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Pupillary unrest is an established indicator of drowsiness or sleepiness. How
sympathetic and parasympathetic activity contribute to pupillary unrest is not entirely
unclear. In this study, we investigated 83 young healthy volunteers to assess the
relationship of pupillary unrest to other markers of the autonomic nervous system.
Sample entropy (SE) and the established pupillary unrest index (PUI) were calculated
to characterize pupil size variability. Autonomic indices were derived from heart rate,
blood pressure, respiration, and skin conductance. Additionally, we assessed individual
levels of calmness, vigilance, and mood. In an independent sample of 26 healthy
participants, we stimulated the cardiovagal system by a deep breathing test. PUI was
related to parasympathetic cardiac indices and sleepiness. A linear combination of
vagal heart rate variability [root mean square of heart beat interval differences (RMSSD)]
and skin conductance fluctuations (SCFs) was suited best to explain interindividual
variance of PUI. Complexity of pupil diameter (PD) variations correlated to indices of
sympathetic skin conductance. Furthermore, we found that spontaneous fluctuations
of skin conductance are accompanied by increases of pupil size. In an independent
sample, we were able to corroborate the relation of PUI with RMSSD and skin
conductance. A slow breathing test enhanced RMSSD and PUI proportionally to each
other, while complexity of PD dynamics decreased. Our data suggest that the slow
PD oscillations (f < 0.15 Hz) quantified by PUI are related to the parasympathetic
modulation. Sympathetic arousal as detected by SCFs is associated to transient pupil
size increases that increase non-linear pupillary dynamics.

Keywords: pupillometry, heart rate variability, blood pressure, skin conductance, respiration

INTRODUCTION

The pupil seems to offer unique insights into the human mind. For centuries, the pupillary
system has been in the focus of psychophysiological research (Sirois and Brisson, 2014).
Charles Darwin discovered pupillary reactions to fear and other emotions in animals
(Darwin, 1872). Hess and colleagues reported that human pupils dilate in response to
appealing images and statements (Hess and Polt, 1960; Hess, 1965; Hess et al., 1965).
Since then, pupillometric investigations have been used in numerous studies to investigate
emotional responses to visual (Bradley et al., 2008) or auditory presentation (Partala and
Surakka, 2003; Gingras et al., 2015). Dilation of the pupils can also indicate cognitive
load (Steinhauer et al., 2004; Eckstein et al., 2017). Pupil size has been shown to
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react to various types of cognitive demands, like memory load
(Beatty, 1982), arithmetic tests (Võ et al., 2008), or speech
processing (Stanners et al., 1979; Zekveld et al., 2010).

Moreover, the pupils are of great importance in clinical routine
to evaluate autonomic function. The pupil’s reaction to light is
part of every clinical examination (Cross, 1993). In contrary,
little is known about pupillary fluctuations at rest. Lowenstein
and Loewenfeld (1952) described spontaneous pupil diameter
(PD) oscillations with high amplitude associated with sleepiness,
referred to as “fatigue waves” (Lowenstein et al., 1963). The
characteristic pattern of pupil size fluctuations can be quantified
by the pupillary unrest index (PUI) which estimates the deviation
of the PD at low frequencies (Lüdtke et al., 1998). In order
to standardize the assessment of pupillary unrest, the pupillary
sleepiness test was introduced (Wilhelm et al., 1998; Eggert
et al., 2012). PUI is usually recorded over 11 min in a dark and
quiet environment.

Borgdorff (1975) discovered slow changes of pupil size in
phase with breathing. In several publications, the respiratory
influence on pupil size fluctuations was investigated (Daum and
Fry, 1981; Ohtsuka et al., 1988; Yoshida et al., 1994; Calcagnini
and Lino, 1997; Onorati et al., 2013). Generally, sino-aortic
baroreceptors are deemed responsible mediating respiratory
changes of blood pressure that can be discovered in pupil
size variation (Borgdorff, 1975; Häbler et al., 1994). Calcagnini
et al. (2000, 2001) confirmed this explanation by stimulation
of baroreceptors.

Furthermore, non-linear fluctuations seem to contribute to
pupillary unrest (Mesin et al., 2013; Onorati et al., 2015;
Schumann et al., 2015; Villalobos-Castaldi et al., 2016). The
variety of influencing factors make spontaneous pupil size
variations at rest complicated to quantify and to interpret (Usui
and Stark, 1982; Mesin et al., 2013; Schumann et al., 2017b).

Both the sympathetic and parasympathetic outflow impact
on pupillary muscles and modulate the size of the pupil. How
pupillary unrest is affected by sympathetic activation is still
illusive. Similar to pupillary reactions, skin conductance responds
to emotional stimulation and cognitive load (Kohlisch and
Schaefer, 1996; Najström and Jansson, 2007; Reimer and Mehler,
2011). In contrast, the electrodermal system is innervated by
sympathetic sudomotor nerves only. Skin conductance reactions
recorded at the hand have a latency of about 2–2.5 s due
to the slow signal transmission via unmyelinated fibers (Lim
et al., 2003; Bradley et al., 2008). Without a given external
stimulus, spontaneous skin conductance fluctuations (SCFs)
indicate sympathetic tone in face of stress or anxiety etc. (see
review by Kreibig, 2010).

Since changes of the pupillary motility have been discovered
in several diseases (Bär et al., 2008; Graur and Siegle, 2013),
the assessment of pupillary fluctuations promises some clinical
value. Recently, we demonstrated differences of pupillary unrest
in patients suffering from major depression (Schumann et al.,
2017a). Heart rate, skin conductance, and PUI were shown to
accurately classify patients and controls (accuracy of 88.5%). In
healthy subjects, PUI correlated mainly with vagal cardiovascular
measures. However, the sample was rather small and somewhat
heterogeneous with respect to age and gender.

Here, we investigated a larger group of healthy volunteers.
We aimed to replicate and further investigate the association
of pupillary unrest with other autonomic indices. An additional
measure complexity of pupil size variations was estimated to
quantify non-linear pupillary dynamics. Furthermore, a deep
breathing test was applied in order to modulate cardiovagal
function to gain insights on the dependency of pupillary
dynamics on autonomic cardiac status.

MATERIALS AND METHODS

Study Design and Participants
We assessed physiological data at rest in 83 healthy volunteers [59
females, age: 23 ± 2 years, body mass index (BMI): 21.9 ± 2.6].
The multidimensional test for mental states (MDBF) was used
to evaluate subjective ratings of mood, calmness, and vigilance
(Steyer et al., 1994). Demographic data and individual ratings of
the three dimensions of the mental state are depicted in Table 1.

Healthy subjects had no present or past history of psychiatric,
neurological, or other clinically significant disorders. This was
excluded by taking the medical history and by a full clinical
examination of all subjects. All participants gave their informed
written consent in accordance with the protocol approved by the
Ethics Committee of Jena.

The examination room was quiet and fully shaded with a low
intensity ambient light source. Additionally, participants wore
headphones to be isolated from a potential surrounding noise.
Via a monitor fixed over the couch a dark gray ellipse was
displayed on light gray background as fixation anchor. Room
temperature was controlled to 22◦C. Resting recordings were
conducted in supine position for 15 min. The first 5 min were not
analyzed, to exclude the adjustment period to the environment.

In 26 subjects (see Table 2), resting recordings were followed
by a deep breathing test. Subjects were instructed to breathe at
a fixed rate of 6 breaths/min for 5 min (Low et al., 2013). An
audio track of deep ventilatory noises was given via headphones

TABLE 1 | Demographic data of the sample including 83 healthy volunteers.

Parameter Mean SD Min Max

Demographic data

Age [y] 24 4 20 32

BMI [kg/m2] 22.0 2.6 17.2 30.0

Male n = 20

Females n = 63

Smoking

smokers n = 23

<5 cigarettes/d n = 11

5–10 cigarettes/d n = 5

>10 cigarettes/d n = 7

Mental state

Mood 33.6 5.3 15 40

Vigilance 28.5 6.3 14 40

Calmness 31.1 5.7 18 40

BMI: body mass index.
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TABLE 2 | Demographic data of the test sample including 26 healthy volunteers.

Parameter Mean SD Min Max

Demographic data

Age [y] 37 13 20 63

BMI [kg/m2] 24.1 2.7 19.3 32.3

Male n = 15

Females n = 11

Smoking

smokers n = 5

<5 cigarettes/d n = 2

5–10 cigarettes/d n = 1

>10 cigarettes/d n = 2

BMI: body mass index.

to indicate the aspired respiration rate without any change of
visual presentation.

Data Acquisition and Preprocessing
We used the MP150 system (BIOPAC Systems Inc., Goleta,
CA, United States) to record multiple physiological signals
simultaneously at 1000 Hz sampling rate (Schumann et al.,
2017c). ECG was acquired by three electrodes on the chest
according to an adjusted Einthoven triangle. The non-invasive
blood pressure was measured continuously by the vascular
unloading technique. ECG and blood pressure were band-
pass filtered between 0.05 and 35 Hz. Abdominal and thoracic
respiratory movement were recorded by two individual strain
gauge transducers and low pass filtered at 10 Hz. Skin
conductance was measured by constant voltage technique at
the left hand’s palm with electrodes placed on the thenar and
hypothenar eminence.

Heart beats were extracted automatically and checked
manually offline. Artifacts and ectopic beats were detected and
interpolated using an adaptive filtering technique (Wessel et al.,
2000). Maximum and minimum blood pressure values embedded
in one cardiac cycle were transferred to systolic and diastolic
blood pressure (DBP) time series.

The pupil size was assessed every 4 ms by the infrared camera
system RED 250 (SensoMotoric Inc., Boston, MA, United States).
Blinks distorting PD recordings as sudden drops with duration
typically less than half a second (Schleicher et al., 2008) were
eliminated using a median filter with 1000 ms time window
followed by temporal smoothing (400 ms). This procedure
removes blinks reliably without considerable influence on the
underlying PD signal.

Skin Conductance, Cardiovascular, and
Respiratory Indices
The heart rate HR and its short-term variability root mean
square of heart beat interval differences (RMSSD) were estimated
according to the established standard procedures (TaskForce,
1996). Additionally, respiratory sinus arrhythmia was calculated
using the peak-valley-approach. Mean values of systolic blood
pressure (SBP) and DBP, and breathing rate (BR) were
assessed. Variability of blood pressure and respiratory cycles

were quantified using the standard deviation (sdRC, sdSBP,
sdDBP). Baroreflex sensitivity was estimated by the sequence
method (Wessel et al., 2000). We analyzed bradycardic baroreflex
sequences, i.e., the over three consecutive increases of beat-to-
beat intervals accompanied by three increasing SBP values.

Spontaneous fluctuations of skin conductance (SCF, non-
specific responses) were extracted from the raw signal, exploiting
their typical shape (Lim et al., 1997). Skin conductance level
(SCL) was estimated by averaging the whole signal. SCL and SCF
were log-transformed.

Rapid regulation of heart rate as measured by RMSSD and
BRS are supposed to indicate parasympathetic cardiac function
(Hayano et al., 1991; Malik et al., 1996). As skin conductance is
determined by sympathetic sudomotor activity, SCL and SCF are
used to quantify sympathetic arousal (Bach et al., 2010).

Phase-Rectified Signal Averaging (PRSA)
To test whether non-specific fluctuations of skin conductance
(SCF) are accompanied by pupillary responses, we extracted
and averaged segments of the pupillary signal based on
SCF occurrence. Phase-rectified signal averaging (PRSA) is a
framework to detect and analyze recurrent patterns in non-
stationary signals (Bauer et al., 2006). In the bivariate approach,
a trigger signal is used to define anchor points that indicate the
occurrence of a certain pattern in another signal. We used the
onsets of SCF as anchors to assess the concurrent change of pupil
size (blue circles in step 1, Figure 1, see Schumann et al., 2019).

We accounted for the significantly higher reaction delay of the
electrodermal system (about 2–2.5 s, Lim et al., 1999; Lim et al.,
2003; Rachow et al., 2011) when compared to the pupillomotor
system (about 0.2 s, Korn and Bach, 2016). Therefore, the
cross-correlation function of the temporal derivatives of both
signals were estimated, normalized (divided by maximum), and
averaged over all subjects. A representative time lag was extracted
when skin conductance and pupil size changes are synchronized
(maximum average cross-correlation). This time span was used
to delay the anchor time points in the pupillary signal (step 2,
Figure 1).

Pupil diameter responses (PDRs) over 7 s were extracted and
normalized to the average pupil size in an interval 1 s prior to the
anchor time point (baseline) (step 3 and 4 in Figure 1). PDRs
were averaged per subject and characterized by the maximum
pupil dilation and area under the curve (AUC) (step 5 in
Figure 1).

To evaluate specificity of the concurrent change of pupil size,
a control condition was designed by using non-SCF time points
for bivariate PRSA (black circles in step 1 in Figure 1). The same
number of time points as SCF actually detected in the respective
subject was randomly chosen (at least 1 s distance to an SCF) as
anchor points using a self-written MATLAB script based on the
built-in function randperm.m (R2012a, The MathWorks, Natick,
MA, United States). Changes of pupil size and skin conductance
were extracted, averaged, and quantified the same way as before.

Complexity of Pupillary Dynamics
Sample entropy (SE) quantifies complexity of a time series by
estimating the probability that similar subseries also match at the
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FIGURE 1 | Schematic illustration of the bivariate phase rectified signal averaging (PRSA) procedure. Step 1: Onsets of skin conductance fluctuations (SCF) served
as anchor points (blue circles). Randomly defined anchor points were used as reference condition (black circles). Step 2: Anchor points were transferred to the pupil
diameter signal (PD) with a temporal delay of 2.5 s as the mean cross correlation function of skin conductance and PD changes reached its maximum at this time
lag. Step 3: Delay-compensated anchor points were used to extract segments of pupil diameter responses (PDR). Step 4: Segments were phase-rectified and
normalized. Step 5: PDR segments were averaged and analyzed.

next point of comparison. It is defined as the negative natural
logarithm of a conditional probability estimate that series of
length m match within tolerance r at the current and the next
point (Richman and Moorman, 2000). The time series of PD
sampled at 100 ms was analyzed using m = 5 and r = 0.2∗sdPD,

i.e., standard deviation of the time series.

Pupillary Unrest Index
The PUI was introduced to evaluate sleepiness by quantifying
spontaneous fluctuation (Lüdtke et al., 1998). According to the
standard calculation of PUI, mean diameter values in non-
overlapping segments lasting L = 640 ms were extracted. This
is a procedure similar to low-pass filtering in order to exclude
high frequency noise form PUI computation. Therefore, PUI

primarily quantifies slow pupil size oscillations below 1.56 Hz.
Absolute differences of these values were summed up and
averaged per minute (Lüdtke et al., 1998).

Regression Analysis
Bivariate linear dependencies between pupillary unrest to
behavioral measures and autonomic indices were assessed by
Pearson’s correlation coefficient r and respective p-value. In
correlative analyses, statistical thresholds were corrected for
multiple comparisons using false discovery rate (Benjamini and
Hochberg, 1995). Statistical significance with 5% type-I error
was assumed at p < 0.006. A multiple regression model was
used to assess to which extent interindividual variance of PUI
can be explained by other observed autonomic parameters.
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FIGURE 2 | Mean changes of pupil diameter (PD) in phase with fluctuations of skin conductance (SC). (A) Averaged change of pupil diameter (PD) normalized to a
baseline 500 ms before the reference time point t = 0. (B) Averaged fluctuations of skin conductance (SCF) used as events to analyze PD reactions. Reference time
point t = 0 was extracted 2500 ms prior to each SCF onset. SC changes were normalized to a baseline 500 ms before the reference time point. ∗∗∗p < 0.001.

Correlational analyses were performed in the replication sample
of 26 subjects at rest and during deep breathing. Additionally,
autonomic and pupillometric indices were compared in the two
conditions using a two-sample t-test (rest vs. deep breathing).

RESULTS

Indices of Autonomic Function and
Pupillary Unrest
Estimates of pupillary unrest, heart rate, blood pressure,
respiration, and skin conductance are listed in Table 3. Subjects
in this sample had a mean heart rate of HR = 67/min with
a variability of RMSSD = 55.7 ms and relatively low blood
pressure values of 109/67 mmHg (systolic/diastolic) on average.
There were no significant differences between female and male
participants (Table 3).

The standard PUI and SE of PD was estimated to quantify slow
variations and complexity of pupil size.

Association of Pupillary Unrest With
Autonomic Indices
Sample entropy of PD was proportional to skin conductance
parameters (SCL, SCF, see Table 4). PUI correlated with vagal
cardiovascular indices (RMSSD, BRS). With regard to the
mental state, a significant correlation of PUI and vigilance
was found (r = −0.354, p < 0.006). A linear regression
model revealed that the variance of PUI can be explained by
RMSSD (b = 0.476) and SCF (b = −0.269) to an extent of
R2 = 0.30 (p < 0.001).

The cross-correlation function of temporal derivatives of
skin conductance and pupil signals revealed a maximum
correlation at a delay of 2501 ms (see Figure 1). The
averaged change of PD is depicted together with the mean
time course of spontaneous SCFs (SC) in Figure 2A. In
gray, the segments extracted from non-SCF (randomly defined
anchor points) are illustrated that served as control condition.
SCFs are accompanied by PD increases of 9.1 ± 9.4% on
average. The one sample t-test indicated a positive area
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TABLE 3 | Indices of the cardiovascular system, respiration, skin conductance,
and pupil size.

Parameter All participants
[83]

Female
participants [59]

Male participants
[24]

Cardiovascular indices

HR [min−1] 67 ± 7 68 ± 8 67 ± 9

RMSSD [ms] 55.7 ± 23.9 53.6 ± 24.1 57.1 ± 22.5

SBP [mmHg] 109 ± 17 107 ± 16 121.7 ± 19.2

DBP [mmHg] 67 ± 9 67 ± 8 69 ± 7

sdSBP [mmHg] 5.46 ± 7.30 5.20 ± 6.95 6.17 ± 5.02

sdDBP [mmHg] 3.90 ± 5.13 3.84 ± 4.88 3.98 ± 2.66

BRS [ms/mmHg] 26.2 ± 15.9 25.9 ± 18.4 27.9 ± 16.3

Respiration

BR [min−1] 17 ± 3 17 ± 3 16 ± 3

sdRC [ms] 625 ± 343 580 ± 365 643 ± 595

Skin conductance

SCL [µS] 6.58 ± 5.92 6.45 ± 5.75 7.44 ± 6.1

SCF [min−1] 4.15 ± 5.64 3.61 ± 4.35 5.87 ± 5.09

Pupil diameter

Mean PD [mm] 4.17 ± 0.73 4.17 ± 0.71 4.18 ± 0.91

PUI [mm/min] 12.4 ± 4.5 12.6 ± 4.7 11.4 ± 4.6

Sample entropy 0.623 ± 0.155 0.601 ± 0.156 0.652 ± 0.157

HR: mean heart rate, RMSSD: root mean square of heart beat interval differences,
SBP: systolic blood pressure, DBP: systolic blood pressure, sdSBP: standard
deviation of SBP, sdDBP: standard deviation of DBP, BRS: baroreflex sensitivity,
BR: breathing rate, sdRC: standard deviation of respiratory cycles, SCL: skin
conductance level, SCF: skin conductance fluctuations, Mean PD: mean pupil
diameter, PUI: pupillary unrest index.

TABLE 4 | Correlation analysis of pupillary dynamics and autonomic indices.

PUI SE

HR −0.187 0.154

RMSSD 0.326* −0.048

SBP −0.059 0.125

DBP −0.148 0.073

sdSBP 0.053 0.051

sdDBP 0.052 0.040

BRS 0.327* −0.057

BR −0.003 −0.114

sdRC −0.018 0.043

SCL −0.150 0.454*

SCF −0.266 0.316*

HR: mean heart rate, RMSSD: root mean square of heart beat interval differences
SBP: systolic blood pressure, DBP: systolic blood pressure, sdSBP: standard
deviation of SBP, sdDBP: standard deviation of DBP, BRS: baroreflex sensitivity,
BR: breathing rate, sdRC: standard deviation of respiratory cycles, SCL: skin
conductance level, SCF: skin conductance fluctuations, PUI: pupillary unrest index,
LE: Lyapunov exponent. *p < 0.006 (FDR).

under the PDR curve (70 ± 110 n.u., p < 0.001). Both
measures were significantly higher when PDR extraction was
triggered by SCF when compared to the control condition
with randomly defined anchor points (both p < 0.001,
Figure 2B). Maximum PD change was correlated to PUI
(r = 0.545, p < 0.001).

Influence of Deep Breathing
In a group of 26 subjects, a deep breathing test was performed
after the resting state measurement. The test had a significant
impact on autonomic indices as well as pupillary unrest (see
Table 5). Respiratory measures indicated that subjects succeeded
in breathing steadily at a rate of 6 breaths/min. As we expected,
cardiovagal parameters such as RMSSD and BRS were enhanced
during deep breathing. The test had significant effects on mean
blood pressure values (SBP, DBP) but not on average heart rate.
While, pupil size and PUI increased during the test, complexity
of PD in terms of SE decreased.

Correlation coefficients of PD variability and autonomic
indices in both conditions are depicted in Table 6. A significant
correlation of PUI to RMSSD and skin conductance parameters
(SCF and SCL) remained during deep breathing. Most
interestingly, the increase of RMSSD during the breathing
maneuver was proportional to the increase of PUI (r = 0.47,
p < 0.01; see Figure 3).

DISCUSSION

In this study, the relation of pupillary unrest to other
autonomic markers was assessed in young healthy volunteers.
The classical PUI was related to parasympathetic cardiac indices
and sleepiness. We found that a linear combination of vagal
heart rate variability (RMSSD) and skin conductance fluctuations
(SCFs) was suited best to explain interindividual variance of PUI.
Complexity of PD variations correlated to indices of sympathetic
skin conductance. The association of skin conductance and
pupillary dynamics might be due to increases of pupil size
concurrent to spontaneous SCF. In an independent sample, we
were able to corroborate the correlation of pupillary unrest and
heart rate variability and skin conductance. A slow breathing test
enhanced cardiovagal function in this sample. While pupillary
unrest was also increased, complexity of PD decreased.

The correlation of PUI with baroreflex sensitivity and heart
rate variability (RMSSD) validated a link between pupillary
unrest and parasympathetic cardiac modulation as reported
previously (Schumann et al., 2015, 2017a). A significant
correlation between PUI and individual levels of vigilance was
found as well. This is in line with the idea that sleepiness
induces slow rhythmic changes of pupil size that are also
referred to as pupillary hippus or fatigue waves (Lowenstein and
Loewenfeld, 1952, 1962; Hornung, 1968; Bouma and Baghuis,
1971). Recent research demonstrated that these pupillary
oscillations are associated primarily by parasympathetic influence
(Turnbull et al., 2017).

In a deep breathing test, we aimed at stimulating cardiovagal
function. It has been suggested that deep breathing modulates
rhythmic discharge of vagal efferent fibers without enhancing
the overall level of vagal outflow (Brown et al., 1993). This
leads to an increase of HRV but does not affect average
HR—as we have found in our study. Since RMSSD and
PUI increased proportionally to each other, we gained further
evidence indicating that pupillary unrest is related to vagal
modulation of cardiac function. Activity of neurons in important

Frontiers in Neuroscience | www.frontiersin.org 6 March 2020 | Volume 14 | Article 178

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00178 March 9, 2020 Time: 17:41 # 7

Schumann et al. Sympathetic and Parasympathetic Pupillary Unrest

FIGURE 3 | Effect of deep breathing on short-term heart rate variability (RMSSD) and pupillary unrest index (PUI). Increases of both parameters during breathing test
were correlated (r = 0.47, p < 0.01). ∗ p < 0.05, ∗∗ p < 0.01.

regulatory brainstem regions, such as the nucleus ambiguous, is
modulated by respiration (see Garcia et al., 2013). At this level,
systems controlling oculomotor and cardiovagal function seem
to be interconnected (Borgdorff, 1975; Calcagnini et al., 2001).

While oscillatory variations of pupil size increased, non-
linear complexity of pupillary dynamics decreased during deep
breathing. Both during rest and breathing maneuver, SE of PD

TABLE 5 | Influence of deep breathing test on autonomic indices and pupillary
dynamics.

Parameter Resting condition Deep breathing Significance

Cardiovascular indices

HR [min−1] 64 ± 11 64 ± 10 n.s.

RMSSD [ms] 35.5 ± 17.9 56.7 ± 19.9 p < 0.001

SBP [mmHg] 114.1 ± 16.9 110.8 ± 18.2 p < 0.05

DBP [mmHg] 70.9 ± 9.2 65.3 ± 11.3 p < 0.001

sdSBP [mmHg] 5.31 ± 2.08 5.25 ± 1.62 n.s.

sdDBP [mmHg] 3.81 ± 2.17 3.94 ± 1.25 n.s.

BRS [ms/mmHg] 15.8 ± 10.4 24.4 ± 13.9 p < 0.001

Respiration

BR [min−1] 12 ± 4 6 ± 1 p < 0.001

sdRC [ms] 721 ± 410 276 ± 112 p < 0.001

Skin conductance

SCL [µS] 3.82 ± 3.4 4.18 ± 3.65 p < 0.05

SCF [min−1] 2.29 ± 2.9 5.22 ± 4.87 p < 0.001

Pupil diameter

Mean PD [mm] 3.93 ± 0.76 4.12 ± 0.75 p < 0.01

PUI [mm/min] 11 ± 3.9 13.9 ± 8.7 p < 0.05

Sample entropy 0.647 ± 0.154 0.466 ± 0.104 p < 0.001

HR: mean heart rate, RMSSD: root mean square of heart beat interval differences,
SBP: systolic blood pressure, DBP: systolic blood pressure, sdSBP: standard
deviation of SBP, sdDBP: standard deviation of DBP, BRS: baroreflex sensitivity,
BR: breathing rate, sdRC: standard deviation of respiratory cycles, SCL: skin
conductance level, SCF: skin conductance fluctuations, Mean PD: mean pupil
diameter, PUI: pupillary unrest index.

was positively correlated to skin conductance indices indicating
that sympathetic arousal seems to relate to non-linear pupillary
dynamics. Since an impressive co-variation of neuronal firing
rate in the locus coeruleus (LC) and pupil dilation was
reported (Aston-Jones and Cohen, 2005; Costa and Rudebeck,
2016), pupillary responses have been considered as a proxy
of noradrenergic activity in humans (Sirois and Brisson, 2014;
Eckstein et al., 2017; Schumann et al., 2018). LC activity can be
decomposed into a tonic and phasic component. Tonic activity
represents a kind of baseline arousal and is low during certain
automatic behavior and drowsiness (Rajkowski et al., 1994;
Aston-Jones et al., 1999). LC neurons become phasically activated

TABLE 6 | Correlation analysis of pupillary dynamics and autonomic indices at rest
and deep breathing.

Resting condition Deep breathing

PUI SE PUI SE

HR 0.017 0.213 0.017 0.177

RMSSD 0.462* −0.117 0.384* −0.439*

SBP 0.045 −0.237 0.045 0.435*

DBP −0.138 −0.295 −0.138 0.287

sdSBP 0.028 0.223 0.028 0.414*

sdDBP 0.045 0.289 0.045 0.260

BRS 0.228 −0.343 0.228 −0.318

BR −0.104 0.296 0.050 −0.078

sdRC −0.116 0.070 −0.107 0.085

SCL −0.412* 0.130 −0.569** 0.029

SCF −0.428* 0.245 −0.422* 0.474*

HR: mean heart rate, RMSSD: root mean square of heart beat interval differences
SBP: systolic blood pressure, DBP: systolic blood pressure, sdSBP: standard
deviation of SBP, sdDBP: standard deviation of DBP, BRS: bradycardic baroreflex
sensitivity, BR: breathing rate, sdRC: standard deviation of respiratory cycles, SCL:
skin conductance level, SCF: skin conductance fluctuations, PUI: pupillary unrest
index, SE: sample entropy of pupil diameter. *p < 0.05, **p < 0.01.
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by salient external or internal stimuli (Corbetta et al., 2008;
Köhler et al., 2016). Analogously, skin conductance was divided
into a tonic and phasic constituent and is most probably also
influenced by the LC-noradrenergic system (Yamamoto et al.,
1990). Our results indicate that phasic fluctuations of sympathetic
skin conductance are synchronized with PD increases. The
amplitude of pupillary responses is related to PUI, whereas the
occurrence of SCF was linked to non-linear nature of PD. Using
functional magnetic resonance imaging, Breeden et al. (2017)
highlighted that neural correlates to fluctuations of pupil size
and skin conductance have a strong overlap. In accordance to
this finding, other studies suggest that changes of pupil size
are mainly regulated by the salience network that contains
structures related to sympathetic control (Beissner et al., 2013;
Schneider et al., 2016; Breeden et al., 2017). This functional brain
network is supposed to process sensory information in order
to prepare executive action when salient stimuli are detected
(Seeley et al., 2007). In the absence of external stimulation,
thoughts or ideas during mind-wandering might elicit changes
of pupil size (Smallwood et al., 2011; Grandchamp et al., 2014;
Urai et al., 2017).

In a previous study, we found increased PUI values
in patients with major depression that were not related
to vagal HRV as in healthy controls (Schumann et al.,
2017a). Furthermore, the SCF occurrence was elevated in
patients. Considering the results of the present study, pupillary
fluctuations associated to sympathetic arousal might have had
stronger impact on PUI in patients. Most probably, internal
stimuli with negative value are more predominant in patients
as rumination, negative thoughts and worries are consistent
symptoms related to depression (Nolen-Hoeksema et al., 2008).
Therefore, elevated PUI in patients with major depression
might be a consequence of a predominantly sympathetic
influence on the pupil.

The reader has to keep in mind that we did not
assess autonomic activity invasively. As parasympathetic and
sympathetic activation are not mutually independent both
branches influence each other at multiple levels of autonomic
control. For instance, the activity of the sinoatrial node is
modulated by parasympathetic and sympathetic impact in a
widely antagonistic fashion. In contrast, skin conductance is
exclusively modulated by sudomotor activity and indicates

sympathetic arousal (Bach et al., 2010). Another limitation of
the study is the age difference between the larger sample and the
test sample that performed the deep breathing maneuver. In spite
this heterogeneity, we were able to replicate a relation of pupillary
unrest with heart rate variability and skin conductance.

CONCLUSION

In summary, we demonstrated that pupillary unrest is related
to both sympathetic and parasympathetic markers of autonomic
control. Slow PD oscillations (f < 0.15 Hz) quantified by PUI
were related to cardiovagal function. Sympathetic arousal as
detected by SCFs was associated to transient pupil size increases
that increase non-linear complexity of pupil size variations.
The investigation of the reported relationships during different
autonomic challenges might reveal further insights on the
modulation of pupillary unrest.
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