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The segmentation of brain region contours in three dimensions is critical for the analysis
of different brain structures, and advanced approaches are emerging continuously
within the field of neurosciences. With the development of high-resolution micro-optical
imaging, whole-brain images can be acquired at the cellular level. However, brain regions
in microscopic images are aggregated by discrete neurons with blurry boundaries,
the complex and variable features of brain regions make it challenging to accurately
segment brain regions. Manual segmentation is a reliable method, but is unrealistic to
apply on a large scale. Here, we propose an automated brain region segmentation
framework, DeepBrainSeg, which is inspired by the principle of manual segmentation.
DeepBrainSeg incorporates three feature levels to learn local and contextual features
in different receptive fields through a dual-pathway convolutional neural network (CNN),
and to provide global features of localization by image registration and domain-condition
constraints. Validated on biological datasets, DeepBrainSeg can not only effectively
segment brain-wide regions with high accuracy (Dice ratio > 0.9), but can also be
applied to various types of datasets and to datasets with noises. It has the potential
to automatically locate information in the brain space on the large scale.

Keywords: automated segmentation, brain regions, convolutional neural networks, image registration, domain-
condition constraints, micro-optical images

INTRODUCTION

Complex structures in the brain have the specificity for brain regions, which correspond to varying
brain functions. The maturation of techniques for high-resolution micro-optical imaging (Li et al.,
2010; Ragan et al., 2012; Gong et al., 2016) has allowed comprehensive measurements of the
distributions of fine structures in three-dimensional (3D) brain space. This has led to better
understanding of brain structures, such as whole-brain neuron projections (Economo et al., 2016; Li
et al., 2018), cellular and vascular distributions (Peng et al., 2017; Xiong et al., 2017). Such analyses
require 3D brain region contours as boundary preconditions. However, unlike magnetic resonance
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images (MRIs), brain regions in microscopic images are
aggregated by discrete neurons, resulting in blurry boundaries
between regions (Gahr, 1997). Identifying the boundaries
requires to combine a number of features, including cellular
staining, morphology, and distribution. Moreover, due to
individual differences and imaging processes, these complex
features are variable, making it challenging to accurately segment
brain regions. The manual segmentation of brain region contours
(Dong, 2008) by anatomists is considered to be a reliable
method, but is unrealistic to apply on a large scale for high-
resolution images. Therefore, neuroscientists urgently require an
automated and accurate method that can segment brain regions
at the cellular level.

Image segmentation has been studied extensively for
brain sciences. Classic segmentation methods (Clarke et al.,
1995; Balafar et al., 2010; Nanthagopal and Sukanesh, 2013)
based on hand-crafted features have been used for a long
time and primarily utilize the differences between features,
such as intensity and texture. For example, Feng et al.
(2017) used a 3D Otsu method with intensity features to
segment MRI brain structures. However, the features of
brain regions for micro-optical images are complex, and
vary between different individuals and imaging devices,
rendering the hand-crafted features approach inappropriate for
micro-optical brain images.

Deep learning (LeCun et al., 2015; Schmidhuber, 2015; Shen
et al., 2017) for image segmentation is another rapidly developing
field. Methods based on convolutional neural networks (CNNs)
(Krizhevsky et al., 2012; Rawat and Wang, 2017) can build
complex deep-level features based on simple low-level features,
making them competitive against classic shallow hand-crafted
features approaches. One approach for image segmentation
which uses CNNs has an end-to-end form with full convolutions
(Long et al., 2015; Milletari et al., 2016; Badrinarayanan et al.,
2017; Chen et al., 2017; Jégou et al., 2017; Yu et al., 2017; Chen
et al., 2018); i.e., the output of the network is the result of pixel-
by-pixel segmentation. For instance, U-net (Ronneberger et al.,
2015), consisting of groups of convolutional and deconvolutional
layers and skip links, is widely applied in medical image
segmentation. Whereas, due to pooling layers, the end-to-end
approach may adversely affect the image resolution and therefore
result in loss of details (Litjens et al., 2017). Moreover, since a
whole image constitutes one sample, many hours of labor are
required to label enough samples for training.

Another CNN approach, the patch-based method (Lai, 2015;
Pereira et al., 2016), is able to handle the details and label samples
to an acceptable level. This approach classifies each pixel in the
image individually by presenting it with patches extracted around
that particular pixel (Litjens et al., 2017). For example, Ciresan
et al. (2012) used a patch-based CNN to segment medical images;
furthermore, multi-scale CNNs (de Brebisson and Montana,
2015; Moeskops et al., 2016) were adopted to achieve a higher
accuracy for MR brain images with different receptive fields
(Luo et al., 2016). However, the patch-based approach has the
limitations of low efficiency and lack of global information.

Neuroanatomical studies benefit from the ability to obtain
high-resolution micro-optical images, which allows fine division

of the brain into thousands of regions (Kuan et al., 2015). The
steps for manual segmentation of brain regions by anatomists
consist in locating the structure at the macroscale, identifying
the shape and neighboring differences at the mesoscale,
and segmenting accurate boundaries at the microscale.
Correspondingly, the automated segmentation also requires
multi-level features: global, contextual, and local. While CNN
methods can learn local and contextual features, they have
difficulty utilizing global location features from the whole-brain
range at high resolution, resulting in over-segmentation for other
regions with similar local features. To locate brain structures,
Iqbal et al. (2019) segmented and classified the mouse brain
into eight regions using Mask r-cnn (He et al., 2017), while
the detected box has excessive redundancies for the region
with complex shape. Chen et al. (2019) combined a patch-
based CNN and registration to segment the murine brainstem,
whereas the accuracy of segmentation is easily affected by
the effect of registration. In other words, current automated
methods are not capable of utilizing on global, contextual,
and local information to accurately segment brain regions for
micro-optical images.

We propose a framework inspired by the principle of manual
segmentation, DeepBrainSeg, which automatically locates and
segments brain regions incorporating three level features: local,
contextual, and global. We design a dual-pathway network
with two-scale patches to acquire local and contextual features
in different receptive fields, and combine image registration
and domain-condition constraints for initial and tracking
localization. We segmented several brain-wide regions and
quantitatively evaluated the segmentation effect: which shows
a high accuracy (Dice ratio > 0.9). DeepBrainSeg achieves
more accurate results than U-net, V-net, FC-DensNet, and
Segnet. It is also suitable for datasets with noises and
can be used for various types of datasets. In addition,
DeepBrainSeg demonstrates high computational efficiency on
different platforms.

MATERIALS AND METHODS

Biological Datasets
In this study, we used 14 mouse brain datasets from four
different imaging systems. Ten datasets are Thy1-GFP M-line
transgenic mice whose whole brains are imaged using a dual
color fluorescence microscope [Brain-wide Precision Imaging
system (BPS)] (Gong et al., 2016). The other four datasets are
a Nissl-stained C57BL/6 adult mouse imaged using a Micro-
Optical Sectioning Tomography (MOST) system (Li et al., 2010),
a C57BL/6 mouse with autofluorescent signal imaged with a
serial two-photon (STP) system (Ragan et al., 2012), a C57BL/6
adult mouse imaged with MR image model T2∗ (Johnson et al.,
2010), and the Allen mouse common coordinate framework
(Allen CCF v3 brain atlas) containing an 3D average brain
image and a labeled brain region space. We got the STP
dataset from “http://www.swc.ucl.ac.uk/aMAP,” the MR dataset
from “civmvoxport.vm.duke.edu,” and the Allen CCF from
“https://atlas.brain-map.org.” The pixel resolution of the MR
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dataset is 21.5 µm isotropic; others are all sampled to
10 µm isotropic.

The Framework of DeepBrainSeg
DeepBrainSeg consists of three parts (Figure 1): network
training, initial localization, and predicting with tracking
localization. First, we obtain images and labels by manually
delineating the boundaries of brain regions, screen and
augment the samples to generate the training set, and
train the designed dual-pathway CNN (Figure 1A).
Then, for the new unlabeled image, we perform a 3D
registration with Allen CCF, and map the label from
the Allen CCF to the unlabeled image, select one two-
dimensional (2D) label slice and dilate it as the initial
localization of the brain region (Figure 1B). Finally,
the located 2D image is used for predicting by the
trained CNN, and the segmentation result is dilated as
the domain-condition constraint to locate the adjacent
images. Tracking localization and prediction are performed

alternately until the complete 3D segmentation results are
obtained (Figure 1C).

Label and Sample Extraction
The main datasets used for verification in this study are 10
datasets from BPS. Five brain regions with visible differences in
the surrounding areas were selected for training and predicting:
main olfactory bulb mitral layer (MOBmi), pyramidal and
granular layers of the hippocampus (HIP-pg), the granular layer
of cerebellar cortex (CBX-gl), outline, and facial nerve (VIIn).
For each brain region, 100 coronal planes from five datasets
were selected at intervals as the training and predicting images.
Subsequently, using the Amira (version 6.1.1; FEI, Mérignac
Cedex, France) tool, three experienced technicians generated the
“labels” by manually demarcating the boundaries of the brain
region on training and predicting images, to be used as the
ground truth (Figure 1A.1).

For the dual-pathway CNN, a sample is presented as images
with two different sizes around the particular pixel, and the

FIGURE 1 | The framework for DeepBrainSeg. (A) Network training, the acquisition of images and labels, samples extraction, building and training the CNN.
(B) Initial localization, image registration for the unlabeled image and Allen CCF, mapping the label to the image, and initial localization the brain region. (C) Predicting
with tracking localization, predicting the initial image, dilating the 2D result as the localization of adjacent images, alternating prediction and localization to obtain a 3D
result.
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value of the pixel in the label is the classification. There are
two common problems in the sample extraction: there is much
redundancy between adjacent patches, and the number of patches
where the center pixel is within the brain regions (the positive
samples) is much smaller than in other regions (the negative
samples). To solve these problems, we customized the sample
extraction scheme according to the characteristics of the brain
regions (Figure 1A.2). First, we extract samples at intervals on
coronal images to avoid excessive repetitive information. Then
the data are screened and augmented (Krizhevsky et al., 2012) to
maintain the equilibrium of positive and negative samples. The
augmentation extends the intensity range in the data to improve
the ability of the model for generalization. The process is as
follows: randomly remove 90% of negative samples containing no
pixel in the brain regions; randomly remove x% negative samples
containing parts of pixels in the brain regions; augment the rest of
samples by increasing and decreasing the intensity by 20%. The
equilibrium of positive and negative samples is as follows:

10%N1 + 3 · x%N2 = 3N3 (1)

where N1 and N2 are the number of negative samples containing
no pixel and parts of pixels in the brain regions, respectively,
and N3 is the number of positive samples. Finally, we extracted
hundreds of thousands of training samples for each brain
region, of which 80% were used as the train set and 20% as
the validation set.

Dual-Pathway CNN Training
In order to acquire the local and contextual features from
different receptive fields, we designed a dual-pathway CNN with
two-scale patches to segment brain regions. The smaller patches
mainly provide local features while the larger patches provide
contextual features. As shown in Figure 2, the network first
consists of two same-pathway structures with three hidden layers.
The first two hidden layers consist of a convolutional layer,
an active layer, a local response normalization (LRN), and a
pooling layer. The convolution kernel is 5 × 5, the stride is
1 × 1, the activation layer uses rectified linear units (ReLUs), the
pooling layer uses 3 × 3 max-pooling, and the stride is 2 × 2.
The third hidden layer consists of a convolutional layer and
an active layer. The two-pathway network results in 128 5 × 5
feature maps. Subsequently, the feature maps are cascaded and
connected by a 5 × 5 convolutional layer and a ReLU to acquire
512 1 × 1 feature maps. Then, the feature maps from the third
and the fourth layer hidden layers are input to the corresponding
fully connected layers. All the feature maps are concatenated
and input to a fully connected layer. Following this, ReLU is
applied, and dropout is used to prevent overfitting. Finally, the
SoftmaxWithLoss classifier is used to handle the feature maps.
The softmax function is defined as follows:

σi(z) =
exp(zi)∑m
j=1 exp(zj)

, i = 1, ..., m (2)

The multinomial logistic loss function is defined as

`(y, o) = − log(oy) (3)

Finally, the combined softmax and loss function are
expressed as

∼

`(y, z) = − log(
ezy∑m
j=1 ezj

) = log(
m∑

j=1

ezj)− zy (4)

The network training was implemented through Caffe (Jia
et al., 2014) to obtain five models of the corresponding brain
regions. During the training process, the batch size is 200,
and the maximum number of iterations is 50,000 with 100
epochs. The learning rate is initialized to 0.01, and the iterative
decay algorithm by step is applied every 10,000 iterations. The
momentum and weight decay are 0.9 and 0.0005, respectively.
The training is executed on the GPU to improve the efficiency.

Initial Localization by Image Registration
It is necessary to locate brain regions before predicting the
segmentation result to avoid over-segmentation and to improve
efficiency. Brain atlas is commonly used as a reference for brain
region recognition. Here, we use Allen CCF to locate the brain
region by mapping the segmented labels to new images. Allen
CCF consists of a 3D average brain image and a corresponding
labeled brain region space. First, we register the unlabeled image
and the average brain in 3D to obtain the transformation
(Figure 1B.4). Then, the label for corresponding brain region
from Allen CCF is extracted, and the label is mapped to the
new image with the transformation (Figure 1B.5), which enables
general localization of brain regions. However, due to differences
in biological samples and imaging mode, it can be difficult to
guarantee an accurate match between the mapped label and brain
region, especially where brain regions appear and disappear.
Instead of locating the whole 3D brain region, we select a 2D label
from the middle slice of the 3D label as the initial localization
and then perform a dilation of the label to eliminate registration
errors, which ensures that all pixels within the brain region are
included in the dilated label (Mask-init) (Figure 1B.6).

For image registration, a multi-resolution pyramid strategy
is used for acceleration. Each hierarchy contains both linear
and non-linear registration, and aims to maximize mutual
information between the unlabeled image and the average
brain. Symmetric diffeomorphic normalization (Avants et al.,
2008), a widely used method, is conducted as the non-linear
transformation model. Its energy function is defined as

Esym(I, J) = inf
φ1

inf
φ2

∫ 0.5

t=0
{||v1(x, t)||2L + ||v2(x, t)||2L}dt+∫

�
|I(φ1(0.5)− J(φ2(0.5)|2d� (5)

where v1 and v2 are the velocity field in opposite directions and
∅1and ∅2 are the diffeomorphism field in opposite directions.

Simultaneous Tracking Localization and
Prediction
The 3D brain region can be regarded as changes of the 2D brain
region slice in the spatial domain. High axial resolution imaging
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FIGURE 2 | The architecture of dual-pathway CNN. The network consists of dual pathways that take the smaller and larger patch as input, respectively. Each
pathway has three hidden layer which have the main components of a convolutional layer, a ReLU layer, an LRN layer, and a pooling layer. The dual-pathway feature
maps form the input to a full connection and a convolution layer. All are concatenated after a full connection, and the SoftmaxWithLoss classifier is applied at the end.

makes adjacent 2D brain region slice change less, making it
possible to track the 2D brain region in a similar way to target
tracking on a video in the time domain. Based on this idea,
we proposed a strategy to locate the brain region during the
prediction. For 3D brain region segmentation, initial localization
by image registration is performed as the first predicting image
with Mask-init, patches in the Mask-init are extracted from the
2D image as the input of trained CNN, and the 2D segmentation
result is obtained through network predicting (Figure 1C.7).
Subsequently, we dilate the 2D result as the domain-condition
constraint (Mask-track) of the adjacent images (Figure 1C.8). For
adjacent images, the network predicts patches in the Mask-track
to get the 2D result. Finally, alternate tracking localization and
prediction are performed for the rest of the corresponding 2D
images to obtain a 3D segmentation result, and postprocessing
operations including hole filling, connected component analysis,
and 3D smoothing are conducted. Figure 3 demonstrates the
segmentation effect with and without Mask-track, localization
can avoid over-segmentation of similar local features.

In addition, only the pixels in the Mask-track require
predicting, which greatly improves the efficiency. Moreover,
based on the connected domain characteristics, brain regions
are predicted at one pixel interval to reduce computation by
three quarters. These optimizations make it efficient for high-
resolution images.

Quantitative Evaluation
To assess the accuracy of our method, we used three parameters
to evaluate the segmentation effect: Dice (Dice, 1945), Precision,
and Recall. The corresponding formulae are as follows:

Dice (I, J)=
2× |I ∩ J|
|I| + |J|

(6)

FIGURE 3 | Comparison of the segmentation effect with and without
localization. (A) A superposition of the original image and the manually
segmented lines. (B) The segmentation result without localization. (C) A
superposition of the original image and Mask. (D) The segmentation result
with localization.

Precision (I, J)=
|I ∩ J|
|I|

(7)

Recall (I, J)=
|I ∩ J|
|J|

(8)

where I and J represent automated and manual binarized
segmentation images, | I| and | J| denote the numbers of pixels
in brain regions, and | I∩J| denotes the intersection of | I| and | J|
for the pixels in brain regions.

In addition, we also quantitatively assess the effect of
localization by Precision and Recall, where I represents
automatically located binarized images (Mask-init and
Mask-track).
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Testing Environments
We tested our method on two different computing platforms:
A graphical workstation equipped with a NVIDIA M6000 GPU
card, 20 CPU cores (Intel Xeon E5-2687w × 2), and 128 GB
of RAM. A GPU server equipped with four NVIDIA V100
GPU cards, 12 CPU cores (Intel Xeon xeon-6126w × 2),
and 192 GB of RAM.

RESULTS

Determination of Dilation Sizes and
Two-Scale Path Size
Here, we experimentally determined the optimal values for
parameters by investigating different dilation sizes of Mask-
init, Mask-track, and two-scale patch size. Since CBX-gl can be
wide-ranging in terms of sizes, we used it as a representative
for experiment using 10 BPS datasets. For testing of dilation
size, Precision indicates the redundancy of localization range
for the ground truth, and Recall indicates the accuracy of the
localization. To ensure subsequent segmentation accuracy, Recall
must be very close to 1. We therefore assessed sizes of 10, 20,
30, 40, and 50 pixels. As shown in Table 1, Recall ratio for
Mask-init increases as the dilation size increases, it achieves the
highest of 0.999 at 50 pixels, and Recall ratio for Mask-track
reaches 0.999 at 20 pixels. Therefore, we determine the optimal
dilation sizes for Mask-init and Mask-track with 50 pixel and 20
pixels, respectively.

For two-scale path size, the receptive field will increase
as patch size increases with the amount of information in
a wide area. This improves classification accuracy, but also

reduces positioning accuracy. To obtain optimal patch sizes,
two groups of tests were conducted by first determining the
smaller size patches and then the larger size using Dice ratio.
First, five patch sizes (23, 35, 51, 75, and 91) were chosen
to build single-scale networks. As the patch size increases, the
wider receptive field improves classification accuracy, decreasing
the numbers of outlier, and Dice ratio gradually increases
(Figure 4A), reaching a peak at 51 pixels2 (Dice ratio = 0.944),
after which it declines. We therefore selected 51 pixels2 as the
optimal parameter for the smaller size. Then, the selected smaller
patch size is multiplied by 1.5, 2, or 3 times to produce the
larger patch sizes. Figure 4B shows the Dice ratio for different
multiples. The highest value is obtained with a multiplication
factor of 1.5 (Dice ratio = 0.952), after which it declines as
the reduction of positioning accuracy has a major impact.
Meanwhile, Dice ratio also reveals that the accuracy of two-
scale is higher than the single-scale. We ultimately obtained
the optimal patch sizes of 51 × 51 and 77 × 77 pixels2 for
brain segmentation.

Segmentation for Brain-Wide Regions
In the field of neuroscience, the analysis of brain space and
information commonly requires the segmentation of multiple
brain regions which are distributed throughout the brain.
Here, we selected five brain regions from ten BPS datasets
for segmentation (see section “Materials and Methods” for
specific training and prediction procedures). Using the trained
models for each brain region, we performed localization and
prediction for 50 corresponding images from five datasets.
One dataset is used to illustrate the effects of localization
and segmentation, by showing the overlapping of the original

TABLE 1 | Performance of Recall ratio for Mask-init and Mask-track with different dilation size (bold values are the optimal).

Dilate size 10 pixels 20 pixels 30 pixels 40 pixels 50 pixels

Mask-init 0.807 ± 0.063 0.936 ± 0.032 0.975 ± 0.017 0.994 ± 0.005 0.999 ± 0.001

Mask-track 0.997 ± 0.008 0.999 ± 0.005 0.999 ± 0.004 1.000 ± 0.002

FIGURE 4 | Performance of different patch size. (A) Box plots showing the Dice ratio for five different patch sizes at a single scale. (B) Box plots showing the Dice
ratio for the larger patch at different multiples of the smaller patch size.
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images, the located Mask, and the segmented lines from the
binarized results (Figure 5). Figure 5A reveals the overall
effects for the five brain regions (MOBmi, HIP-pg, CBX-
gl, VIIn, and outline). Although there are differences in the
characteristics among each brain region, DeepBrainSeg displays
good localization and segmentation effects on all of these
regions. Figures 5B–E show enlarged images of the white
boxes in Figure 5A. The segmented lines are close to the real
boundaries in the detail images. In particular, HIP-pg and CBX-
gl, which have complicated shapes, also maintain fine effects.
Figure 5F shows a 3D reconstruction of the segmentation
results, which demonstrates the integrity and continuity of our
approach in 3D space.

We also quantitatively evaluated the performance of
localization and segmentation for these 50 images from five brain
regions. Figures 6A,B show Recall and Precision (Redundancy)

ratio for localization. Recall of all brain regions is very close
to 1, indicating that almost all pixels of brain regions are
included in the Mask, and Redundancy is between 0.14 and
0.83 for different regions. Figures 6C–E demonstrate box
plots of Dice, Precision, and Recall for the segmentation
effect. All three parameters exceed 0.95 for MOBmi, CBX-
gl, and outline, and 0.92 for the complex HIP-pg structure.
Although subtle deviations in the automated segmentation will
affect the parameters for small brain regions, the parameters
are consistently above 0.85 for VIIn. Detailed performance
statistics showing means and standard deviations are provided
in Table 2.

Segmentation for Datasets With Noises
For long-term continuous micro-optical imaging, it is easy to
generate noises such as stripes and darkened corners through

FIGURE 5 | Segmentation effects for brain-wide regions. (A) The segmentation effects for five brain regions. From top to bottom: MOBmi, HIP-pg, CBX-gl, VIIn, and
outline, each of which are shown as the superposition of four typical coronal images, localization masks, and segmented lines. (B–E) Enlarged views of the white
boxes in A. (F) A 3D reconstruction of the segmentation results of the five brain regions.
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FIGURE 6 | Performance of DeepBrainSeg for brain-wide regions. (A,B) Recall and Redundancy of localization effect. (C–E) Box plots showing Dice, Precision, and
Recall (from left to right) of segmentation effect.

TABLE 2 | Performance of DeepBrainSeg for brain-wide regions.

MOBmi Outline HIP CB VIIn

Localization Recall 1.000 ± 0.000 1.000 ± 0.000 0.996 ± 0.012 0.999 ± 0.005 0.998 ± 0.010

Redundancy 0.468 ± 0.044 0.828 ± 0.028 0.186 ± 0.023 0.391 ± 0.042 0.146 ± 0.036

Segmentation Dice 0.979 ± 0.009 0.993 ± 0.004 0.932 ± 0.016 0.967 ± 0.008 0.899 ± 0.048

Precision 0.979 ± 0.011 0.989 ± 0.009 0.920 ± 0.028 0.965 ± 0.008 0.863 ± 0.075

Recall 0.986 ± 0.007 0.996 ± 0.002 0.945 ± 0.019 0.969 ± 0.011 0.942 ± 0.038

uneven illumination (Smith et al., 2015) of partial images in
actual experiments. Noise makes the boundaries of brain regions
more difficult to identify. In this section, we specially selected
datasets with noises to verify the robustness of our method. We
added some of these noisy samples into train set; then, after
training, we predicted testing datasets. For HIP-pg and CBX-gl,
Figure 7 shows the original images (A,D), the predicted binarized
images (B,E) and the superpositions of images, the located Mask,
and the predicted boundaries (C,F). The binarized images and
the superposition images demonstrate that the localization and
segmentation results on noisy images had the same good effect
as on data without noise. Furthermore, Figures 7G–J show the
details, illustrating that the segmented lines were well matched
with the real boundaries, even in areas where the intensity
difference was not obvious.

Applicability of DeepBrainSeg for Other
Types of Datasets
We validated the effectiveness, accuracy, and robustness of
DeepBrainSeg using the BPS datasets. To further illustrate

the applicability, we present the segmentation results for
other types of data from: MOST, MRI, and STP systems.
For datasets from these three imaging systems, we selected
HIP-pg and CBX-gl, caudoputamen (CP) and hippocampus
(HIP), corpus callosum (CC) and HIP, respectively, for
segmentation. In Figure 8, the first three rows show both
the original images and the superposition images with the
located Mask and the segmented lines from each of the
three systems. DeepBrainSeg was able to effectively segment
the brain regions from multiple types of datasets. The fourth
row shows enlarged images of the areas in white boxes
(Figures 8A–F). The detail images reveal that the segmented
lines closely matched the real boundaries, indicating the wide
applicability of our method.

Comparison With Other Methods
In this section, we compared DeepBrainSeg with other widely
used methods including U-net, V-net, FC-DensNet, and Segnet.
All methods were applied to BPS datasets with the same 60
training images and test images, and CBX-gl was selected as a
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FIGURE 7 | Segmentation effects for datasets with noises. (A–C) The coronal image, the predicted binarized image, the superposition of image, the localization
masks, and the segmented lines for HIP-pg. (D–F) The same as A-C for CBX-gl. (G–J) Enlarged views of the areas in white boxes in A, C, D, and F.

FIGURE 8 | Applicability of DeepBrainSeg for other types of datasets. The first row shows the segmentation effects of HIP-pg and CBX-gl for MOST data. From left
to right: the coronal image, the superposition of image, the localization masks, and the segmented lines for HIP-pg and CBX-gl. The second and third rows show CP
and HIP for the MRI data, CC, and HIP for STP data, respectively. (A–F) Enlarged views of the areas in white boxes in the first three rows.

representative structure with which to compare segmentation
effects. The input images for DeepBrainSeg, U-net, V-net, and
Segnet were full resolution of around 600 × 1000 pixels2,
while for FC-DensNet, they are limited to 400 × 600 pixels2

due to the memory capacity of a GPU. Figure 9 shows the
results of these methods from top to bottom. The green

lines indicate the ground truth by manual segmentation, and
the red lines are the automatically segmented lines. The
second, fourth, and fifth columns are enlarged images of the
white boxes in preceding columns. These results show that
other methods achieved general segmentation effects: some
over-segmentation and erroneous segmentation were present
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FIGURE 9 | Comparison among DeepBrainSeg, U-net, V-net, FC-DenseNet, and SegNet. From top to bottom, the five rows show the segmentation effects of these
methods, respectively. The first and third images in each row are superpositions of coronal images and the segmented lines: the green lines are the ground truth and
the red lines are the automatically segmented lines. The second, fourth, and fifth images show enlarged views of the areas in front white boxes. White arrows show
the inaccurate segmentations.

TABLE 3 | Quantitative comparison among DeepBrainSeg and other methods
(bold values are the highest).

Dice Precision Recall

DeepBrainSeg 0.960 ± 0.006 0.953 ± 0.009 0.968 ± 0.010

U-net 0.929 ± 0.010 0.927 ± 0.019 0.931 ± 0.011

V-net 0.941 ± 0.007 0.929 ± 0.012 0.954 ± 0.016

FC-DensNet 0.919 ± 0.048 0.923 ± 0.014 0.922 ± 0.091

SegNet 0.911 ± 0.009 0.918 ± 0.018 0.904 ± 0.012

in the latter (marked by white arrows). In contrast, the
segmented lines from DeepBrainSeg match more accurately with
manual lines, and contain less erroneous segmentation. This
indicates that DeepBrainSeg has a stronger segmentation ability
for brain regions.

We also quantitatively evaluated the effects of the three
methods in the test data. Table 3 shows the mean and
standard deviation values of Dice, Precision, and Recall.
Our proposed method achieves the highest values for the
three parameters: 0.960, 0.953, and 0.968, respectively. In
addition, we conducted statistical tests for evaluated values by

TABLE 4 | P-values of Wilcoxson test among DeepBrainSeg and other methods.

Dice Precision Recall

U-net 1.82e-04 7.69e-04 2.46e-04

V-net 3.30e-04 7.68e-04 3.12e-02

FC-DensNet 1.83e-04 1.00e-03 5.80e-03

SegNet 1.82e-04 2.46e-04 1.83e-04

conducting Wilcoxson test between DeepBrainSeg and others.
The P-values displayed in Table 4, Dice, Precision, and Recall
values of DeepBrainSeg are significantly different from all
others (P < 0.05).

Performance Evaluation
Benefiting from the optimization of the domain-condition
constraint and prediction at intervals, our method significantly
improved the computational efficiency. Ten consecutive
coronal planes for five brain regions were selected to
evaluate the number of pixels requiring computation
before and after optimization, respectively. As shown in
Figure 10A, when predicting each pixel in the entire
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FIGURE 10 | Performance testing. (A) Comparison of the time required for full-image predictions and optimization predictions. The abscissa represents a sequence
of ten consecutive coronal images. The ordinate is the number of pixels to be calculated. Different color lines represent the calculation required for different brain
regions using full-image predictions and the optimization predictions. (B) Performance of the proposed method on different computing platforms. The abscissa
represents the five brain regions, and the ordinate is the average prediction time for each image. The orange and blue bars represent the performances of the
workstation and the GPU server platform, respectively.

image, the amount of calculation approaches 106 for the
full prediction. In contrast, using the optimization method,
the first image requires three times less calculation. For
subsequent images, only the pixels in the mask needed
to be predicted, the amount of calculation decreased by
one to three orders of magnitude according to the size of
different brain regions.

To evaluate the performance of our method on different
computing platforms, we tested five brain regions on a
graphical workstation with a M6000 GPU and on a GPU
server with four V100 GPUs. The prediction time of each
section for the five brain regions on the platforms is shown
in Figure 10B. The maximum runtime of one section was
90 s on the workstation. Furthermore, the time for that section
decreased approximately threefold when executed on the GPU
server platform.

DISCUSSION

In this study, following the principle of manual segmentation
with multi-level features, we proposed DeepBrainSeg to solve
the issue of brain region segmentation for micro-optical images
based on a CNN. We used a dual-pathway CNN to learn local
and contextual information at different scales, and provided
global localization through image registration and domain-
condition constraints. Our method can accurately segment
multiple brain-wide regions, even for datasets with noises, and
is widely applicable to various types of datasets. Moreover,
it is superior to U-net, V-net, FC-DensNet, and Segnet in
terms of accuracy.

We demonstrated the segmentation effects of our method
on four different types of data. Furthermore, DeepBrainSeg
can also be applied to solve segmentation problems in other
fields for more types of data, such as computed tomography
and electron microscopy. For other data, the patch size and

network structure require adjustment according to the ratio
of its resolution to 10 µm. Meanwhile, the potential regions
for segmentation are not limited to the examples shown in
this paper: the method is also suitable for other regions
with characteristic differences to their surroundings. For brain
region localization, DeepBrainSeg provides a location area that
is consistent with the shape of the real brain region, rather
than a regular shape like box. This irregular location area
reduces the Redundancy to improve the localization accuracy and
segmentation efficiency.

Nevertheless, our method still has some deficiencies. The
training and prediction are implemented separately that target
the characteristics of these different brain regions but introduce
some complexity. Thus, finding one model that can segment
multiple brain regions will be the subject of our future work.
In addition, for efficiency, we processed datasets at an isotropic
resolution of 10 µm. It is likely that a higher resolution could
achieved by improving the algorithm and efficiency.

Research for brain space information involves collaborative
analysis of various brain regions and datasets. Although many
methods have been applied for brain segmentation, they are
generally effective for only one type of data or a single
brain region. Our intention is to provide neuroscientists with
a consistently accurate segmentation framework that can be
applied to multiple types of data and brain regions without
requiring complex feature extraction or being subject to strict
data-quality requirements. Users would only need to input the
data into the method to quickly acquire satisfactory results. We
believe that our method provides a powerful tool by which
neuroscientists can explore the brain.

DATA AVAILABILITY STATEMENT

The image data and codes supporting the conclusions of this
article will be made available by the authors, without undue
reservation, to any qualified researcher.

Frontiers in Neuroscience | www.frontiersin.org 11 March 2020 | Volume 14 | Article 179

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00179 March 18, 2020 Time: 16:51 # 12

Tan et al. Automatic Brain Region Segmentation Strategy

ETHICS STATEMENT

The animal study was reviewed and approved by the
Institutional Animal Ethics Committee of Huazhong University
of Science and Technology.

AUTHOR CONTRIBUTIONS

QL and HG conceived the project. CT and AL designed the
method. CT, AL, and YG wrote the article. CT, ZF, HN, ZZ, and
ZW processed the data sets. XL prepared the brain specimens. JY
processed the brain-wide imaging.

FUNDING

This work was supported by the Science Fund for Creative
Research Group of China (Grant No. 61721092), the National
Natural Science Foundation of China (Grant Nos. 81871082 and
91749209), and the director fund of the WNLO.

ACKNOWLEDGMENTS

We appreciate X. Chai and Y. Di for data processing, T. Hu
for constructive suggestions, and Britton Chance Center for
Biomedical Photonics for the support in data acquisition.

REFERENCES
Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C. (2008). Symmetric

diffeomorphic image registration with cross-correlation: evaluating automated
labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41.
doi: 10.1016/j.media.2007.06.004

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: a deep
convolutional encoder-decoder architecture for image segmentation. Paper
Presented at the IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 39 (Piscataway, NJ: IEEE), 2481–2495. doi: 10.1109/tpami.2016.2644615

Balafar, M. A., Ramli, A. R., Saripan, M. I., and Mashohor, S. (2010). Review
of brain MRI image segmentation methods. Artif. Intell. Rev. 33, 261–274.
doi: 10.1007/s10462-010-9155-0

Chen, H., Dou, Q., Yu, L., Qin, J., and Heng, P.-A. (2018). VoxResNet: deep
voxelwise residual networks for brain segmentation from 3D MR images.
Neuroimage 170, 446–455. doi: 10.1016/j.neuroimage.2017.04.041

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017).
Deeplab: semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. Paper Presented at the IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 40 (Piscataway, NJ: IEEE),
834–848. doi: 10.1109/tpami.2017.2699184

Chen, Y., McElvain, L. E., Tolpygo, A. S., Ferrante, D., Friedman, B., Mitra,
P. P., et al. (2019). An active texture-based digital atlas enables automated
mapping of structures and markers across brains. Nat. Methods 16, 341–350.
doi: 10.1038/s41592-019-0328-8

Ciresan, D., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2012). “Deep
neural networks segment neuronal membranes in electron microscopy images”,
in Proceedings of the 25th International Conference on Neural Information
Processing Systems, Vol. 2 (Red Hook, NY: Curran Associates Inc.), 2843–
2851.

Clarke, L., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M., Hall, L., et al.
(1995). MRI segmentation: methods and applications. Magn. Reson. Imaging
13, 343–368.

de Brebisson, A., and Montana, G. (2015). “Deep neural networks for anatomical
brain segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops (Boston, MA: IEEE), 20–28.

Dice, L. R. (1945). Measures of the amount of ecologic association between species.
Ecology 26, 297–302. doi: 10.2307/1932409

Dong, H. W. (2008). The Allen Reference Atlas: A Digital Color Brain Atlas of the
C57Bl/6J Male Mouse. Hoboken, NJ: John Wiley & Sons Inc.

Economo, M. N., Clack, N. G., Lavis, L. D., Gerfen, C. R., Svoboda, K., Myers,
E. W., et al. (2016). A platform for brain-wide imaging and reconstruction of
individual neurons. Elife 5:e10566.

Feng, Y., Zhao, H., Li, X., Zhang, X., and Li, H. (2017). A multi-scale 3D Otsu
thresholding algorithm for medical image segmentation. Digit. Signal Process.
60, 186–199. doi: 10.1016/j.dsp.2016.08.003

Gahr, M. (1997). How should brain nuclei be delineated? Consequences for
developmental mechanisms and for correlations of area size, neuron numbers
and functions of brain nuclei. Trends Neurosci. 20, 58–62. doi: 10.1016/s0166-
2236(96)10076-x

Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., et al. (2016). High-
throughput dual-colour precision imaging for brain-wide connectome with
cytoarchitectonic landmarks at the cellular level. Nat. Commun. 7:12142.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask r-cnn,” in
Proceedings of the IEEE International Conference on Computer Vision (Venice,
VE: IEEE), 2961–2969.

Iqbal, A., Khan, R., and Karayannis, T. (2019). Developing a brain atlas through
deep learning. Nat. Mac. Intell. 1:277. doi: 10.1038/s42256-019-0058-8

Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., and Bengio, Y. (2017). “The
one hundred layers tiramisu: fully convolutional densenets for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (Honolulu, HI: IEEE), 11–19.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014).
“Caffe: convolutional architecture for fast feature embedding,” in Proceedings of
the 22nd ACM International Conference on Multimedia (New York, NY: ACM),
675–678.

Johnson, G. A., Badea, A., Brandenburg, J., Cofer, G., Fubara, B., Liu, S., et al.
(2010). Waxholm space: an image-based reference for coordinating mouse
brain research. NeuroImage 53, 365–372. doi: 10.1016/j.neuroimage.2010.06.
067

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). "Imagenet classification with
deep convolutional neural networks," in Proceedings of the Advances in Neural
Information Processing Systems (New York, NY: ACM), 1097–1105.

Kuan, L., Li, Y., Lau, C., Feng, D., Bernard, A., Sunkin, S. M., et al. (2015).
Neuroinformatics of the allen mouse brain connectivity atlas. Methods 73, 4–17.
doi: 10.1016/j.ymeth.2014.12.013

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
Lai, M. (2015). Deep learning for medical image segmentation. arXiv [Preprint].

arXiv:1505.02000.
Li, A., Gong, H., Zhang, B., Wang, Q., Yan, C., Wu, J., et al. (2010). Micro-optical

sectioning tomography to obtain a high-resolution atlas of the mouse brain.
Science 330, 1404–1408. doi: 10.1126/science.1191776

Li, X., Yu, B., Sun, Q., Zhang, Y., Ren, M., Zhang, X., et al. (2018). Generation
of a whole-brain atlas for the cholinergic system and mesoscopic projectome
analysis of basal forebrain cholinergic neurons. Proc. Natl. Acad. Sci. U.S.A. 115,
415–420. doi: 10.1073/pnas.1703601115

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M.,
et al. (2017). A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88.

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (Boston, MA: IEEE), 3431–3440.

Luo, W., Li, Y., Urtasun, R., and Zemel, R. (2016). “Understanding the effective
receptive field in deep convolutional neural networks,” in Proceedings of the
Advances in Neural Information Processing Systems (Red Hook, NY: NIPS),
4898–4906.

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). “V-net: fully convolutional
neural networks for volumetric medical image segmentation,” in Proceedings
of the 2016 Fourth International Conference on 3D Vision (3DV) (Stanford, CA:
IEEE), 565–571.

Frontiers in Neuroscience | www.frontiersin.org 12 March 2020 | Volume 14 | Article 179

https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1109/tpami.2016.2644615
https://doi.org/10.1007/s10462-010-9155-0
https://doi.org/10.1016/j.neuroimage.2017.04.041
https://doi.org/10.1109/tpami.2017.2699184
https://doi.org/10.1038/s41592-019-0328-8
https://doi.org/10.2307/1932409
https://doi.org/10.1016/j.dsp.2016.08.003
https://doi.org/10.1016/s0166-2236(96)10076-x
https://doi.org/10.1016/s0166-2236(96)10076-x
https://doi.org/10.1038/s42256-019-0058-8
https://doi.org/10.1016/j.neuroimage.2010.06.067
https://doi.org/10.1016/j.neuroimage.2010.06.067
https://doi.org/10.1016/j.ymeth.2014.12.013
https://arxiv.org/abs/1505.02000
https://doi.org/10.1126/science.1191776
https://doi.org/10.1073/pnas.1703601115
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00179 March 18, 2020 Time: 16:51 # 13

Tan et al. Automatic Brain Region Segmentation Strategy

Moeskops, P., Viergever, M. A., Mendrik, A. M., de Vries, L. S., Benders, M. J.,
Išgum, I., et al. (2016). Automatic segmentation of MR brain images with
a convolutional neural network. IEEE Trans. Med. Imaging 35, 1252–1261.
doi: 10.1109/tmi.2016.2548501

Nanthagopal, A. P., and Sukanesh, R. (2013). Wavelet statistical texture
features-based segmentation and classification of brain computed
tomography images. IET Image Process. 7, 25–32. doi: 10.1049/iet-ipr.2012.
0073

Peng, J., Long, B., Yuan, J., Peng, X., Ni, H., Li, X., et al. (2017). A quantitative
analysis of the distribution of CRH neurons in whole mouse brain. Front.
Neuroanat. 11:63. doi: 10.3389/fnana.2017.00063

Pereira, S., Pinto, A., Alves, V., and Silva, C. A. (2016). Brain tumor segmentation
using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging
35, 1240–1251. doi: 10.1109/tmi.2016.2538465

Ragan, T., Kadiri, L. R., Venkataraju, K. U., Bahlmann, K., Sutin, J., Taranda,
J., et al. (2012). Serial two-photon tomography for automated ex vivo
mouse brain imaging. Nat. Methods 9, 255–258. doi: 10.1038/nmeth.
1854

Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for image
classification: a comprehensive review. Neural Comput. 29, 2352–2449. doi:
10.1162/neco_a_00990

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional
networks for biomedical image segmentation,” in Proceedings of the
International Conference on Medical Image Computing And Computer-
Assisted Intervention (Berlin: Springer), 234–241. doi: 10.1007/978-3-319-2457
4-4_28

Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural
Netw. 61, 85–117. doi: 10.1016/j.neunet.2014.09.003

Shen, D., Wu, G., and Suk, H.-I. (2017). Deep learning in medical image analysis.
Annu. Rev. Biomed. Eng. 19, 221–248.

Smith, K., Li, Y., Piccinini, F., Csucs, G., Balazs, C., Bevilacqua, A., et al.
(2015). CIDRE: an illumination-correction method for optical microscopy. Nat.
Methods 12, 404–406. doi: 10.1038/nmeth.3323

Xiong, B., Li, A., Lou, Y., Chen, S., Long, B., Peng, J., et al. (2017). Precise
cerebral vascular atlas in stereotaxic coordinates of whole mouse brain. Front.
Neuroanat. 11:128. doi: 10.3389/fnana.2017.00128

Yu, L., Yang, X., Chen, H., Qin, J., and Heng, P.-A. (2017). “Volumetric ConvNets
with mixed residual connections for automated prostate segmentation from 3D
MR images,” in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (Palo Alto, CA: AAAI Press), 66–72.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Tan, Guan, Feng, Ni, Zhang, Wang, Li, Yuan, Gong, Luo and Li.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 March 2020 | Volume 14 | Article 179

https://doi.org/10.1109/tmi.2016.2548501
https://doi.org/10.1049/iet-ipr.2012.0073
https://doi.org/10.1049/iet-ipr.2012.0073
https://doi.org/10.3389/fnana.2017.00063
https://doi.org/10.1109/tmi.2016.2538465
https://doi.org/10.1038/nmeth.1854
https://doi.org/10.1038/nmeth.1854
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/nmeth.3323
https://doi.org/10.3389/fnana.2017.00128
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	DeepBrainSeg: Automated Brain Region Segmentation for Micro-Optical Images With a Convolutional Neural Network
	Introduction
	Materials and Methods
	Biological Datasets
	The Framework of DeepBrainSeg
	Label and Sample Extraction
	Dual-Pathway CNN Training
	Initial Localization by Image Registration
	Simultaneous Tracking Localization and Prediction
	Quantitative Evaluation
	Testing Environments

	Results
	Determination of Dilation Sizes and Two-Scale Path Size
	Segmentation for Brain-Wide Regions
	Segmentation for Datasets With Noises
	Applicability of DeepBrainSeg for Other Types of Datasets
	Comparison With Other Methods
	Performance Evaluation

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


