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Graph theory has been extensively applied to the topological mapping of complex

networks, ranging from social networks to biological systems. Graph theory has

increasingly been applied to neuroscience as a method to explore the fundamental

structural and functional properties of human neural networks. Here, we apply graph

theory to a model of a novel neuromorphic system constructed from self-assembled

nanowires, whose structure and function may mimic that of human neural networks.

Simulations of neuromorphic nanowire networks allow us to directly examine their

topology at the individual nanowire–node scale. This type of investigation is currently

extremely difficult experimentally. We then apply network cartographic approaches

to compare neuromorphic nanowire networks with: random networks (including an

untrained artificial neural network); grid-like networks and the structural network of

C. elegans. Our results demonstrate that neuromorphic nanowire networks exhibit a

small–world architecture similar to the biological system of C. elegans, and significantly

different from random and grid-like networks. Furthermore, neuromorphic nanowire

networks appear more segregated and modular than random, grid-like and simple

biological networks and more clustered than artificial neural networks. Given the

inextricable link between structure and function in neural networks, these results

may have important implications for mimicking cognitive functions in neuromorphic

nanowire networks.

Keywords: neuromorphic, atomic-switch networks, nanowires, topology, complex networks, structural

connectivity, graph theory, artificial neural networks

1. INTRODUCTION

1.1. Graph Theory Applications
Graph theory is a framework used to represent complex networks mathematically, whereby
network components are represented as nodes (N) and connections between components are
represented as edges (E) (Boccaletti et al., 2006). Since the 1950s, graph theory has been applied to
networks in a variety of fields, including social networks (Harary and Norman, 1953), progression
of disease (Eubank et al., 2004; Mason and Verwoerd, 2007), transport networks (Wakabayashi
and Iida, 1992), the internet (Albert et al., 2011), and many others. Graph theory has largely been
employed to study the structure of networks, known as structural connectivity. Measures such
as the path length (PL), clustering coefficient (CCoeff ), participant coefficient (PCoeff ), within-
module degree z-Score (MZ), degree and small worldness (see Box 1 for definitions), are useful
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BOX 1 | Graph Theory Terms

Clustering Coefficient (CCoeff): A measure of how much nodes in a graph tend to cluster together. This reflects the proportion of nodes connected to node N

that are also connected to each other (Verweij et al., 2014).

Degree (DEG): The number of edges connected to a node, N.

Hubs: Areas through which large amounts of information flow to reach from one part of a network to another (Types of hubs and non-hub nodes are described in

Figure 6).

Within-Module Degree z-Score (MZ): Measures how well connected a node is to other nodes in the same module (or cluster/community). This demonstrates

whether the node is a hub in the network (i.e., much of the information flows through this node) (Guimerà and Amaral, 2005). Guimera and Nunes Amaral define MZ

> 2.5 as hub-like nodes, and MZ < 2.5 as non-hub nodes.

Modularity: A measure of network segregation into distinct modules (or clusters/communities) that have sparse connections between each module (Cohen and

D’Esposito, 2016).

Participant Coefficient (PCoeff): Measures how homogeneous a node’s edges are distributed across modules (or clusters/communities). Nodes are divided into

two classes: (1) High PCoeff: connector nodes with many global edges across modules (strong between-module and weak within-module connectivity Rubinov and

Sporns, 2010; Cohen and D’Esposito, 2016); and (2) Low PCoeff: provincial/local nodes with mostly edges that connect nodes within a module (strong within-module

and weak between-module connectivity) (Joyce et al., 2010; Van Diessen et al., 2014; Bertolero et al., 2015).

Path Length (PL): Measures the minimal number of edges of all possible node connections in a network (Van Diessen et al., 2014; Verweij et al., 2014).

Small–worldness: A type of network architecture in which local clustering is combined with short path length. This architecture offers important advantages for

network functionality, ranging from synchronizability to information flow (Oliveira et al., 2014; Muldoon et al., 2016).

Small–world Propensity: Introduced by (Muldoon et al., 2016), used to account for potential variations in connection strength in a network, by measuring how

clustering and path length differ from random and grid-like networks.

characterizations of the structural properties of a network
(Strogatz, 2001; Estrada and Hatano, 2008; Grayson et al., 2016).
In many cases, analyzing the structure of a network is the first
step to understanding its function (Strogatz, 2001).

Graph theory measures have been applied to the study of
biological networks, including the brain structure of organisms
such as the neural networks of C. elegans (Achacoso and
Yamamoto, 1991; Yan et al., 2017) and Macaque monkeys
(Achard et al., 2006), in attempt to better understand their
function. Biological networks typically demonstrate a small–
world architecture (see Box 1 for definition). Small–worldness
has been shown to allow for high efficiency of synchronized and
parallel information transfer between neural regions (Bullmore
and Sporns, 2009). Within such a system, shorter paths from
node to node (with few longer sparse connections) may provide
more efficient communication across an entire system, thereby
facilitating dynamical processes that require global coordination

and information flow (Watts and Strogatz, 1998; Strogatz,
2001). For instance, regions with short path length and high
clustering coefficient confer an ability to transfer information
quickly between a large number of nodes. Contrastingly, areas
with long path lengths and low clustering may allow for
sparse connections between individual clusters in a network,
resulting in a slower spread of information over greater
distance (Strogatz, 2001; Bullmore and Sporns, 2012; Muldoon
et al., 2016). Understanding these distinct structural features
within biological neural networks has allowed researchers
to infer that such networks may utilize different structural
properties to communicate under separate time scales (e.g.,
fast local synchronization within dense regions and slow global
communication between dense regions; Chow and Kokotovic,
1985; Tahmassebi et al., 2017).

The commencement of the Human Connectome Project in
2005 (Sporns et al., 2005) has driven a surge in techniques and
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studies to map the structure and function of the human brain
network (Sporns et al., 2002; Bertolero et al., 2015; Farahani
et al., 2019; Gilson et al., 2019). Many such studies apply graph
theory to analyse the connectivity within and between regions of
the brain (Bullmore and Sporns, 2009). While the networks of
simple organisms such as C. elegans are composed of only 270–
300 individual neurons (Yan et al., 2017), the human brain is a
much larger network, composed of tens of billions of neurons
(although the exact number is contested), each of which has
around ten thousand synapses (Koch, 2004; Shepherd, 2004). The
sheer number of neural components makes it extremely difficult
to model human neural networks graphically. Therefore, much
of the graph theory analysis on human neural networks is applied
to large collection of neurons, or even entire regions of the brain
(e.g., Bassett and Bullmore, 2006; Gilson et al., 2019).

1.2. Neuromorphic Systems: Mimicking the
Brain in Hardware
In parallel to developments in neuroscience, the engineering
community has spurred the development of neuromorphic
systems that can mimic the function of human neurons in
hardware (Vianello et al., 2017). Carver Mead’s pioneering
efforts to emulate biological information processing using analog
circuits (instead of logic gates used in digital computing)
and leveraging the inherent device physics of Metal Oxide
Semiconductor Field Effect Transistors (MOSFETs) established
a new paradigm in computing hardware (Mead, 1990).
Today, neuromorphic computing encompasses the use of novel
nanotechnologies such as non-volatile memory devices and
memristors (memory-resistors) that can mimic synapse-like
memory and spiking temporal characteristics (Yang et al., 2013;
Burr et al., 2017; Ziegler et al., 2018; Roy et al., 2019). Because
of their unconventional “beyond von Neumann” architecture,
which substantially reduces power requirements, such devices
are also attractive for implementing Artificial Neural Network
(ANN) algorithms, which require computationally-intensive
training to learn input-output relationships, thereby mimicking
neurons and synaptic connections in software (Xu et al., 2018).

Similarly, neuromorphic chips [e.g., IBM’s TrueNorth
(Merolla et al., 2014; Akopyan et al., 2015) and Intel’s Loihi
(Davies et al., 2018)] have been developed specifically as ANN
accelerators, although their neuromorphic hardware attributes
are limited to the integration of processing and memory to
reduce power requirements. More generally, a limitation of
neuromorphic in-memory computing hardware systems is
their restriction to a regularized grid-like array structure that
emphasizes the role of individual synapse-like elements (e.g.,
memristors), rather than the network architecture as a whole.

This limits potential advantages arising from structure–
function integration in a distributed network, such as in a
small–world architecture seen in biological neural networks
(Bullmore and Sporns, 2009; Chialvo, 2010). It is likely
that due to their conventional grid-like array structure, most
neuromorphic systems lack the emergent dynamical properties
that are characteristic of neural network circuitry (e.g., memory,

learning, and even intelligence). Such emergent properties are
attributed to the complexity of neural networks and the interplay
between structure and function (Hagmann et al., 2008; Chialvo,
2010; Bassett and Gazzaniga, 2011). It is important to note that
factors other than topology may influence emergent behavior
(e.g., learning rules specifically designed for ability acquisition;
Chollet, 2019). However, much of the literature exploring
emergence in complex systems, including biological networks,
emphasizes the role of topology, and structural properties as
key to understanding emergence (Angeline, 1994; Chialvo, 2010;
Pascual-García, 2016; Dumitrescu et al., 2017).

We previously introduced a novel neuromorphic system
comprised of self–assembled nanowires whose structure and
function (in response to electrical stimulation) mimic that of
biological neural networks (Kuncic et al., 2018; Diaz-Alvarez
et al., 2019). In these networks, each junction between nanowires
provides a non-linear synaptic function in a similar manner
as an atomic switch (Terabe et al., 2005; Ohno et al., 2011).
Rather than focusing on the controllability of individual synapses
like ANNs or other neuromorphic systems, our Atomic Switch-
like Networks (ASNs) mimic the complex topology of biological
neural networks, by mimicking biological self–assembly to form
similarly complex networks comprised of nanowires (synthetic
neurons) and junctions (synthetic synapses) (Stieg et al., 2012;
Diaz-Alvarez et al., 2019).

Previous studies have shown that ASNs exhibit emergent
properties such as non-linear dynamics, recurrence and capacity
for learning, which arise from the complexity of the networks, as
well as the properties of the atomic switch-like junctions (Terabe
et al., 2005; Avizienis et al., 2012; Kuncic et al., 2018). Such
properties are essential for brain-like function (Avizienis et al.,
2012). However, due to the complexity of ASNs, it is highly
difficult to understand or predict the impact and interactions
of the networks’ structure and functions from experimental
data alone. Furthermore, due to the networks’ self-assembled
structure, it is experimentally difficult to control the topology
to measure how it influences dynamics. It is also extremely
difficult to use imaging-based techniques such as or electron
microscopy (e.g., White et al., 1986; Eberle and Zeidler, 2018)
reconstructions to unpack the structural connectivity of ASNs,
as it is impossible to tell whether or not intersecting wires
form a junction between them. We therefore have developed a
computational model that simulates the structure experimental
ASNs, based on functional, experimental validation (Kuncic et al.,
2018; Diaz-Alvarez et al., 2019). For the purposes of the present
study, we use this model solely to construct simulated self-
assembled networks for structural analysis. ASNs are made of a
fixed nanowire structure that does not change under electrical
activation. Our simulations allow us to visualize each wire and
connection individually in a graphical representation, and to
easily alter them, either by changing the positioning and lengths
of individual wires and junctions, or manipulating the density
and dispersion of the networks. Consequently, our model enables
us to examine the structural properties of specific sections of the
network, which is currently impossible to do experimentally, as
well as different realizations of nanowire networks.
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Here, we apply graph theory measures to simulated ASNs with
varying topologies. This allows us to examine the topological
properties of ASNs, and compare themwith a range of real-world
networks. These include the simple organism C. elegans, as well
as random and grid-like networks.

2. METHODS

2.1. Construction of Simulated ASNs
To explore the topology of ASNs, we generated multiple
networks with different structural parameters (see Figure 1 for
visualizations). Hardware ASNs acquire a complex network
structure through bottom-up self-assembly (Avizienis et al., 2012;
Stieg et al., 2012; Diaz-Alvarez et al., 2019), similar to neural
network growth in the brain. To simulate this self-assembly, we
modeled nanowires as 1D objects of length uniformly drawn
from a normal distribution of specified average wire length
(mean of distribution, ranging from 6 to 9 µm) and wire
dispersion (ratio of standard deviation to the mean, ranging
from 0 to 50%). These wires were randomly placed within a
2D plane of fixed size (30 × 30 µm), with horizontal and
vertical positions of the wire centers generated from a uniform
spatial distribution. The angular orientation of each wire was
generated from a uniform distribution on 2π . A junction
was modeled at each intersection point between nanowires
(Kuncic et al., 2018; Diaz-Alvarez et al., 2019). The connectivity
was mapped to a graph adjacency matrix representation with
nodes corresponding to nanowires and edges corresponding
to junctions. In real networks, not every intersection between
wires need necessarily form a junction. It is, however, practically
difficult to determine where individual junctions exist in the self-
assembled networks (Diaz-Alvarez et al., 2019). In our simulated
networks, the simplifying assumption that all intersections result
in junctions has negligible effect on network functionality when
compared to experimental measurements of hardware ASNs (see
Supplementary Materials).

For each of the networks, the following parameters were
varied: number of nanowires (i.e., 100, 500, 1,000, or 2,000
nws), average nanowire length (6 – 9 µm), and dispersion

FIGURE 1 | Neuromorphic nanowire networks. (a) Optical microscopy image

of an actual self–assembled network of nanowires. The length of wires varies

from∼6 to 50µm in this image. (b) Simulated 500 nw (6,065 junction) network

generated by our model. The length of wires in the simulated networks varies

from 6 to 9µm.

of wire length (0, 10, 20, and 50% of average nanowire
length). Using this process, we generated a total of 39
different combinations of networks. All simulated networks
were constructed in Matlab v2018a and Python v3.7.3. All
structural connectivity measures were taken from the open-
source Brain Connectivity Toolbox (Rubinov and Sporns, 2010)
and NetworkX (Hagberg et al., 2008) packages.

To contextualize the structural connectivity of our ASNs, we
simulated the topology of Watts-Strogatz networks ranging from
random to grid-like, and C. elegans. Graph theory measures
were applied to the connectivity data of each ASN, as well
as to each of the Watts-Strogatz and C. elegans networks (see
Figure 2 for graphical representations of all networks). We also
included a fully-connected ANN similar to a random Watts-
Strogatz network. Next, we compared global clustering coefficient
and average path lengths (Watts and Strogatz, 1998). We also
calculated the small–world propensity values for each network
to establish an unbiased (see Box 1) measure of small–worldness
in all networks (Muldoon et al., 2016). Finally, we mapped 100
and 500 nw ASNs, as well as C. elegans and correspondingly sized
random and grid-like WS networks, on the Guimerà and Amaral
(2005) cartographic plane to compare participant coefficient
and within-module degree z-score. This allowed us to examine
the modularity and integration of the networks (Guimerà and
Amaral, 2005; Power et al., 2013; Bertolero et al., 2015).

2.2. Construction of Random and Grid-Like
Watts-Strogatz Networks
To create a series of Watts-Strogatz networks, we first created
a ring lattice with N nodes of mean degree 2k, where 2k =
mean degree of the corresponding ASN with N nodes. In the
Watts-Strogatz networks, each node is connected to its k nearest
neighbors on either side. For each edge, E, in the graph, we
then rewire the target node to k other nodes in the network
with probability β . When β = 0, no edges are rewired and
the model returns a locally-clustered ring lattice. We term this
network grid-like, as its non-graphical representation is formed
from a grid-shaped lattice. In contrast, when β = 1, all
of the edges are rewired and the ring lattice is transformed
into a random graph (MathWorks, 2016). We varied β from
0 to 1 in steps of 0.05, leaving 21 networks ranging from
completely Grid-Like (β = 0) to completely Random (β = 1),
for each size N. A β of 0.2 is denoted as displaying “small–
world” characteristics (Watts and Strogatz, 1998). Furthermore,
to compare ASNs with a WS random-like ANN model, we
constructed a 5-layer ANN, with 10 input nodes, 10 output nodes
and 160 nodes in each middle layer. Every node in each layer
is connected to every node in its parent and child layers (hence
the term “fully-connected”). However, no nodes are connected
within layers.

2.3. Construction of C. elegans Networks
Neuronal connectivity data of the simple nematode C. elegans
(277 neurons and 2,105 synaptic connections) was adapted
from Achacoso and Yamamoto (1991), and electron microscope
reconstructions by White et al. (1986).
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FIGURE 2 | Graphical representations of sample networks: Grid-like Watts-Strogatz (WS) networks (β=0; left); random Watts-Strogatz networks (β=1; center-left);

ASNs (center-right); C. elegans and fully-connected ANN networks (right). Nodes represent nanowires (or neurons for C. elegans and ANN), while edges represent

junctions (or synapses for C. elegans and virtual synapses for ANN).

3. RESULTS

3.1. Small–Worldness
We compared the structures of multiple unique ASNs across
four sizes (a total of 39 networks comprised of 100, 500, 1,000,
or 2,000 nanowires) with a fully-connected ANN, a C. elegans
network, and Watts-Strogatz random/grid-like networks across
four sizes and 21 varying β parameters (one network for each β ,
and for each size). See Table 1 for a full statistical description of
each network.

Figure 3 shows a comparison of path lengths and path
distances between 100 and 500 nw ASNs, and a C. elegans
network. Figure 4 shows a comparison of global mean path
length and global clustering coefficient for each of the networks
studied. Larger ASNs have similar mean path length to C. elegans,

but higher clustering. However, ASN networks of similar size to
C. elegans have a higher average path length.

ASNs are also more clustered and have a longer mean path
length than random WS networks (β = 1). Compared to grid-
like WS networks (β = 0), ASNs tend to be less clustered with
generally shorter path lengths. Compared to a fully–connected
ANN of 500 nodes, ASNs display much higher clustering, and
longer path lengths.

Using path length and clustering coefficient to estimate small–
worldness Watts and Strogatz (1998), ASNs would fall in the
small–world category, with relatively low path length and high
clustering. Recently a measure called small–world propensity has
been employed to consider potential drawbacks of the Watts–
Strogatz method (see Box 1; Muldoon et al., 2016).
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One-way ANOVAs were conducted to compare the small–
world propensity of 100 nw ASNs with 100 node WS random-
like, 100 node WS grid-like and C. elegans networks. There
was a significant difference between groups [F(3, 10) = 47.16,
p < 0.001] (where F is the ratio of mean square values of
each group). Post-hoc analysis using the Bonferonni correction
for multiple comparisons indicated that 100 nw ASNs had
higher small–world propensity [Mean (M) = 0.69, Standard
Deviation (SD) = 0.04] than random networks (M = 0.29,
SD = 0) and grid-like networks (M = 0.29, SD = 0),
but there was no significant difference between ASNs and C.
elegans (M = 0.55, SD = 0; see Supplementary Materials

for boxplots and multiple comparison graphs). We repeated
these ANOVAs for 500 nw ASNs and 500 node WS networks
[F(3, 9) = 182.16, p < 0.001]. Post-hoc analysis indicated that
500 nw ASNs (M = 0.68, SD = 0.02) had higher small–world
propensity than random networks (M = 0.29, SD = 0), grid-
like networks (M = 0.29, SD = 0) and C. elegans (M = 0.55,
SD = 0). Figure 5 shows a visual difference between ASNs and
other networks.

3.2. Modularity and Integration
We used MZ and PCoeff measures to plot ASNs on a Guimerà
and Amaral (2005) cartographic space (see Figure 6A for
100 and 500 nw ASN values, and Supplementary Figure 5

for 1,000 and 2,000 nw ASN values). Briefly, this involves
calculating the modular assignment of each node (see Box 1),
and then estimating each nodes’ topological role, relative to the
modular assignment: high MZ = high within-node connection
(segregation) and high PCoeff = high between-node connection
(integration). When combined, these measures exhibit the
modularity and hub characteristics of a network. Each region
in this space classifies a node in a network as a specific type.
Almost all the nodes in all sizes of ASNs were categorized as
ultra-peripheral (PCoeff = 0), peripheral (MZ < 2.5, 0 <

PCoeff < 0.62), and non-hub connector regions (MZ < 2.5,
0.62 < PCoeff < 0.80). There were also a very few nodes that
fell in the provincial hub region (MZ > 2.5, and 0 < PCoeff
< 0.30).
We compared the PCoeff and MZ of ASNs to both WS

networks, and a biological system such as the C. elegans (see
Figure 6B). One-way ANOVAs were conducted to compare the
PCoeff and MZ of 100 nw ASNs with 100 node WS random-
like, 100 node WS grid-like and C. elegans networks. There was
a significant difference between groups [F(3, 1,517) = 112.64,
p < 0.001] for PCoeff, but there was no significant difference
for MZ. Post-hoc analysis using the Bonferonni correction for
multiple comparisons indicated that 100 nw ASNs had lower
PCoeff (M = 0.22, SD = 0.23) than C. elegans (M = 0.41,
SD = 0.21) and random networks (M = 0.57, SD = 0.17), but
there was no significant difference between ASNs and grid-like
networks. We repeated these ANOVAs for 500 nw ASNs and 500
node WS networks, and the results were largely unchanged (see
Supplementary Materials).

The structures of WS random-type networks tend to have
higher PCoeff values (see Table 1 for means and standard
deviations), mainly in the PCoeff > 0.8 region (non-hub kinless
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FIGURE 3 | Path length comparison of sample 100 and 500 nw ASNs with C. elegans. (A) Path length of each node from a randomly selected peripheral node for

sample 100, 500 nw and C. elegans networks. (B) Distribution of path lengths from all node pairs in each sample network, including the average and median path

length distributions, for 100, 500 nw and C. elegans networks.
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FIGURE 4 | Watts and Strogatz (1998) cartographic plane: global clustering coefficient and global mean path length. Each large dot represents 39 ASNs of varying

parameters, with colors representing the network size (number of nanowire nodes). The small dots are Watts-Strogatz networks, rewired from completely random

(β = 1) to grid-like (β = 0). Beta values decrease from bottom to top. The large yellow square measures the C. elegans network, and the large pink triangle is a

500-node fully-connected ANN.

FIGURE 5 | Average small–world propensity values for Watts-Strogatz (WS), 500-node ANN, C. elegans and ASNs of varying sizes (number of nanowires, nw).

Averages for WS were taken across all 21 β parameters from 0 to 1, with error bars reflecting standard deviation across β parameters. Averages for ASNs were taken

from 39 networks with varying parameters as described in the methods section, with error bars reflecting standard deviation across network parameters.

nodes). They also have some examples of MZ > 2.5 in the
connector and kinless hub regions, but mainly MZ < 2.5. WS
grid-like networks have lower PCoeff values, typically limited
to ultra-peripheral and peripheral regions. C. elegans networks
cover a greater portion of the cartographic space, although most
of the nodes tend to fall within the peripheral and non-hub
regions (see Guimerà and Amaral, 2005 for more examples of
biological PCoeff/MZ distributions).

4. DISCUSSION

ASNs exhibit a small–world structure, characterized by relatively
short mean path length, alongside high clustering (Sporns et al.,
2002; Sporns and Zwi, 2004). When compared with random
or grid-like Watts–Strogatz networks, ASNs demonstrate more
biological-like small–worldness features. While both random
networks and ASNs have short path lengths, ASNs show higher
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FIGURE 6 | Guimera-Amaral (2005) Cartographic-Space: Within-Module

Degree z-Score (MZ) and Participant Coefficient (PCoeff). The dark-gray region

(bottom left) refers to ultra-peripheral nodes (i.e., nodes with only one or few

connections within a module); The light red region refers to peripheral nodes

(i.e., nodes that are non-hubs and are only connected within a module); The

green region refers to non-hub connector nodes (i.e., nodes that are

connected to other modules but are not hubs); The blue region (bottom right)

refers to non-hub kinless nodes (i.e., non-hub nodes not belonging to a

particular module); The yellow region (top left) refers to provincial hubs (i.e.,

hub nodes that are highly connected within a module, but not between

modules); The cream region refers to connector hubs (i.e., nodes that are

highly connected between modules, but not necessarily within modules); the

light-gray region (top right) refers to kinless hubs (i.e., hubs not belonging to a

particular module). Regions are adapted from Guimerà and Amaral (2005). See

Box 1 for example nodes. (A) 500 nw ASN networks. Each colored dot is the

mean MZ and PCoeff for the most dense (Avg DEG = 40.66) variations of

ASNs. (B) 500 node WS networks and C. elegans networks. Squares

represent the MZ and PCoeff for C. elegans. Stars and crosses represent the

MZ and PCoeff values for WS networks with β = 0 and 1, respectively. (C)

Average PCoeff and MZ scores for each type of network.

clustering. In studies on human neural networks, it has been
suggested that a small–world network is ideal, for example, for
synchronizing neural activity between brain regions (Latora and
Marchiori, 2001; Reijneveld et al., 2007; Verweij et al., 2014).
In turn, this reflects the capacity for high global efficiency of
parallel information transfer between such regions (Bullmore and
Sporns, 2009). ASNs may therefore have capacity for efficient,
synchronized and parallel information transfer across the entire
network, similar to that of biological systems.

However, the structure of wiring within and between
regions/clusters, as highlighted by PCoeff and MZ measures,
may be different from biological systems such as C. elegans
(see Supplementary Figure 3 for comparison with human node
types). In biological neural networks, PCoeff and MZ are used
to identify whether particular nodes play a hub-like role in the
network. Hubs are central areas through which large amounts
of information is trafficked to reach different parts of a network
(van den Heuvel and Sporns, 2013). They are characterized by
high connectivity to other network regions, as well as central
positioning in the network. MZ scores have been used to denote
hub status (e.g., z-Score < 2.5), while PCoeff values are used
to classify the type of hub (Guimerà and Amaral, 2005; Joyce
et al., 2010). Our results are consistent with previous studies
showing that nodes in C. elegans have many peripheral and
non-hub connector nodes, but also some hub-type provincial
and connector nodes (Achacoso and Yamamoto, 1991; Guimerà
and Amaral, 2005; Power et al., 2013). Such networks maintain
a balance between integration and segregation of modules. In
contrast, random WS networks are largely comprised of highly
integrated, non-hub nodes, with a few hub-type nodes. This
reflects a network with few modules. Grid-like WS networks are
entirely comprised of non-hub, ultra-peripheral/peripheral type
nodes, with very little integration or even modularity, as they
have no connector nodes to connect between any modules that
may exist.

How do ASNs fit within this space? Our results suggest that
ASNs have a high proportion of peripheral, non-hub type nodes,
similar to grid-like graphs. However, ASNs also have many non-
hub connector nodes, which grid-like graphs lack. This means
that ASNs are highly segregated, but also have many connections
between modules, although they are weaker than within-module
connections. Therefore they also have higher modularity than
C. elegans. Random networks, on the other hand are highly
integrated and have very few connector or peripheral nodes.
Therefore ASNs have greater segregation than random networks,
and higher modularity than both random and grid-like networks.
ASNs involve a balance between integration and segregation,
that is biased toward the presence of highly clustered, tight-knit
modules with sparse inter-connectivity.

However the modularity and segregation of ASNs do not
seem to reflect that of an organism like C. elegans. The
nematode network has a greater balance between segregation
and integration than ASNs, although likely with less modularity.
Even ASNs that are highly dense only have a few hub-type
nodes, meaning that most of the network’s capacity to transfer
information occurs in segregated modules, with sparse links
between modules. Networks like the C. elegans would likely
have fewer modules, with more central hub-type nodes that
are responsible for directing information flow to and from the
segregated modules of the network (hence the term hub).

Optimization of the structure of ASNs to represent biological-
like networks may be desirable in the future, to allow for more
biological-like capacities. For instance, increasing the size of the
networks, and allowing for a greater balance between sparse and
dense connections may allow for a more equivalent distribution
of MZ and PCoeff scores, as well as increasing small–worldness
even more. If these parameters are changed, it may be possible to
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construct nanowire networks that are even more representative
of a biological system. However, it may be that ASNs currently
demonstrate similar functionality to biological organisms, but
with a uniquely highly modular and segregated structure that has
more emphasis on peripheral-type nodes. In such a case, nodes
within a particular module or cluster may communicate more
within that module than with nodes outside it, yet still produce
dynamics that are similar to biological systems (Kuncic et al.,
2018). Due to the high small–worldness that ASNs demonstrate,
it may be possible that these types of networks place much less
importance on hub-type nodes or regions, as many other small–
world complex networks do (e.g., Guimerà and Amaral, 2005;
van den Heuvel and Sporns, 2013; Verweij et al., 2014). We plan
to investigate the functional connectivity of ASNs in a future
study, to understand how similar the interplay between structure
and function in these networks may be to biological systems and
other real-world networks.

4.1. Conclusion
Neuromorphic nanowire networks demonstrate a small–world
architecture that is similar to the biological system of C. elegans,
and is distinct from random or grid-like networks (including
untrained artificial neural networks). However, they also appear
to be comprised of nodes that are equivalent to peripheral
or non-hub nodes in a biological system, while being more
segregated and modular, and less reliant on hubs of information
flow. In future studies, investigating the functional properties
of neuromorphic nanowire networks under electrical activation,

coupled with altering the topology of these networks, will
provide new insights into the interplay between structural and
functional connectivity in a way that is extremely difficult
experimentally. This may bring us closer to better understanding
the physical components that may give rise to emergent
dynamical behaviors of neural-network-like structures; behaviors
that, in turn, enable cognitive functions such as learning and
memory, or even intelligence.
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