in brain connectivity during pain, linking functional connections of the dACC and PAG
with measurements of low frequency (LF)-HRV. In particular, we identified a three-
way relationship between the ANS, cortical brain networks known to underpin pain
processing, and participants’ subjectively reported pain experiences. LF-HRV both at
rest and during pain correlated with functional connectivity between the seed regions
and other cortical areas including the right dorsolateral prefrontal cortex (dlPFC), left
anterior insula (AI), and the precuneus. Our findings link cardiovascular autonomic
parameters to brain activity changes involved in the elaboration of nociceptive
information, thus beginning to elucidate underlying brain mechanisms associated with
the reciprocal relationship between autonomic and pain-related systems.

Keywords: pain, autonomic nervous system, heart rate variability, fMRI, resting state, periaqueductal gray,
anterior cingulate cortex
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INTRODUCTION

Neural networks involved in pain processing are intimately
linked to the autonomic nervous system (ANS) (Benarroch,
2006): On the one hand, the body’s response to pain is
defined by changes in ANS parameters (Kyle and McNeil,
2014); on the other, alterations in autonomic arousal can also
influence the experience of pain (Terkelsen et al., 2004). There
is growing interest in mindfulness-based and other mind-body
interventions in the treatment and management of pain (Stanos,
2012; Goyal et al., 2014), with changes in autonomic balance one
of the likely underlying mechanisms of action (Tang et al., 2015).
Whilst various regions of the central nervous system (CNS) are
known to play a role in both pain and the ANS, currently there is
a lack of knowledge concerning how pain-autonomic interactions
may be reflected by functional connections in the brain.

One possible mechanism underlying this pain-autonomic
interaction is the baroreflex, the negative feedback loop used to
maintain stable blood-pressure (Suarez-Roca et al., 2018). This
mechanism has been associated with observed reduction in pain
perception in healthy controls during spontaneous high blood
pressure (during which baroreceptors are activated) and also
during mechanical stimulation of baroreceptors (Edwards et al.,
2001; Duschek et al., 2007; Reyes del Paso et al., 2014). Decreased
baroreceptor sensitivity has also been described in some chronic
pain conditions (Davydov et al., 2018).

Heart rate variability (HRV), which is derived from variations
in interval length between consecutive heart beats (Task Force,
1996; Berntson et al., 1997; Thayer et al., 2010a, 2012), is often
estimated to assess the autonomic response to experimental pain
(Koenig et al., 2014). Low frequency (LF)-HRV spectral power
is thought to represent the baroreflex-dependent outflow to the
heart, whereas high frequency (HF) is interpreted as indicator of
vagal cardiac control, and the ratio between the two measures
(LF/HF) as a reflection of sympathovagal balance (Pagani et al.,
1986, 2012; Montano et al., 2009; Thayer et al., 2010a; Goldstein
et al., 2011; Reyes del Paso et al., 2013). Experimentally induced
pain increases LF power and the LF/HF ratio (Koenig et al.,
2014), indicating an increased engagement of the baroreflex. Few
studies have employed tonic cold pain stimuli, but results from
cold water hand immersion tests (i.e., the cold pressor test) point
toward a similar tendency of increased LF-HRV (Mourot et al.,
2009; Streff et al., 2010).

A pain-suppressive effect associated with larger HF spectral
power at baseline has been found (Nahman-Averbuch et al.,
2016; Tracy et al., 2018), which might be explained by superior
capacity to engage vagal cardiac control (Reyes del Paso et al.,
2011; Busch et al., 2013; Zunhammer et al., 2013; Tracy
et al., 2018). Conversely, higher resting LF-HRV has been
found to predict reduced thermal pain sensitivity (Appelhans
and Luecken, 2008; Tracy et al., 2018). Patients with chronic
pain conditions such as fibromyalgia often show reduced HF
power in addition to increased LF and LF/HF, suggesting
dysregulated autonomic cardiac control (Meeus et al., 2013)
and altered baroreflex engagement (Bruehl et al., 2017). In
brief, HRV indices respond to noxious stimuli and relate to the
subjective intensity of pain, but can also predict the experience

of pain, indicating a bi-directional association where nociception
influences the ANS and, conversely, the ANS modulates the
experience of pain.

Modern neuroimaging techniques, such as functional
magnetic resonance imaging (fMRI) and positron emission
tomography (PET), have been used to investigate the brain
regions associated with autonomic activity during various
tasks and conditions. Significant correlations between HRV,
amygdala and medial prefrontal cortex (mPFC) activity
have been demonstrated (Thayer et al., 2012; Beissner et al.,
2013; Steinfurth et al., 2018). In resting-state fMRI (rs-fMRI)
paradigms, HRV measures were associated with functional
connectivity of different resting state networks (RSNs). For
example, Jennings et al. (2016) found participants’ HF-HRV at
rest to correlate with resting state connectivity of the mPFC,
but not with salience (SN) or default mode networks (DMN).
Functional connectivity of the dorsal anterior cingulate cortex
(dACC) to the thalamus and brainstem co-varies with HF-
HRV, whilst LF-HRV relates to dACC connectivity with the
temporoparietal junction (Chang et al., 2013). Further, measures
of vagal output have been shown to be associated with functional
connectivity between cortical areas and parts of the brainstem
(e.g., Smith et al., 2015; Bär et al., 2016).

Many brain regions involved in ANS activity are also active
during the experience of pain, including the anterior cingulate
cortex (ACC), amygdala, and periaqueductal gray (PAG) (Leone
et al., 2006; Heinricher and Fields, 2013). The dACC is
consistently found to be involved in the CNS response to noxious
stimulation (Vogt et al., 2003; Apkarian et al., 2005; Leone
et al., 2006; Duerden and Albanese, 2013; Jensen et al., 2016).
Whilst the more rostral parts are associated with the affective
component of pain, the most dorsal aspect (bordering the mid-
cingulate cortex) encodes the objective aspects of pain (e.g.,
stimulus intensity) (Rainville et al., 1999; Singer et al., 2004;
Wager et al., 2004; Amodio and Frith, 2006; Boccard et al.,
2014). Taken together, the dACC forms part of a network of
brain regions involved in the detection of salient sensory events,
including the multimodal context-dependent experience of pain,
but is also intimately linked to the ANS and the sensing of
internal body states (i.e., interoception) (Craig, 2002; Tracey
and Mantyh, 2007; Legrain et al., 2011). Similarly, the midbrain
PAG receives both peripheral nociceptive input and descending
projections from the hypothalamus, amygdala, and rostral ACC.
Providing output to medullary centers, the PAG is an essential
component of a descending pain modulatory system that inhibits
or facilitates nociceptive processing within the spinal dorsal horn
(Ossipov et al., 2010; Heinricher and Fields, 2013). PAG neurons
projecting to autonomic centers in the medulla are also involved
in cardiovascular changes observed during opioid-dependent
and independent endogenous analgesia (Benarroch, 2006; Green
et al., 2006). In addition, stimulation of the PAG alters baroreflex
sensitivity and cardiac control (Pelosi et al., 2007; Pereira et al.,
2010; Benarroch, 2012; Lagatta et al., 2016).

Due to extensive functional overlap between structures
involved in autonomic control, nociception, and pain sensation
at different levels of the spinal cord, brainstem, midbrain, and
cortex (Benarroch, 2001, 2006), the reciprocal ability of the ANS
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to modulate nociceptive information is not surprising. Amongst
others, emotional appraisal (Wiech and Tracey, 2009), attention
(James and Hardardottir, 2002; Bradshaw et al., 2012), mood
(Carter et al., 2002), hypnotic suggestion (Rainville et al., 1999),
and stress (Terkelsen et al., 2004; Ballegaard et al., 2014) can
influence the subjective pain experience. Any of these states
corresponds with changes in ANS activity (Wiech et al., 2008;
Kreibig, 2010) and baroreflex sensitivity (Fejes et al., 2020).

Whilst previous studies have described brain networks
underlying pain-induced sympathetic reactions in response to
tonic pain (Kobuch et al., 2017, 2018), only one study so far
has investigated how variations in HRV relate to brainstem
functional connectivity changes observed during a prolonged
painful experience: Sclocco et al. (2016) convolved HRV
with the hemodynamic response function during 6 min of
pressure pain, identifying several brainstem nuclei (specifically,
rostral ventromedial medulla, ventral nucleus reticularis/nucleus
ambiguous, and pontine nuclei) associated with pain-evoked
HRV alterations. To date, the bi-directional association between
pain-engaged higher brain networks (involving, for example, the
anterior cingulate cortex) and HRV (either resting or in response
to pain) remains unexplored.

In this study, we combined sampling of HRV and rs-fMRI,
both during rest and tonic noxious cold stimulation, in a group
of healthy participants. We adopted a hypothesis-driven region
of interest (ROI) approach, drawing upon regions known to
play important roles in both ANS function and nociceptive
processing, namely the dACC and the PAG (Benarroch, 2006;
Leone et al., 2006; Tracey and Mantyh, 2007; Legrain et al., 2011).
Following previous studies, we hypothesized that HRV measures
at baseline and during noxious stimulation will be associated
with subjective pain intensity ratings. Further, we hypothesized
that PAG and dACC RSNs would be affected by a tonic noxious
stimulus, and that these pain-induced rs-fMRI changes would
correlate with HRV parameters and subjective ratings of pain.
Lastly, we explored whether baseline HRV is associated with the
brain response to a noxious stimulus.

MATERIALS AND METHODS

Participants
Twenty three healthy participants took part in the experiment.
Two participants were discarded due to poor quality of the
physiology data. The final sample comprised 21 participants (8
females, mean age: 26.1, SD: 5.2). Further, pain ratings were
obtained from 17 of those participants only (five participants
did not attend the final testing session). All participants were
right-handed as assessed by the Edinburgh handedness inventory
(Oldfield, 1971). In addition to MRI contraindications, exclusion
criteria (verified by means of standardized questionnaires or
semi-structured interview) included: a history of psychiatric
illness; substance abuse [as verified by Sections 11 and 12
of the Schedules for Clinical Assessment in Neuropsychiatry
(SCAN) (Wing et al., 1990); and by the Alcohol Use Disorders
Identification Test (AUDIT) (Higgins-Biddle and Babor, 2018)];
chronic pain conditions; diagnosed medical or psychological

conditions that might compromise participation in the study
or interfere with somatosensation; cardiovascular medication
and medication which might affect temperature sensitivity (e.g.,
tricyclic antidepressants). All female participants were tested
within the follicular phase to reduce hormonal effects on
HRV (Sato et al., 1995) and pain sensitivity (Martin, 2009;
Iacovides et al., 2015).

To minimize the influence of diurnal variations on pain
responses (Strian et al., 1989; Hodkinson et al., 2014), rs-fMRI
networks activity (Blautzik et al., 2013; Jiang et al., 2016), and
HRV (Ewing et al., 1991; Li et al., 2011; Xhyheri et al., 2012),
participants were always tested at the same time of the day. At
the beginning of each visit, participants were tested for drugs
of abuse (urine drug test) and alcohol consumption (alcohol
breathalyzer). Participants’ autonomic reactions (blood pressure
and heart rate) were tested at the beginning and at the end of
each experimental session, in a sitting and standing position, to
identify any anomalous cardiovascular behavior. All participants
provided written informed consent. The study was approved by
the King’s College Research Ethics Committee in accordance with
the principles of the Helsinki declaration.

Experimental Procedure
Participants attended three visits: a first familiarization session,
a scanning session, and a post-scanning session. During the
familiarization session, participants were accustomed with the
cold stimulation and the MRI environment.

During the scanning session, participants underwent three
consecutive resting-state fMRI blocks, each of 6 min duration: a
baseline resting condition (“Baseline”), and a prolonged noxious
cold stimulation (“Cold-pain”) and a post-cold recovery session.
For this study, data from the first two blocks were analyzed, whilst
the results of the last block are presented in Makovac et al. (2019).
To elicit pain, 2◦C cold-water was circulated via a custom-made
aluminum thermode (4 × 20 cm) applied to the volar surface of
the participants’ left forearm, via a high capacity (700W) solid
state circulating chiller unit (Thermotek RC22A750) employed to
deliver stable temperature control of the afferent stimulation over
time. Following an initial stabilization period (∼20 s), a mean
temperature was maintained at 2.5◦C (±0.9◦C) throughout the
experimental block.

During each resting state period, participants were instructed
to rest with their eyes open, and focus on a fixation cross
presented at the center of the screen, without thinking of
anything and not falling asleep. Heart rate (HR) was sampled
continuously during the Baseline and Cold-pain condition
by means of photoplethysmography (PPG), using an inbuilt
MRI-compatible pulse oximeter (General Electric) fitted to the
participants’ right index finger. In stationary conditions, pulse
oximetry has been shown to be a good surrogate measure for
ECG-derived HRV (Gil et al., 2010; Schäfer and Vagedes, 2013).

In our original experimental paradigm, the “cold-pain” resting
state session was followed immediately by a further “post-cold”
session (see Makovac et al., 2019), which precluded the provision
of an intermediate subjective response to the prolonged noxious
stimulation. To circumvent this, each participant’s subjective
experience of cold pain was explored in a further post-scanning
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session. Here, participants were instructed to rate the pain level
and unpleasantness experienced during the same 6-min 2◦C
cold stimulation on a visual analog scale (VAS) ranging from 0
(no pain) to 100 (worst pain imaginable) (Howard et al., 2006;
Marquand et al., 2010). Cold pain ratings were robust and reliable
(see Supplementary Material S1 for more details).

Heart Rate Variability
Photoplethysmography inter-beat interval (IBI) data were plotted
in Matlab, visually inspected, and potential artifacts removed
manually. IBI values were used as inputs into Kubios HRV
Standard ver. 3.0.2 software (Tarvainen et al., 2014). Detrending
was performed based on smoothness priors. Frequency domain
measures were extracted into MS Excel and IBM SPSS Statistics
for Macintosh (ver. 24) for statistical analysis. Data were then
scanned for outliers using boxplots and exploratory statistics in
SPSS. Values for HRV frequency bands are LF: 0.04–0.15 Hz,
and HF: 0.15–0.4 Hz, as recommended by a 1996 task force
publication on HRV (Task Force, 1996). The natural logarithms
of LF and HF power (in ms2) were calculated, with the aim to
reduce skewness and kurtosis of HRV parameters and to enable
the data to more closely conform to the assumptions of normality.
Other studies have reported that the log of LF power correlates
positively with the log of baroreflex-cardiovagal gain (Moak et al.,
2007; Rahman et al., 2011).

In order to differentiate early HRV alterations from later ANS
habituation to noxious stimulation, HRV frequency measures
were extracted from two separate intervals; Interval 1 (0–3 min
from the beginning of the session) and Interval 2 (3–6 min),
separately for the Baseline and Cold-pain session. HRV measures
derived from a 3-min sample have good inter-session reliability
(see Supplementary Material S3).

MRI Acquisition and Preprocessing
MR images were acquired on a 3T GE MR750 scanner,
with a 32-channel receive-only head coil (NovaMedical).
Structural volumes were obtained using the high-resolution
three-dimensional magnetization-prepared rapid gradient-echo
sequence (TR = 7312 ms, TE = 3.02 ms, flip angle = 11◦,
slice thickness = 1.2 mm, 196 sagittal slices, FOV = 270 mm).
Functional datasets used T2∗weighted multi-echo imaging (EPI)
sensitive to blood oxygenation level dependent (BOLD) signal
(TR = 2 s, TE1 = 12 ms, TE2 = 28 ms; TE3 = 44 ms;
flip-angle 80◦, 32 slices, 3 mm slice thickness, 240 mm FOV,
voxel size 3.75 × 3.75 × 3 mm). By acquiring multiple echo
images per slice, multi-echo fMRI allows to identify non-BOLD
related sources of signal and preserves the signal of interest
(Dipasquale et al., 2017).

Pre-processing was performed using AFNI (Cox, 1996), the
Advanced Normalization Tools (ANTs) (Avants et al., 2011), and
FSL (Smith et al., 2004). Steps included volume re-alignment,
time-series de-spiking and slice time correction. After pre-
processing, functional data were optimally combined (OC) by
taking a weighted summation of the three echoes using an
exponential T2∗ weighting approach (Posse et al., 1999). The
OC data were then de-noised adopting a Multi-Echo ICA
approach implemented by the tool meica.py (Version v2.5 beta9)

(Kundu et al., 2013, 2014), given its effectiveness in removing
physiological and motion-related noise and increasing temporal
SNR (Kundu et al., 2013; Dipasquale et al., 2017). Briefly, multi-
echo principal component analysis was first used to reduce the
data dimensionality in the OC dataset. Spatial ICA was then
applied to one echo, and the independent component time-
series were fitted to the pre-processed time-series from each of
the three echoes to generate ICA weights for each echo. These
weights were then fitted to the linear TE-dependence and TE-
independence models to generate F-statistics and component-
level κ and ρ values, which, respectively, indicate BOLD and
non-BOLD weightings. The ρ metrics were then used to identify
non-BOLD-like components to be regressed out of the OC
dataset as noise. For further technical details on multi-echo ICA
refer to Kundu et al. (2015).

Next, white matter and cerebrospinal fluid time-series were
regressed out using FSL. A high-pass temporal filter with
a cut-off frequency of 0.005 Hz was applied, and the data
were spatially smoothed with a 5 mm FWHM Gaussian
kernel. Each participant’s dataset was co-registered to its
corresponding structural scan using affine-only registration.
Then, using a non-linear registration approach, functional data
were normalized to standard MNI152 space and resampled to
2 × 2 × 2 mm3 using ANTs.

Statistical Analyses
HRV Reactions to Pain
We tested for a difference in HRV parameters either with
pain induction or between the initial and final interval of each
test condition. A two-way within-subject ANOVA was used
to explore the main effect of Condition (Baseline, Cold-pain),
Interval (starting 3 min, final 3 min), and the Condition x Interval
interaction, separately for LF-HRV and HF-HRV.

Next, we examined whether subjects’ pain sensitivity
correlated with HRV at baseline and during cold stimulation.
All data were expressed as means (±SD). Differences at p < 0.05
were regarded as significant. Data analysis was performed with
SPSS 23.0 for Windows (SPSS Inc., United States).

Seed-Based fMRI Analysis
Anatomical ROIs were constructed using the Marsbar toolbox
implemented in SPM 121. The cingulate-seed was located at
MNIxyz = (2, 8, 38) (7 mm spherical radius; right dACC) and
the PAG ROI at MNIxyz = (0, −30, −1) (3 mm spherical
radius). Our ROIs were based on results from pre-existing data
acquired by our group (Makovac et al., 2019) and previously
published examples of the dACC (Kong et al., 2010a; Duerden
and Albanese, 2013; Wilcox et al., 2015) and the PAG (Kong et al.,
2010b; Zyloney et al., 2010; Mainero et al., 2011). Functionally,
we chose these two regions because of their known involvement
in both pain processing and ANS control (see Supplementary
Material S4 for a Neurosynth – https://neurosynth.org/ – based
meta-analysis of pain-related and ANS-related studies, S4). It is of
note that, given the extension of the sphere used to build our ROI,

1http://marsbar.sourceforge.net/
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the dACC ROI covered an area on the boundary between dACC
and medial cingulate cortex (MCC), as defined by Vogt (2016).

The average resting state fMRI time-series in each ROI was
extracted for each participant and for each scan and used
as a regressor at 1st level SPM analysis with the purpose
of determining the voxels in the brain showing a significant
correlation with each ROI. Next, group analyses were performed,
in which participants’ first level contrast images for the Baseline
and Cold-pain conditions were included in a paired t-test, to
explore the network of areas positively associated with our seed
regions in each condition.

We performed three different regression analyses, using
HRV measures and subjective pain ratings as covariates of
interest. First, we explored the relationship between our resting-
state networks and pain-induced HRV alterations. We tested
whether baseline dACC and PAG functional connectivity
predicted HRV changes during pain, and whether dACC and
PAG functional connectivity during cold pain was associated
with HRV reactions to cold pain. Next, we investigated
whether baseline dACC-PAG functional connectivity underlies
the association between HRV and pain. Here, both HRV
and subjective pain ratings were entered into the same
general linear model. Lastly, to explore the modulatory role
of the HRV toward pain perception, we tested whether
baseline HRV measures could predict pain-related dACC-PAG
RSN alterations.

Due to potential gender-specific differences in pain processing
(Moulton et al., 2006; Henderson et al., 2008; Paller et al., 2009),
gender was used as a covariate of no interest. Similarly, age has
been shown to influence HRV in healthy individuals (O’Brien
et al., 1986; Antelmi et al., 2004) and was thus controlled for in
our analyses. Statistical threshold was set to p < 0.05 – FWE-
corrected at cluster level (cluster size defined using uncorrected
voxel-level threshold p < 0.005), according to Gaussian Random
Field Theory (Worsley et al., 1992).

RESULTS

Sample Characteristics
Table 1 provides a summary of the main demographic and
baseline characteristics of our sample. After the 6-min cold
stimulation, participants gave an average pain rating of 45.8
(SD = 22.2) on a 0–100 VAS scale.

The Effect of Cold Pain on HRV
Measures
We found an overall increase in logLF-HRV from Baseline to
Cold-pain [mean (SD) = 2.91 (0.41) and 2.94 (0.46), respectively;
F(1,17) = 7.79, p = 0.013]. Whether the HRV data was sampled
during the first or second half (interval) of each experimental
condition did not affect this result [F(1,17) = 1.39, p = 0.25]
and there was no significant difference between intervals across
conditions (F < 1). As regards logHF-HRV, we did not observe a
significant difference between Baseline and Cold-pain conditions
(F < 1), nor was there an effect of Interval (F < 1) or a
Condition × Interval interaction effect (F < 1).

Correlation Between HRV Measures and
Pain Ratings
HRV as measured during any of the experimental conditions was
not associated with subjective cold pain intensity ratings (p > 0.05
for both logLF-HRV and logHF-HRV).

Seed-Based Resting-State fMRI Results
Identification of Baseline Resting State Networks
dACC-seed
The dACC ROI was functionally connected with clusters in the
left insula, bilateral superior frontal, precentral and postcentral
gyri, the precuneus and the posterior cingulate cortex (Figure 1A
and Table 2).

PAG-seed
The resting network of our PAG-seed consisted of a cluster
in bilateral hippocampus, posterior cingulate cortex, thalamus
and the cerebellum as well as ventro-medial prefrontal cortex
(Figure 1B and Table 2).

The Effect of Cold-Pain on Resting-State Networks
Functional connectivity of the dACC increased in the Cold-
pain condition with clusters in the contralateral rostral ACC,
superior frontal gyrus, and the frontal pole (Figure 2A and
Table 2). Upon noxious cold stimulation, functional connectivity
of the PAG with the precuneus increased [results reported
in Makovac et al. (2019)].

The Association Between RSNs and Pain-Related
HRV Alterations
During Cold-pain, a positive association was observed between
logLF-HRV and the functional connectivity between dACC
and vmPFC (Figure 2B). We did not observe any significant
association between PAG functional connectivity and pain-
induced HRV alterations.

The Inter-Relationship Between RSNs, Pain-Related
HRV Alterations and Pain Ratings
We tested whether baseline functional connectivity with
PAG predicts both pain-related HRV reactions and pain
ratings. Baseline functional connectivity between PAG and
vmPFC expressed a significant logLF-HRV × cold pain ratings
interaction. This effect was driven principally by the co-
expression of a positive correlation with logLF-HRV during
cold pain and a negative correlation with pain ratings. Thus,
stronger baseline PAG-vmPFC connectivity was associated on
one hand with stronger autonomic reaction during cold pain
and on the other hand with lower subjective perception of cold
pain (Figure 2C).

Baseline HRV as Predictor of Functional
Connectivity Changes to Cold Pain
Higher baseline logLF-HRV measures predicted decreases in
functional connectivity between dACC and superior frontal
gyrus/dorsolateral prefrontal areas and between dACC and left AI
(Figure 3A and Table 3) during cold pain. Baseline logLF-HRV
values predicted an increase in functional connectivity between
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TABLE 1 | Sample characteristics and heart rate variability (HRV) measures.

Total n 21

Sample characteristic M SD HRV measure M SD

age 26.1 (±5.2) Log LF (absolute) in ms2

gender ratio BL 2.913 (1461.12) ±0.405 (±1195.53)

female. n(%) 8 38.1 Cold-pain 2.936 (1537.21) ±0.460 (±1686.35)

BMI 22.1 (±2.4) Log HF (absolute) in ms2

rSBP mnHg 118.8 (±9.6) BL 2.938 (1468.86) ±0.403 (±1577.27)

HRBL bpm 52.7 (±10) Cold-pain 3.022 (1713.5) ±0.382 (±1654.64)

HRCold-pain bpm 50.8 (±9.9)

VAS (n = 17) 45.8 (±22.2) LF/HF

caffeine drinks p.d. 1.7 (±1.3) BL −0.0247 (±0.426)

Cigarettes p.d. 0.5 (±2.3) Cold-pain −0.0863 (±0.333)

alc. units p. week 3.2 (±4.8)

Alc, Alcohol consumption; BL, baseline; BMI, body mass index; average HR, heart rate; HF, LF, High- and Low-frequency; and their ratio, LF/HF in log-normalized and
absolute values, average VAS, visual analog scale rating of 2◦C cold-pain stimulation, rSBP, resting systolic blood pressure; M, Mean values as well as SD, standard
deviations are reported. p.d., per day; p.w., per week; Bpm, beats per minute.

FIGURE 1 | Regions of interest used in the seed-based analysis and their associated RSNs at baseline and during Cold-pain. (A) dACC ROI, MNIxyz = (2, 8, 38).
This ROI had a 7 mm spherical radius. Anatomically, the dACC-seed lies in Brodmann area 24. (B) PAG ROI, MNIxyz = (0, –30, –1), the size was 3 mm spherical
radius, and the seed was positioned in the anatomical midline. ROIs (in magenta) are overlaid on MNI-standardized T1-weighted images for visualization purposes.
Color bars indicate t scores.

the PAG2 and precuneus, and a decrease between the PAG and
the right dorso-lateral prefrontal cortex (Figure 3B and Table 3).

DISCUSSION

The aim of this study was to examine the relationship
between HRV and brain functional connectivity during painful

2We identified one participant with PAG functional connectivity values
outside inter-quartile difference criteria for outlier identification (Tukey, 1977).
Accordingly, the participant was excluded from baseline logLF-HRV functional
connectivity analyses and the final analysis was performed with 20 participants.

experimental stimulation. Specifically, we investigated the effect
of a tonic noxious cold stimulus in a group of healthy
participants, implementing simultaneous rs-fMRI and HRV
sampling. Our results support a role of ANS activity, as indexed
by HRV, in brain connectivity during pain and specify functional
connections of our dACC and PAG seed regions that are
associated with measurements of LF-HRV. In particular, we
identified a three-way relationship between HRV, cortical brain
networks known to underpin pain processing, and participants’
subjectively reported pain experiences. Baseline PAG-vmPFC
functional connectivity was associated with higher LF-HRV
during cold stimulation and lower subjective cold pain ratings,
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FIGURE 2 | Resting state fMRI results: (A) changes of dACC resting state network (RSN) with cold-pain stimulation, (B) Changes in dACC RSN associated with
logLF-HRV as measured during cold-pain, (C) Baseline PAG functional connectivity with the vmPFC was associated with both logLF-HRV during cold-pain and
participants’ pain ratings (VAS). Color bars indicate t scores.
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TABLE 2 | Resting state networks associated with the PAG and dACC seed regions.

Cluster Voxel

Contrast Brain area k p FWE T (F) MNI xyz

Positive association with PAG seed

Left hippocampus 217110 <0.001 17.30 −14 −18 −18

Right hippocampus 14.08 22 −14 −22

Posterior cingulate cortex 13.46 20 −42 −2

Thalamus 9.37 12 −36 −2

Cerebellum 9.33 2 −52 −12

Positive association with dACC seed

Middle cingulate cortex 921610 <0.001 32.52 0 −6 36

Left Insula 25.04 −30 20 0

Superior frontal gyrus 19.65 24 −4 52

Posterior cingulate cortex/Precuneus 18.75 18 −40 42

Parietal operculum 18.56 52 −32 20

FC changes during cold pain- dACC seed

Superior forntal gyrus 588 0.001 4.66 −12 50 18

Anterior cingulate cortex 4.32 −8 38 4

Frontal lobe 4.00 −12 46 30

PAG, periaqueductal gray; ACC, anterior cingulate cortex; FC, functional connectivity.

FIGURE 3 | Low frequency heart rate variability (LF-HRV) at baseline predicts functional connectivity changes (1 FC) of both seed regions upon cold-pain
stimulation. (A) Baseline logLF-HRV predicted a decrease in dACC functional connectivity with regions in the right dorsolateral prefrontal area, frontal pole, and the
right central opercular cortex. (B) Baseline logLF-HRV predicted a decrease during cold pain in functional connectivity between the PAG and right dorsolateral
prefrontal cortex and an increase between the PAG and the precuneus. Color bars indicate t scores.
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TABLE 3 | Brain areas showing an association with HRV and cold pain.

Cluster Voxel

Brain area k p FWE Side T (F) MNIxyz

(1) Association between dACC functional connectivity and LF-HRV during cold-pain

Medial prefrontal cortex 2296 0.000 L 6.04 −18 50 14

6 64 12

2 48 20

(2) Association between baseline PAG functional connectivity and both LF-HRV during cold-pain and cold pain ratings

Medial prefrontal cortex 2659 0.000 B 7.87 8 62 −2

(3) Baseline LF-HRV as a predictor of functional connectivity changes during cold-pain

3.a) dACC seed

Superior frontal gyrus 825 0.001 R 6.8 10 56 22

Frontal pole 24 56 22

Dorsolateral prefrontal cortex 6 66 28

Anterior insula 539 L −36 16 −4

−50 12 −10

−40 2 −2

b) PAG seed

Precuneus 941 0.194 B 6.55 4 −58 2

−10 −56 6

−22 −60 28

Dorsolateral prefrontal cortex 1353 0.251 L 6.33 −46 26 36

−44 34 28

−20 58 −10

suggesting that the role of the ANS in the modulation of
nociception might relate (at least in part) to PAG-cortical
functional connections.

Our findings combine two separate streams of research: the
association between LF-HRV and pain and the role of PAG
functional connectivity in pain perception. Higher baroreflex
activation and parasympathetic activity (indexed by LF and HF-
HRV) prior to and during noxious stimulation is associated with
reduced pain intensity or higher pain thresholds (Duschek et al.,
2007; Appelhans and Luecken, 2008; Nahman-Averbuch et al.,
2016; Tracy et al., 2018). In addition to the well-established
role of the PAG in descending nociceptive modulation (Ossipov
et al., 2010; Benarroch, 2012), PAG-mPFC connectivity (Sprenger
et al., 2011) and activity of the mPFC alone (Bogdanov et al.,
2015) have been linked to the efficacy of endogenous analgesic
mechanisms and to vagal cardiac control (Critchley et al., 2011).
A recent brainstem-focused fMRI study showed that subjective
pain intensity is not only influenced by the reaction of the
brain to a noxious stimulus, but also by the connectivity of
the PAG prior to stimulation (Stroman et al., 2018). These
results indicate that the PAG is functionally associated with the
hypothalamus and several brainstem areas involved in autonomic
regulation, highlighting the potential importance of homeostatic
autonomic control in the descending modulation of nociception.
Our findings provide direct support for this theory. Meta-
analytical evidence shows that right mPFC is associated with
HRV during both emotional and cognitive/motor tasks (Thayer
et al., 2012). Others have reported an association between mPFC
resting state connectivity and HRV, often linked to emotion
regulation. Our findings expand this work by showing that the
functional communication between the PAG and the mPFC is
associated with LF-HRV reactions to noxious stimulation as well
as the subjective perception of cold pain intensity.

During noxious cold stimulation, functional connectivity of
the right dACC with the mPFC was positively correlated with
LF-HRV. A reduction in the dACC-(ventral)mPFC functional
connectivity has been shown to partially mediate heart rate
increases during socially stressing experiences (Wager et al.,
2009). Whilst we did not formally assess mediation effects, our
finding extends this notion to include pain, an experience which
requires both emotional and physiological regulation. In more
general terms, this finding underlines the known role of the
mPFC in context appraisal and autonomic adaptation, not least
in situations of threat (Schiller et al., 2008; Thayer et al., 2012).

Higher baseline LF-HRV, which is often considered as
a measure of baroreflex activation (Goldstein et al., 2011),
was associated with an increase in PAG-precuneus functional
connectivity during tonic noxious stimulation. Areas of the DMN
(including the precuneus) show reduced functional connectivity
during pain (Baliki et al., 2008; Kong et al., 2010a). In view
of the opinion of higher LF-HRV as a likely anti-nociceptive
mechanism, sustained connectivity between the PAG and the
precuneus is thus consistent with a reduced nociception-
associated brain response. A potential underlying mechanism
is offered by Kucyi et al. (2013), who associated greater
functional connectivity between PAG and precuneus/mPFC
with participants’ tendencies to disengage their attention from
the noxious stimulation (“mind wandering”), thus achieving
pain relief by means of distraction (Sprenger et al., 2012).
Possibly, effective engagement of descending pain modulation
as associated with LF-HRV allows for, or is part of, participants’
natural tendencies to “take their minds off the pain.” Accordingly,
this finding offers preliminary support for theories of a
protective role of mind wandering in optimizing states of
bodily arousal during challenges to homeostasis (Baars, 2010;
Ottaviani et al., 2013).
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Higher baseline LF-HRV was also associated with a stronger
decrease in functional connectivity between both the PAG and
dACC seeds with the dlPFC. DlPFC activity is commonly
reported in pain experiments. Functionally part of the central
executive-control network (CEN), the dlPFC shows increased
activation during the performance of cognitively demanding
tasks (Seeley et al., 2007) and is associated with cognitive
difficulties seen in chronic pain (Bushnell et al., 2013). Albeit
based on experimentally induced pain, our results suggest a
link between cognitive and homeostatic systems, and indicate
a possible common neuronal substrate for cognitive difficulties
(Apkarian et al., 2004; Bushnell et al., 2013) and HRV alterations
(Meeus et al., 2013) often reported in chronic patients. Functional
connectivity of the dACC with the dlPFC has previously been
shown to co-vary with LF-HRV (Chang et al., 2013), supporting
a role of the ANS in this functional link.

Higher baseline resting LF-HRV also related to decreases in
functional connectivity between the dACC and the left AI during
noxious stimulation. Activity of the insular cortex is frequently
coupled to that of the cingulate cortex. Together, they form part
of an interoceptive network which facilitates emotion and self-
awareness but also modulates autonomic function (Craig, 2002).
A specific role in cardiovascular control has been postulated
(Nagai et al., 2010). Importantly, insular activity is associated
with top down suppression of baroreflex activity induced by a
stress challenge (Gianaros et al., 2012). We suggest that the ANS-
associated connectivity between AI and dACC plays a central
role in interoception during pain and might also contribute
to baroreflex-induced anti-nociception (as reviewed by Suarez-
Roca et al., 2018). Also, activity in the AI is commonly seen
during pain (Legrain et al., 2011). More specifically, the AI is
involved in the cognitive evaluation of pain (Brooks et al., 2002;
Wiech et al., 2010; Segerdahl et al., 2015). Furthermore, combined
AI and ACC activation was found to relate to the emotional
components of pain, such as psychological pain, and empathy
for a loved one in pain (Singer et al., 2004; Immordino-Yang
et al., 2009). Less functional connectivity between the dACC
and AI with high baseline LF-HRV is thus consistent with
maintained baroreflex activity during noxious stimulation, and
reduced activity in an interoceptive and cognitive/emotional key
area of pain perception.

Our data provide reason for further investigation into the
role of autonomic cardiovascular modulation in central network
dynamics. The mPFC and the precuneus are considered part of
the DMN (Fox and Raichle, 2007), whilst the dlPFC is a core node
in the CEN (Seeley et al., 2007). The dACC and the AI, on the
other hand, form the salience network (SN) which responds to
the subjective salience of cognitive, emotional, and homeostatic
stimuli. The SN is thought to play a critical role in switching
between the off-task DMN and the on-task CEN (Sridharan et al.,
2008; Menon and Uddin, 2010). Both DMN and CEN alterations
have been described in chronic pain states (Baliki et al., 2008;
Cauda et al., 2009; Malinen et al., 2010; Napadow et al., 2010,
2012; Tagliazucchi et al., 2010; Bolwerk et al., 2013; Jiang et al.,
2016; Alshelh et al., 2018; Androulakis et al., 2018). Here we
demonstrated that by phenotyping participants based on LF-
HRV, a physiological variable, we were able to predict changes in

components of these functional networks during the experience
of a noxious stimulus. Albeit not having assessed network
dynamics explicitly, these findings suggest that the ANS may be
implicated in the salience network-mediated switch from default
to central cognitive-executive modes during the experience of
tonic experimental pain. Speculatively, a pronounced LF-HRV
at baseline (interpreted as a more pronounced engagement of
the baroreflex) might predict a reduced tendency for a SN-
mediated switch of network dynamics toward an executive
mode, whilst LF-HRV during the experience of pain might
be associated with maintained DMN dynamics. It remains to
be determined whether these initial neurophysiological findings
apply in patients with chronic pain.

Finally, hierarchical interactions between cognitive, emotional
and autonomic processes are also a quintessential component
of the neurovisceral integration (NVI) model, as proposed by
Thayer and Lane (2000). This model postulates that cardiac
vagal tone (i.e., the contribution of the parasympathetic nervous
system to cardiac regulation) is an indicator of the functional
balance between neural networks involved in the regulation
of emotions and cognition (Thayer and Lane, 2000). This
Central Autonomic Network (CAN) (Benarroch, 1993) consists
of parts of the prefrontal cortex (anterior cingulate, insula,
orbitofrontal, and ventromedial cortex), limbic cortex (amygdala
and hypothalamus), and brain stem areas (i.e., PAG and
ventromedial medulla). Our data fits with this model, as they
suggest that the resting cardiac autonomic tone (possibly related
to the baroreflex) and the cardiac autonomic reactivity to pain
is associated with the functional organization of some pain-
related networks (i.e., those related to the dACC and PAG,
involving other structures of the CAN such as vmPFC and
anterior insula), which in turn is related to the amount of
experienced pain. It is of note, however, that our data do
not strictly explore the vagal influence on cardiac regulation,
but rather the reactivity of the baroreflex, which is more
representative of sympatho/vagal balance. Importantly, the NVI
model suggests that HRV is a measure of the flexibility of the
entire brain-body system, with the view that flexible systems
are adaptive and responsive to the environment, allowing for
functional oscillations between different states (Thayer et al.,
2010b; Smith et al., 2017). In the context of pain, we argue
that an individual with an adequate ANS reaction to pain is
more efficient in triggering those mechanisms which have the
aim of re-establishing adaptive homeostasis (i.e., descending pain
modulatory mechanisms). Future studies should aim to explore
this model in clinical populations.

We acknowledge some methodological limitations: First,
the method of HRV acquisition, photoplethysmography
(PPG), is not considered gold standard. Despite this,
individual studies such as Gil et al. (2010) show that while
subjects are at rest, PPG is a good surrogate measure for
ECG-derived HRV. Sufficient accuracy under stationary
conditions has also been confirmed by a review on the
topic (Schäfer and Vagedes, 2013). Furthermore, the inter-
session reliability of our measurements was good (see
Supplementary Material S3), providing confidence in our
method of capturing HRV. We also acknowledge a relatively
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small sample size; this study was formally powered to
detect the effect of a noxious stimulation on functional
brain networks rather than to determine interactions between
functional networks and the ANS. Future studies should aim
to replicate our findings with larger samples in order to
validate the robustness and reliability of our results. Lastly,
and this note of caution applies to many studies linking brain
activity to function, the associations between HRV, functional
connectivity and subjective pain does by no means imply
causality. Further studies will have to elucidate if there is
a causal relationship between the above findings. Dynamic
causal modeling techniques applied to brain connectivity
data (Friston, 2009) offer a potential means to conduct
these investigations.

In conclusion, we have demonstrated that the engagement
of brain regions involved in the cognitive, emotional
and limbic processing of pain is intimately linked to
autonomic profiles and subjective pain sensitivity. As the
first study to explore the association between pain-related
HRV and brain functional connectivity, we provide an
improved understanding of the relationship between pain
perception and autonomic cardiovascular control, likely
involving the baroreflex.

Future research should determine whether this functional
connectivity is altered in chronic pain, and if modulation of ANS
activity might protect from chronic pain. Such data may catalyze
the development and utility of ANS-targeted pain treatments,
such as HRV biofeedback, vagal stimulation or baroreceptor
activation therapies.
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